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Editorial 

Surveying the clinical practice of treatment adaptation and motion management in 
particle therapy 

Surveys on radiation oncology practice are like a snapshot of the real 
world, offering insights into the current state-of-the-art treatment 
planning and delivery while also highlighting the degree of clinical 
translation of research findings. In particular in a field like real-time 
adaptive particle therapy (PT), it is crucial to assess the acceptance 
level of guidelines, given their relatively recent establishment [1–4]. 

While several review papers on real-time intrafractional respiratory 
motion management (RRMM) and adaptive particle therapy (APT) for 
interfractional changes were published within the last decade [5–13], 
the recently published survey papers by Zhang and Trnkova and their 
co-workers are the first of their kind [14,15]. Following up on a similar 
initiative addressing photon-based radiotherapy [16,17], these two 
surveys report on the clinical practice and associated barriers of 70 
particle therapy centres (68 operating) from 17 countries [14,15]. Pro-
ton and particle therapy is a relatively small, yet growing field, and the 
surveys report on the practice of two-thirds of the 105 particle therapy 
centres that were operative in 2020 (this number has already increased 
to 123); all located in high-income countries and with a strong academic 
background. The surveys further attempt to probe the time trend 
through questions on wishes and plans for expansion. With this editorial 
we acknowledge this commendable initiative and seek to increase the 
understanding of the interlocked strategies for inter- and intrafraction 
motion management reported for PT, as well as to make comparisons to 
the current practice of photon-based radiotherapy. 

The survey by Zhang et al. found that 85% of the clinically operating 
centres used RRMM [14]. Rescanning is a passive form of RRMM only 
relevant for particle PBS [18,19] that was implemented or foreseen to be 
implemented within two years in nearly all pencil beam scanning 
treatment facilities . About two-thirds of the responders used active 
RRMM, mainly as breath-hold gating or respiratory gating for lung, liver 
or pancreas, guided by a surrogate respiratory signal. In a few centres 
(10% for liver), gating was guided by internal motion monitoring. There 
was a clear wish to expand the use of active RRMM to new treatment 
sites or to widen the use for sites already treated with active RRMM. 
Barriers for implementation included technical limitations or limited 
resources (equipment, human) rather than reimbursement or lack of 
interest or training. Overall, the survey found a broad and growing use 
of RRMM for PT which is likely to continue. 

In addition to reporting on the RRMM practice patterns, Zhang et al. 
included a DELPHI consensus analysis performed by the authors. It 
named 4D dose calculation including uncertainty evaluation as the most 
required software feature in the next two years following many recent 

publications [20–24] and recommendations from the TG290 report on 
respiratory motion management for PT [1]. 

In the APT survey paper, Trnkova et al. [15] reported that 84% of the 
operating centres performed some form of adaptation, mostly offline as 
also reported in recent literature [25–27]. Only two centres (3%) per-
formed online APT by applying a plan-library approach, and no centre 
performed online daily re-planning, although the methods to perform 
and trigger online APT are currently being investigated [28–31]. Plan 
adaptation was most frequently needed for head-and-neck cancer pa-
tients, followed by lung cancer patients. Plan adaptations were mostly 
triggered by dose re-evaluations, often performed on (synthetic) 
computed tomography (CT) scans, with around 70% of centres acquiring 
sequential (or control) imaging as part of their APT workflow [32]. Only 
19% of the centres performed daily volumetric imaging. Most compo-
nents of the APT workflow were performed manually, with only a few 
components (e.g., organ-at-risk contouring and image registration) 
being performed semi-automated by around half of the centres as this is 
known to reduce the uncertainty of proton dose prediction [33,34]. Full 
automation of all components, except adaptation triggering, was iden-
tified by the authors as a requirement for APT with daily online re- 
planning. 

There was a strong wish to improve and increase the use of APT 
among the responders, not differentiating between online and offline 
APT [14]. It might still have to be established whether online APT is 
needed for all treatment sites, or if certain treatment sites will benefit 
more than others [35]. Even though the authors deemed online APT to 
be prevalent in ten years, they did not agree on whether offline adap-
tation would still be needed. 

A major conclusion of both surveys was that a strong collaboration 
between industry, researchers and clinical users is the major require-
ment for a successful translation from research innovations into (broad) 
clinical application. Limited human and financial resources as well as a 
lack of equipment were identified as barriers in both surveys. Technical 
limitations dominated the field of RRMM, while the integration of the 
workflow was relevant for the implementation of APT. As the technical 
concept behind APT remains the same, independent of the frequency, 
trigger information or re-plan imaging, the survey questions focused on 
workflow details including quality assurance aspects. On the contrary, 
RRMM strategies differ essentially on a technical basis. While rescan-
ning and abdominal compression do not require a highly sophisticated 
optimised workflow, active RRMM strategies do. Automation and arti-
ficial intelligence were identified as a requirement for an efficient APT 
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workflow, but it was not part of the survey for RRMM, even though it 
gains large impact for real-time motion monitoring and adaptive treat-
ment concepts [36–38]. 

Due to the limited number of particle therapy centres worldwide, the 
outcome of these two surveys is very powerful and proved a broad 
overview of actual clinical practice. Assessing treatment strategies in 
photon therapy in the frame of a survey differs mainly by the fact that 
the total number of photon therapy centres is much more difficult to 
assess. However, the pool of responders for the photon and particle 
therapy surveys was overall quite comparable. In the previous surveys it 
was shown that 90% of the photon centres applying adaptive or motion 
management concepts were located in high-income countries, with no 
responding centres from a low-income country but many from academic 
institutes. 

The main tumour sites for adaptive treatment or RRMM were iden-
tical for photon and particle therapy. For adaptive therapy workflows, 
the results agreed in different aspects, e.g., the trigger for plan adaption 
was CT or cone-beam CT in more than 80% of the cases. The use of 
additional magnetic resonance (MR) imaging information for adaptation 
was comparable even though it needs to be underlined that MR-Linac 
users were the group reporting the most on online daily re-planning. 
For intrafraction motion compensation, results were less comparable 
due to technical differences, i.e., rescanning is a technique purely 
dedicated to particle therapy. The higher sensitivity of particle beams to 
anatomical changes resulted in motion management techniques being 
applied for lung, liver, and pancreas at almost all centres, while not more 
than 40% of the photon centres applied any RRMM technique for these 
indications. Motion surrogate signals (such as surface imaging or 
external markers) were reported to be the main technique for moni-
toring and 4D-CT reconstruction for both photon and particle therapy. 

The aspect of timing seems to be crucial as it does not only affect the 
efficacy of real-time adaptive treatment strategies but also the value of 
surveys on clinical practice. The high response rate underlines that the 
two surveys found a good balance between a comprehensive question 
catalogue and a reasonable time needed for answering. By that, these 
two papers provide results of high scientific quality and relevance for the 
particle therapy community. 
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