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Abstract

Purpose: Convolutional neural networks (CNN) have greatly improved medical

image segmentation. A robust model requires training data can represent the entire

dataset. One of the differing characteristics comes from variability in patient posi-

tioning (prone or supine) for radiotherapy. In this study, we investigated the effect

of position orientation on segmentation using CNN.

Methods: Data of 100 patients (50 in supine and 50 in prone) with rectal cancer

were collected for this study. We designed three sets of experiments for compar-

ison: (a) segmentation using the model trained with data from the same orientation;

(b) segmentation using the model trained with data from the opposite orientation;

(c) segmentation using the model trained with data from both orientations. We per-

formed fivefold cross‐validation. The performance was evaluated on segmentation

of the clinical target volume (CTV), bladder, and femurs with Dice similarity coeffi-

cient (DSC) and Hausdorff distance (HD).

Results: Compared with models trained on cases positioned in the same orientation,

the models trained with cases positioned in the opposite orientation performed sig-

nificantly worse (P < 0.05) on CTV and bladder segmentation, but had comparable

accuracy for femurs (P > 0.05). The average DSC values were 0.74 vs 0.84, 0.85 vs

0.88, and 0.91 vs 0.91 for CTV, bladder, and femurs, respectively. The correspond-

ing HD values (mm) were 16.6 vs 14.6, 8.4 vs 8.1, and 6.3 vs 6.3, respectively. The

models trained with data from both orientations have comparable accuracy

(P > 0.05), with average DSC of 0.84, 0.88, and 0.91 and HD of 14.4, 8.1, and 6.3,

respectively.

Conclusions: Orientation affects the accuracy for CTV and bladder, but has negligi-

ble effect on the femurs. The model trained from data combining both orientations

performs as well as a model trained with data from the same orientation for all the

organs. These observations can offer guidance on the choice of training data for

accurate segmentation.
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1 | INTRODUCTION

Segmentation of the organs‐at‐risk (OARs) and the tumor target is one

of the key problems in the field of radiotherapy. Computer‐assisted
automated methods have the potential to reduce the inter‐ and intra‐
observer variability and relieve physicians from the labor‐intensive
contouring workload. Such problems have been addressed in clinical

applications using “atlas‐based” automated segmentation software.1–3

Despite the popularity of such software, the recent deep learning rev-

olution, especially the fully convolutional neural networks (CNN),4–8

has turned the tables due to its significant improvement in terms of

segmentation accuracy, consistency, and efficiency. Lustberg et al.9

and Lavdas et al.10 demonstrated that CNN contouring demonstrated

promising results in CT and MR image segmentation as compared with

atlas‐based methods. Ibragimov et al.11 successfully applied CNN for

OAR segmentation in the head and neck CT images. The authors12

previously reported a dilated CNN with high accuracy for segmenta-

tion of rectal cancer. With the promising learning tools and the

enhancement of computer hardware, deep learning will dramatically

change the landscape of radiotherapy contouring.13

As is well‐known, data are one of the most important compo-

nents of any machine learning system,14 especially for the deep net-

works.15,16 Although the approaches substantially improve the

performance, training CNN requires a large number of fine quality

contour annotations to achieve a satisfactory segmentation outcome.

The training data for modeling must be representative of the charac-

teristics of the image sets in the study. Special attention should be

paid to collecting and constructing an appropriate dataset for any

segmentation system for CNN. Patients undergoing radiotherapy for

rectal cancer are generally treated either in a prone position to

reduce the volume of small bowel in the high‐dose region17 or in a

supine position as it is much more stable.18 A different positioning

orientation (prone or supine) will result in variability19 in location,

shape, and volume of the structures of interest. These differences

may affect segmentation performance when training and testing

across different positioning orientations.

In this study, we investigated the effect of cross‐orientation on

segmentation for rectal cancer radiotherapy using CNN. This issue is

highly relevant for the following reasons. First, whether a CNN

model trained with patients positioned in one orientation performs

poorly for cases in the opposite orientation has not been studied

before. Although this may be subjectively true, there have been no

experiments to support this assumption and no quantitative

evaluation of such deterioration. Second, there has been no prior

report on whether and how much the training with data from both

orientations would affect the segmentation accuracy. More data can

increase the diversity, but mixing two very different types of data

are likely to lead to confusion in model training. This is an open

question whose answers may influence the training strategies of

deep learning. Third, segmentation is often the prerequisite of medi-

cal image analysis. If the positioning orientation affects segmenta-

tion, it will also affect further quantitative analysis, e.g., radiomics,

which is based on the segmentation. This study will therefore pro-

vide evidence and guidance for patients positioning orientation

considerations.

2 | MATERIALS AND METHODS

2.A | Patients data and pre‐processing

Planning CT Data of 100 patients with rectal cancer who underwent

radiotherapy were collected for this study. Half of them (50 patients)

were acquired in supine position and the remaining 50 patients were

positioned prone. CT images were reconstructed with a slice thick-

ness of 3 mm. Because the pixel sizes of two‐dimensional (2D) CT

slices were not uniform among different cases, they were all resam-

pled to a matrix of 512 × 512 with a resolution of 1 × 1 mm2. It

was performed using MATLAB's “imresize” function with bi‐cubic
interpolation and anti‐aliasing. A total of 8831 and 8846 CT slices

were taken for the supine and prone datasets, respectively. Physi-

cians contoured the CTV and OARs on the 2D CT images as part of

the clinical care. We chose three regions of interest (ROIs) to evalu-

ate the effect of positioning orientation on segmentation: clinical tar-

get volume (CTV), bladder, and femurs.

The image data were pre‐processed in MATLAB R2017b (Math-

Works, Inc., Natick, MA, USA). A custom‐built script was used to

extract and label all the voxels that belonged to the specific contours

from the DICOM structure files. We used a contrast‐limited adaptive

histogram equalization (CLAHE)12,20 algorithm to pre‐process the CT

images for image enhancement. For the patients in the “supine” posi-

tion, the images were rotated 180° clockwise to create the corre-

sponding “virtual prone” images. This is to remove the effects that

are entirely caused by the physical orientation of the image. The

final data used for CNN were the 2D CT slices and the correspond-

ing 2D labels. The process and the additional image pre‐processing
were fully automated.
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F I G . 1 . The procedure of segmentation using CNN.

2.B | Convolutional neural networks
implementation

We used the ResNet‐1017 as the deep learning network for segmen-

tation. As illustrated in Fig. 1, the inputs of the network were the

original 2D CT slices and the outputs were the corresponding maps

with the segmentation labels. Table 1 shows the detailed architec-

ture of ResNet‐101. It has 101 parameter layers and has become

one of the state‐of‐the‐art methods for segmentation due to its high

accuracy and efficiency. Similar to all other CNN, ResNet‐101 is

composed of the convolutional layers, the max‐pooling layer, and the

fully convolutional (fc) layer. The convolutional layers extract fea-

tures from the input image. There is a batch‐normalized (BN) opera-

tion following each convolutional layer. An additional operation

called Rectified Linear Unit (ReLU) is used to introduce non‐linearity
in CNNs by replacing all negative pixel values in the feature map by

zero, i.e., output = max (0, input). The most important feature of

ResNet is the residual connection which is inherently necessary for

training very deep convolutional models. The residual connections

add skipped connections that bypass a few convolutional layers at a

time. Each bypass gives rise to a residual block in which the convolu-

tional layers predicted a residual that is added to the input tensor of

the block.

In detail, the input images have a size of M × N. Conv1 includes

one convolutional layer that had a filter size of 7 × 7, a stride of 2,

and a padding of 3. It generates 64 feature maps of size M/2 × N/2.

A max‐pooling operation followed reduced the size of the feature

image to M/4 × N/4. It can reduce the number of parameters in the

network, and hence control overfitting. Conv2_x includes 9 (3 × 3)

convolutional layers all generating feature maps of size M/4 × N/4.

Conv3_x includes 12 (3 × 4) convolutional layers and generated fea-

ture maps of size M/8 × N/8 due to a max‐pooling operation in con-

v3_1. Conv4_x and conv5_x have 69 (3 × 23) and 9 (3 × 3)

convolutional layers, respectively and the size of all the feature maps

is M/8 × N/8. In the layers of fc6, fc7, and fc8, the fully connected

layers are replaced with fully convolutional layers. The final 1 × 1

convolution in fc8 combines all the features non‐linearly and can

predict pixel‐wise segmentation in images. The size of the input is

reduced to one‐eighth of the original size in the fc8 layer due to the

max‐pooling and stride operations. Therefore, a bilinear‐interpolation
is applied after fc8 to recover the original size as the final output.

3 | EXPERIMENTS

In order to evaluate the effect of positioning orientation on segmen-

tation, we designed the following three sets of experiments for com-

parison.

1. Segmentation using the model trained with data from the same

orientation;

2. Segmentation using the model trained with data from the oppo-

site orientation;

3. Segmentation using the model trained with data from both orien-

tations.

We performed fivefold cross‐validation for evaluation. For each

loop of validation, 80% of the data were used as the training set to

“tune” the parameters of the segmentation model, and the remaining

20% cases were used as the test set to evaluate the performance of

the model. In detail, the datasets of supine and prone were randomly

divided into five equal‐sized subsets (supine subsets: Sj, j = 1, 2, 3, 4,

5; prone subsets: Pj, j = 1, 2, 3, 4, 5), respectively. First, we trained

the first set of models: Model_S1 (training set: S2, S3, S4, and S5),

Model_P1 (training set: P2, P3, P4, and P5), and Model_SP1 (training

set: S2, S3, S4, S5, P2, P3, P4, and P5). We performed six scenarios of

test with these three models, respectively:

1. Segmentation on S1 using Model_S1;

2. Segmentation on S1 using Model_P1;

3. Segmentation on S1 using Model_SP1;

4. Segmentation on P1 using Model_P1;

5. Segmentation on P1 using Model_S1;

6. Segmentation on P1 using Model_SP1.

Subsequently, we chose subsets with j as the testing sets and

i != j as the training set to train the jth set of models. We repeated

this step until we trained five sets of models to cover all the data.

In order to avoid overfitting during training phase, we adopt an off-

line and online data augmentation schemes. The offline augmentation

randomly transformed the training cases with noise pollution and rota-

tion (between −5° and 5°), which enlarged the training dataset by ten

times. The online augmentation applied methods of randomly scaling

the input images (from 0.5 to 1.5), randomly cropping, and randomly

left‐right flipping. With the data augmentation, the network hardly
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trained the same augmented image twice, as the modifications were

performed at random each time. This greatly increased the diversity of

samples and made the net more robust.

We implemented the training and testing of our model using

Caffe,21 which is a publicly available deep learning platform. The

model was trained in a 2D pattern. During the testing phase, all the

2D CT slices were tested one by one. In detail, the 2D CT slices

were the inputs and the corresponding segmentation probability

maps were the outputs. The model parameters for each network

were initialized using the weights from the corresponding model

trained on ImageNet.22 In this case, the input channel of “Conv1”

layer should be three. However, our input was the gray image of CT,

which has only one channel. We solved this problem by taking only

the first channel of each filter in the “Conv1” pre‐trained on Ima-

geNet when loading the model. This was achieved by modifying the

original code of Caffe, that is, to compare the channel number c1 of

the current network and the channel number c2 of the pre‐training
model. If c1 is less than c2, only previous c1 channel of the filters is

used. The training set was used to “tune” the parameters of the net-

works. The loss function and the training accuracy were computed

with “SoftmaxWithLoss” and “SegAccuracy” built‐in Caffe, respec-

tively.21 The optimization algorithm of training used backpropagation

with the stochastic gradient descent (SGD). We used the “poly”

learning rate policy where current learning rate equals the base one

multiplying ð1� iter
max iterÞpower . In this study, we set the base learning

rate to 0.001 and power to 0.9. The batch size was set to 1 due to

the limitation of physical memory on GPU card. The training itera-

tion number was set to 90K. The momentum and weight decay were

set to 0.9 and 0.0005, respectively. The training and testing phases

were fully automated with no manual interaction. All computations

were undertaken on an Amazon Elastic Compute Cloud with NVIDIA

K80 GPU.

3.B | Performance evaluation

Physician approved manual segmentation was used as the gold stan-

dard reference. The spatial consistency between the automated seg-

mentation and the manual reference segmentation was quantified

using two metrics: the Dice similarity coefficient (DSC)23 and the

Hausdorff distance (HD).24 Because the image segmentation was per-

formed in 2D mode, we calculated the two metrics slice by slice and

then took the average as the final results for each patient. The value of

DSC ranges from 0, indicating no spatial overlap between the two seg-

mentations, to 1, indicating complete overlap. The HD indicates the

degree of mismatch between the two segmentations. Smaller value

usually represents better segmentation accuracy. Paired Student's

t‐tests were used to determine whether there were significant differ-

ences between different train‐test scenarios. IBM SPSS Statistics

software (version 24.0; IBM Inc., Armonk, NY, USA) was used for all

statistical analyses. P < 0.05 was considered significant.

4 | RESULTS

The results of the segmentation accuracy are summarized in Tables 2

and 3. The CNN segmentation models for CTV and bladder trained

with cases positioned in the opposite orientation performed signifi-

cantly worse (P < 0.05) than that trained with cases positioned in

TAB L E 1 The detailed architecture of ResNet‐101.

Layers

Shape

Kernel Padding Stride Channel Output

Input data – – – – M×N

Conv1 [7 × 7] 3 2 64 M/2 × N/2 × 64

Max‐pool1 [3 × 3] 1 2 64 M/4 × N/4 × 64

Conv2_x 1� 1
3� 3
1� 1

2
4

3
5× 3

0
1
0

2
4

3
5

1
1
1

2
4

3
5

64
64
256

2
4

3
5

M/4 × N/4 × 64

M/4 × N/4 × 64

M/4 × N/4 × 256

Conv3_x 1� 1
3� 3
1� 1

2
4

3
5 × 4

0
1
0

2
4

3
5

2
1
1

2
4

3
5

128
128
512

2
4

3
5

M/8 × N/8 × 128

M/8 × N/8 × 128

M/8 × N/8 × 512

Conv4_x 1� 1
3� 3
1� 1

2
4

3
5 × 23

0
2
1

2
4

3
5

1
1
1

2
4

3
5

256
256
1024

2
4

3
5

M/8 × N/8 × 256

M/8 × N/8 × 256

M/8 × N/8 × 1024

Conv5_x 1� 1
3� 3
1� 1

2
4

3
5× 3

0
4
0

2
4

3
5

1
1
1

2
4

3
5

512
512
2048

2
4

3
5

M/8 × N/8 × 512

M/8 × N/8 × 512

M/8 × N/8 × 2048

fc6 [3 × 3] 1 1 2048 M/8 × N/8 × 2048

fc7 [1 × 1] 0 1 1024 M/8 × N/8 × 1024

fc8 [1 × 1] 0 1 2 M/8 × N/8 × 2

Interpolation Factor = 8 M×N × 2

Output data M×N
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the same orientation, with average DSC values of 0.74 vs 0.84 and

0.85 vs 0.88 and HDsmm of 16.6 vs 14.6 and 8.4 vs 8.1 for CTV

and bladder, respectively. In particular, the average DSC values were

0.07 (CTV supine: 0.83–0.76), 0.12 (CTV prone: 0.84–0.72), 0.03

(bladder supine: 0.88–0.85), and 0.03 (bladder prone: 0.88–0.85)
lower (P < 0.05), respectively. The corresponding HDsmm were also

significantly larger (P < 0.05) with average values of 0.8 (CTV supine:

15.7–14.9), 3.2 (CTV prone: 17.4–14.2), 0.2 (bladder supine: 8.5–8.3),
and 0.5 (bladder prone: 8.3–7.8), respectively. However, segmenta-

tion of the femurs with both models showed high and comparable

accuracy (DSC: 0.91 ± 0.02 vs 0.91 ± 0.02, P > 0.05; HD: 6.3 ± 1.5

vs 6.3 ± 1.6, P > 0.05).

As for the models trained with data from both orientations, their

segmentation accuracy was as good as models trained on data from

the same orientation for all the three organs. They have almost the

same average DSC of 0.84 vs 0.84, 0.88 vs 0.88, and 0.91 vs 0.91

and HDs of 14.4 vs 14.6, 8.1 vs 8.1, and 6.3 vs 6.3, respectively. No

significant difference was found (P > 0.05) between the two types

of train‐test combinations.

Figures 2 and 3 illustrate results in different orientation. Compared

with models trained with cases positioned in the opposite orientation,

the auto‐segmented contours with models trained with data from the

same or both orientations were in better agreement with the manual

contours for CTV and bladder, but similar for femurs.

5 | DISCUSSION

In order to further confirm the result is independent of the chosen

network, we also performed the corresponding experiment with U‐
Net25, which is used widely for medical segmentation. The average

DSC values with U‐Net models trained with cases positioned in the

same, opposite, and both orientations were (0.82, 0.75 and 0.82) for

CTV, (0.86, 0.82 and 0.87) for bladder, and (0.89, 0.89 and 0.89) for

femurs, respectively. Although the overall result was inferior to

ResNet‐101, the positioning effect on segmentation demonstrated a

consistent trend.

To the best of our knowledge, this is the first study that investi-

gates the effect of positioning orientation on segmentation for rectal

cancer radiotherapy using CNN. The experiments demonstrate that

the performance of the model does not depend on the orientation for

segmentation of femurs; however, model trained on data from differ-

ent orientation reduces the accuracy of CTV and bladder segmenta-

tion. The reasons for the inferior performance for CTV and bladder but

comparable performance for femurs when trained with data from a

different orientation can be explained as follows: Most of the deep

learning methods work under the common assumption that the train-

ing data and the testing data have identical feature spaces with under-

lying distribution. However, soft tissue in the human pelvis can be

greatly deformed with different orientations, which will lead to signifi-

cant differences in morphology, location, range, and other aspects of

the CTV and bladder. Differences in such features inevitably affect

segmentation performance when training and testing across different

orientations. Unlike the CTV, the bladder has a clearer boundary under

both orientations. CNN can extract and make use of the boundary fea-

tures; therefore the effect of position orientation on the bladder is less

obvious than the CTV. The femurs are not deformable and have clear

boundaries with surrounding soft tissues. As a result, once the feature

distribution of the testing data remains stable, the segmentation model

can be used effectively on a cross‐dataset. This finding is a bit intu-

itive; however, many subjective hypotheses have been proven to be

false in fact. We tested this hypothesis through a lot of experiments

and finally proved it with quantitative analysis, which is very meaning-

ful for clinical practice.

Another very important finding is that model trained on data

combining both orientations works as well as model trained with

data from the same orientation for all the organs. When we trained

the model using data from both orientations, the training data can

represent the entire scenario of testing data. CNN can capture the

features of different orientations by fully discovering and exploiting

TAB L E 2 DSC results for different types of train‐test combinations.

Train on

CTV Bladder Femurs
Test on Test on Test on

Supine Prone Supine Prone Supine Prone

Supine 0.83 ± 0.04 0.72 ± 0.07 0.88 ± 0.05 0.85 ± 0.06 0.91 ± 0.02 0.90 ± 0.03

Prone 0.76 ± 0.06 0.84 ± 0.04 0.85 ± 0.08 0.88 ± 0.04 0.91 ± 0.02 0.90 ± 0.03

Both 0.83 ± 0.04 0.84 ± 0.04 0.88 ± 0.06 0.88 ± 0.05 0.91 ± 0.02 0.90 ± 0.02

TAB L E 3 Hausdorff distance (mm) results for different types of train‐test combinations.

Train on

CTV Bladder Femurs
Test on Test on Test on

Supine Prone Supine Prone Supine Prone

Supine 14.9 ± 2.8 17.4 ± 3.0 8.3 ± 2.8 8.3 ± 1.8 6.3 ± 1.3 6.3 ± 1.6

Prone 15.7 ± 2.8 14.2 ± 2.6 8.5 ± 2.7 7.8 ± 2.0 6.3 ± 1.5 6.3 ± 1.7

Both 14.7 ± 2.8 14.1 ± 2.4 8.4 ± 2.8 7.7 ± 1.9 6.4 ± 1.5 6.2 ± 1.5
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regularities in the training data. These representative features can

accurately be applied to the testing set. This may be the reason for

the good performance of the model trained on data combining both

orientations. This meaningful experiment provides support that we

can train a universal model with patients of different orientations

together, which can increase the stability of the model and reduce

the complexity of training.

Recent breakthroughs in segmentation for radiotherapy have

been mainly accelerated by the approaches based on CNN. It aims

to increase levels of automation and replace very time‐consuming

human interventions as well as improve accuracy and efficiency. Due

to the “data‐hungry” nature of CNN and the difficulty of collecting

large‐scale image data in radiotherapy applications, the performance

is limited by relatively few segmentation datasets. In this study, we

investigate the effect of cross‐orientation on segmentation and find

that it does not influence the segmentation accuracy of bone. This

means that we can use datasets with patients in different orienta-

tions to augment the amount of data, which will improve the accu-

racy and stability of CNN learning. Our experiments also

demonstrated that segmentation accuracy of the soft tissue with

deformation depends on the training data being consistent in posi-

tioning. We need to be very careful in selecting the training set to

ensure that it represents the image characteristics accurately.

Segmentation is the first step of the image analysis, e.g., radio-

mics. Given that the orientation affects the features used for target

segmentation, whether it makes a difference in radiomics features is

worthy of research. The differences introduced in radiomics features

may affect clinical outcome analysis.

In practical scenarios, we often have model learned with CNN on

large datasets but would like to apply it to other cases that have

F I G . 2 . Segmentation results on cases
position in supine using CNN models
trained with different types of datasets.
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significant differences in image statistics with limited training data.

Collecting new labeled training data and forming a particular model

could be time‐consuming and labor‐intensive. Combining CNN with

transfer learning is a potential solution. Transfer learning allows the

feature distributions used in training and testing to be different. It can

transfer image representations acquired previously to new but similar

tasks to solve problems faster and more effectively. Segmentation

using CNN with transfer learning will be explored in the future.

5 | CONCLUSIONS

The experiments demonstrated that the orientation of the training

dataset affects the accuracy of CNN‐based segmentation for CTV

and bladder but has negligible effect on the femurs. The model

trained from data combining both orientations works as well as

model trained on data from the same orientation for all the organs.

These observations provide guidance on how to choose training data

for accurate segmentation.
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