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Abstract

Background: Facial clefts are common birth defects with a strong genetic component. To identify fetal genetic risk factors
for clefting, 1536 SNPs in 357 candidate genes were genotyped in two population-based samples from Scandinavia
(Norway: 562 case-parent and 592 control-parent triads; Denmark: 235 case-parent triads).

Methodology/Principal Findings: We used two complementary statistical methods, TRIMM and HAPLIN, to look for
associations across these two national samples. TRIMM tests for association in each gene by using multi-SNP genotypes
from case-parent triads directly without the need to infer haplotypes. HAPLIN on the other hand estimates the full
haplotype distribution over a set of SNPs and estimates relative risks associated with each haplotype. For isolated cleft lip
with or without cleft palate (I-CL/P), TRIMM and HAPLIN both identified significant associations with IRF6 and ADH1C in both
populations, but only HAPLIN found an association with FGF12. For isolated cleft palate (I-CP), TRIMM found associations
with ALX3, MKX, and PDGFC in both populations, but only the association with PDGFC was identified by HAPLIN. In addition,
HAPLIN identified an association with ETV5 that was not detected by TRIMM.

Conclusion/Significance: Strong associations with seven genes were replicated in the Scandinavian samples and our
approach effectively replicated the strongest previously known association in clefting—with IRF6. Based on two national
cleft cohorts of similar ancestry, two robust statistical methods and a large panel of SNPs in the most promising cleft
candidate genes to date, this study identified a previously unknown association with clefting for ADH1C and provides
additional candidates and analytic approaches to advance the field.
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Introduction

With an average worldwide prevalence of 1.2/1000 live births,

facial clefts are the most common craniofacial birth defects and

one of the most common major types of defect in humans [1]. The

extensive surgical, dental and speech involvement, as well as

potential psychological sequelae, underscore the importance of

elucidating the causes of these complex facial defects. Analysis of

familial recurrence, segregation, and concordance in twins have

provided compelling evidence for a very strong genetic component

to clefting [2]. In Norway, for example, the risk among first-degree

relatives is approximately 40-fold higher than in the general

population [3]. However, the joint contribution of genetic variants

has to date accounted for only a modest fraction of the recognized

etiologies [4].

The past few years have witnessed major strides in the mapping

of facial cleft loci, with the list of genes rapidly expanding from the

first reported association of TGFA [MIM 190170] with isolated
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cleft lip with or without cleft palate (I-CL/P) in 1989 [5] to now

include IRF6 [MIM 607199], MSX1 [MIM 142983], TGFB3

[MIM 190230], FOXE1 [MIM 602617], FGFR1 [MIM 136350],

FGFR2 [MIM 176943], FGF8 [MIM 600483], PDGFC [MIM

608452], CRISPLD2 [MIM 612434], PVRL1 [MIM 600644],

GABRB3 [MIM 137192], MSX2 [MIM 123101], SATB2 [MIM

608148], TBX10 [MIM 604648], TBX22 [MIM 300307], GLI2

[MIM 165230], JAG2 [MIM 602570], MTHFR [MIM 607093],

RARA [MIM 180240], LHX8 [MIM 604425], SKI [MIM 164780]

and SPRY2 [MIM 602466], among the many promising candidate

genes for clefts [2,4,6,7,8,9,10,11,12]. Although linkage studies

have been successful in mapping a number of these key candidate

genes [8], studies relying on linkage disequilibrium (LD) have

grown in popularity because they can be more effective in

detecting weaker associations from multiple common and low-

penetrance alleles [13,14]. Further, analyses based on haplotypes

can outperform single-point analyses in which multiple SNPs in a

gene are interrogated one at a time, because haplotypes can

increase the overall information content at a given locus [15] and

potentially capture association signals from variants that have not

been directly typed [16].

We adopted this LD-based approach in the current search for

fetal genetic risk factors for I-CL/P and isolated cleft palate (I-CP).

A total of 1536 SNPs were selected in 357 candidate genes for

facial clefts and genotyped in two population-based samples from

Scandinavia (Norway and Denmark). The multi-SNP genotype

data were analyzed using two complementary statistical methods,

TRIMM [15] and HAPLIN [17], to detect multi-marker

transmission distortion and to look for consistency in genetic

associations across the two national samples.

Methods

Participants
A nationwide case-control study of facial clefts in Norway

(1996–2001) provided 562 case-parent triads and 592 control-

parent triads for analysis. The overall study design and

characteristics of the study participants have been described

elsewhere [18]. Of the 562 case-parent triads, 114 were I-CP and

311 were I-CL/P. An additional 69 I-CP and 166 I-CL/P triads

were available from a population-based study of facial clefts in

Denmark (1991–2001) [19].

Candidate genes and SNP selection
Candidate genes for facial clefts were selected from a variety of

resources, including published linkage and association studies on

clefts, genome-wide scans, gene-knockout experiments in mice,

studies of chromosomal rearrangements in humans, and gene

expression analyses in human and mouse embryonic tissues

[2,4,20,21,22,23]. The Craniofacial and Oral Gene Expression

Network (COGENE; http://hg.wustl.edu/COGENE) catalogs

human gene expression changes during early embryonic develop-

ment and contains expression profiles on 25 different tissues/stages

in the craniofacial region of human embryos [21]. We searched

the Serial Analysis of Gene Expression (SAGE) libraries to see

whether a particular gene of interest is expressed in the relevant

embryonic tissues at the pertinent developmental stage (weeks 5–6

for fusion of the embryonic lip; weeks 7–10 for fusion of the palatal

shelves [24]).

Candidate genes were also chosen from two other global

approaches for studying gene function. The first is the mouse

mutagen N-ethyl-N-nitrosourea (ENU) project, which aims to

characterize the functions of genes on mouse chromosome 11

(syntenic to human chromosome 17) by saturating the chromosome

with point mutations [25]. The second approach is to query the

Developmental Genome Anatomy Project (DGAP; http://www.

bwhpathology.org/dgap/default.aspx) database using the search

option ‘craniofacial: including clefts, cranial abnormalities or defects

such as microcephaly’. DGAP identifies chromosomal rearrange-

ments in patients with multiple congenital anomalies and uses these

rearrangements to map and identify genes that are disrupted or

dysregulated in critical stages of human development [26].

Finally, Mendelian forms of clefting provide another important

avenue for identifying genes that may underlie the more common

and isolated forms of clefts, especially if these syndromic forms can

occasionally manifest as phenocopies of isolated clefts (e.g. Van der

Woude syndrome, VWS [MIM 119300]). The Online Mendelian

Inheritance in Man (OMIM; http://www.ncbi.nlm.nih.gov/

Omim) maintains a catalog of human genes and genetic disorders,

providing a rich resource for selecting candidate genes for clefts.

Using the search query ‘cleft lip OR cleft palate’, 439 entries were

retrieved from OMIM.

Using the above strategies, we compiled a list of 357 candidate

genes that may contribute to facial cleft etiology (Table S1). To

guide the selection of SNPs, the genome browser of the

International HapMap Consortium (http://www.hapmap.org)

was used to retrieve genotype data on these 357 candidate genes.

We used genotypes from the CEPH samples of Northern and

Western European ancestry for consistency with our white study

populations. SNPs were also selected from additional databases:

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP); Japanese

SNP database (JSNP; http://snp.ims.u-tokyo.ac.jp); genome

browser at UCSC (http://genome.ucsc.edu); CHIP bioinfor-

matics tools (http://snpper.chip.org/bio/); and Seattle SNPs
(http://pga.mbt.washington.edu). The following criteria were used

to prioritize SNP selection: prior evidence of an association with

facial clefts; haplotype-tagging properties; minor allele frequency

(MAF) of at least 10%; and a preference for coding SNPs and

SNPs located in putative regulatory regions in the UTRs. SNPs

with high MAFs are more likely to have arisen on ancestral

chromosomes, making them more useful in assessing the degree of

LD in the Norwegian and Danish populations. Intragenic and

regulatory SNPs are more likely to be of functional importance,

while haplotype-tagging SNPs (htSNPs) are valuable in that they

use LD to extract the maximum amount of genetic information

from a particular haplotype block and to possibly tag for SNPs

with an unrecognized biological function.

A combination of software, including HAPLOVIEW (http://

www.broad.mit.edu/haploview/haploview; [27]), Best Enumera-

tion of SNP Tags (BEST; http://www.genomethods.org/best/

index.htm; [28]), and SNP BrowserTM (Applied Biosystems;

Foster City, CA), was used to evaluate MAF, inter-marker

distance, as well as LD patterns and haplotype block structures

for the selection of htSNPs. SNP assays were designed by Illumina

(http://www.illumina.com; San Diego, CA) and a ‘design score’

was computed for each SNP using an algorithm that rigorously

tests the performance of that SNP on an Illumina GoldenGateTM

platform (Illumina, San Diego, CA). Approximately 10% more

SNPs than the full panel of 1536 SNPs were initially submitted to

allow flexibility in choosing substitute SNPs for those with poor

design scores. After multiple rounds of SNP evaluations, a custom

panel of 1536 SNPs was finalized for the 357 genes (Table S2).

Genotyping was done by the US Center for Inherited Disease

Research (CIDR; http://www.cidr.jhmi.edu).

Data cleaning
The within- and between-plate genotype reproducibility rates of

96 duplicate DNA samples and three additional samples that were
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genotyped multiple times were used to evaluate the quality of

genotyping. A SNP was deemed to have failed if fewer than 95%

of the samples generated a genotype at the locus. SNPs with low

minor allele frequency (MAF,1%) were also excluded due to their

lack of statistical power. Deviations from HWE in control samples

may indicate the presence of systematic genotyping errors, latent

population substructure, or a biological effect such as natural

selection [29,30,31]. For the Triad Multi-Marker test [15]

(TRIMM; see below), deviation from HWE (p,0.05) was used

to search for assay problems directly, since the validity of TRIMM

does not require SNPs to be in HWE. SNPs that showed deviation

from HWE in all of the following three sample sets: parents in

Norwegian case triads, parents in Norwegian control triads, and

parents in Danish triads, were deemed to be problematic and three

additional SNPs were removed based on this criterion.

To screen for Mendelian inconsistencies within families, we

used PedCheck [32]. Families with excessive Mendelian inconsis-

tencies are probably the result of sample switches or misidentified

paternity. We retained families with fewer than 10 inconsistencies

and removed eighteen families with 65 or more Mendelian

inconsistencies from the analyses (there were no families with

between 10 to 64 Mendelian inconsistencies).

After data cleaning, the final number of SNPs available for

analysis was 1315 in 334 candidate genes on autosomal

chromosomes, with one to twelve SNPs typed per gene, four

SNPs on average (see Tables S1 and S2 for details).

Data analysis
In this study, we investigated genes on autosomal chromosomes

only. Two complementary methods, TRIMM [15] and HAPLIN

[17], were used to analyze the case-parent triad genotype data.

TRIMM is a robust and intuitive statistical method for association

testing using multi-SNP genotype data from case-parent triads. It

uses the genotypes directly, obviating the need for either a HWE

assumption or haplotype phase inference. TRIMM identifies

transmission distortion for sets of SNPs by comparing the

genotypes of the offspring with those of the hypothetical

‘‘complement’’ child who would have inherited the two parental

alleles not transmitted to the observed affected offspring at each

locus. The LD structure is preserved in this hypothetical offspring.

The difference between the two offspring genotype vectors has

an expected value of zero at each locus, under the null hypothesis

of no linkage or no association with the disease locus under study.

Statistical significance of the test is evaluated by randomly

permuting the case-versus-complement labels for the pair of

offspring from each family, i.e. randomizing the sign of the

difference vector. In our analysis, we used the sum_logP test,

which is constructed to optimize over scenarios where risk depends

on a single studied SNP and also over scenarios where risk instead

depends on a multi-SNP susceptibility haplotype. TRIMM can

make full use of individuals with sporadic missing SNP data and

has no limitation on the number of SNPs it can handle. All

genotyped SNPs in a gene were thus used in the analyses.

HAPLIN (version 2.5) infers haplotypes from the unphased

family genotype data when possible, using the Expectation

Maximization (EM) algorithm. It estimates the disease relative

risk for haplotypes that have a frequency high enough to be

detected. The overall significance of the haplotypes is evaluated by

a likelihood ratio test, or alternatively, a score test. HAPLIN can

distinguish between single and double dose effects of haplotypes,

but to reduce the number of parameters needed to be estimated in

a multi-SNP scan, haplotype effects were assumed multiplicative in

our analyses. Also, haplotypes with population frequency less than

1% were removed from the analyses.

A typical observation when constructing haplotypes with more

than four SNPs is that the population LD structure dictates a large

number of rare haplotypes, complicating the estimation. In our

data, many of the genes with more than four SNPs displayed low

LD between the SNPs at the outer ends. Using window lengths of

more than four SNPs would thus generate many rare and perhaps

irrelevant haplotypes. For the I-CL/P cleft category, we restricted

HAPLIN to use four SNPs at a time with a sliding, overlapping

window approach to cover all SNPs in a gene. Because

considerably fewer cases were available for the analysis of I-CP,

we used only three SNPs in the sliding-window for this cleft

category. Within a gene, this produces a score test p-value for each

window, and the smallest p-value was chosen. To adjust this p-

value for within-gene multiple testing, the principle of ‘seemingly

unrelated estimation’ [33] was used. The individual (family) score

contributions for each window were saved and their between-

window correlations were used to correct the p-value.

We plotted the p-values from TRIMM and HAPLIN analyses

using a Schweder-Spjøtvoll plot [34], which is a simple graphical

procedure for the simultaneous evaluations of many tests. If none

of the genes are truly associated with facial clefts, the p-values

would fall along the straight sloping line. Conversely, the p-values

would deviate from this line in the presence of genes that are truly

associated with the disorder. Statistical analyses were carried out

on the Norwegian and Danish samples separately, and p-values

from these two sources were combined using Fisher’s method [35].

Fisher-combined p-values can be further corrected for multiple

testing using the Bonferroni correction.

To test for within-gene differences in genotype frequency across

the two national samples, we used all the case-parents in each triad.

The test is based on computing the chi-squared value for each SNP

in a given gene, followed by aggregating these values to obtain the

within-gene sum chi-squared value. These were then converted to

p-values using a permutation test with 1000 permutations (implying

that the smallest p-value estimable is 0.001). The permutations

permute the nationality label of each individual over all SNPs in a

gene simultaneously, thus compensating for LD.

All analyses by TRIMM and HAPLIN were restricted to

isolated clefts only, and were performed separately for the two

major categories of clefts—I-CL/P and I-CP. Software for

implementing TRIMM and HAPLIN are available for the R
[36] computing environment from our web sites (TRIMM: http://

www.niehs.nih.gov/research/atniehs/labs/bb/staff/weinberg/in-

dex.cfm#downloads; HAPLIN: http://www.uib.no/smis/gjes-

sing/genetics/software/haplin).

Ethics approval
Approval for this study was obtained from the Norwegian Data

Inspectorate, the Regional Committee on Research Ethics for

Western Norway, and the respective Institutional Review Boards

of the US National Institute of Environmental Health Sciences

(NIH/NIEHS) and the University of Iowa. For the Danish facial

clefts study, approval was obtained from The Danish National

Committee on Biomedical Research Ethics. Clinicopathological

information from all participating families and biologic specimens

for DNA extraction were obtained with the written informed

consent of the mothers and fathers, and all aspects of this research

were in compliance with the tenets of the Declaration of Helsinki for

human research (http://www.wma.net).

Results

This study was designed with the specific aim of identifying

consistent genetic associations across two population-based cleft
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studies in Scandinavia. We genotyped 1536 SNPs in 357

candidate genes that were selected a priori for their potential roles

in clefting. We observed a high duplicate reproducibility rate

(99.98%), high Mendelian consistency rate (99.93%), and a low

rate of missing genotypes (0.55%) in the data. After removing

SNPs with more than 10 Mendelian errors and those with

significant deviations from HWE (p,0.05), the final number of

SNPs analyzed was 1315, representing a total of 334 candidate

genes on autosomal chromosomes (Tables S1 and S2).

Tables S3, S4, S5, S6 summarize the results of the TRIMM

and HAPLIN analyses by cleft type (I-CL/P vs. I-CP) and study

population (Norway vs. Denmark). The corresponding Schweder-

Spjøtvoll plots of p-values are provided in Figures 1 and 2. For I-

CL/P, HAPLIN and TRIMM identified strong associations with

IRF6 and ADH1C [MIM 103730] in both the Norwegian and

Danish sample. In addition to these, HAPLIN identified FGF12

[MIM 605802] in both populations. For I-CP, HAPLIN identified

strong associations with PDGFC and ETV5 [MIM 601600] in both

populations. While TRIMM confirmed the association with

PDGFC, it also identified additional associations with ALX3

[MIM 606014] and MKX (MIM entry not available for this gene).

The quantile-quantile (QQ) plots of Fisher-combined p-values

from the TRIMM and HAPLIN analyses in the two samples are

shown in Figure 3. Compared with the QQ plot for I-CP, the

QQ plot for I-CL/P displays an excess of small p-values.

Finally, Figure 4 provides a graphical summary of the main

results, diagrams the genomic location of the seven genes showing

associations, and details the type and position of the SNPs within

each gene.

Discussion

Of the 334 autosomal cleft candidate genes analyzed in this study,

associations with seven genes—IRF6, PDGFC, ADH1C, MKX, ALX3,

Figure 1. TRIMM analyses of the Norwegian and Danish samples. Schweder-Spjøtvoll plot of p-values for (A) isolated cleft lip with or without
cleft palate (I-CL/P) and (B) isolated cleft palate (I-CP). All genes with p-values #0.1 are shown on the X-axis and ordered according to observed p-
values (Y-axis). Genes with p-values #0.05 are highlighted in red. The sloping line represents the expected uniform distribution under the null (of no
effect). Genes with p-values #0.1 in both the Norwegian and Danish samples are indicated by vertical lines connecting the upper (Norway) and lower
(Denmark) plots.
doi:10.1371/journal.pone.0005385.g001
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FGF12 and ETV5—were replicated in the population-based samples

from Norway and Denmark. As expected with this large number of

statistical tests, there were many more associations with p-values

,0.05 in each population. Of 334 candidate genes, 17 false positives

(p,0.05) in each cleft category in each country would be expected by

chance alone, and fewer than one gene would show replication across

the two countries. As shown in Figures 1 and 2, significant

associations were found with 27 genes for I-CL/P and 21 genes for I-

CP in the Norwegian and Danish sample respectively using TRIMM

and/or HAPLIN. Since all candidate genes in this study were chosen

a priori for their potential roles in facial clefting, it is important to

separate true associations from spurious ones. We will therefore focus

this discussion on genetic associations that were replicated in both

populations and that produced the smallest p-values.

TRIMM and HAPLIN analyses
I-CL/P—IRF6, ADH1C and FGF12. We initially

hypothesized similar genetic contributions to clefting in both

populations because of the shared ancestry of the Norwegian and

Danish populations. The genes for interferon regulatory factor 6

(IRF6), alcohol dehydrogenase 1C (ADH1C), and fibroblast growth

factor 12 (FGF12) were strongly associated with I-CL/P in both

populations using TRIMM and/or HAPLIN. An even larger

number of genes were significantly associated in one population

but not the other. Many are no doubt merely chance associations,

although a few may reflect true risk genes with associations too

weak to emerge in both Danish and Norwegian samples.

The role of IRF6 in facial clefting is now well established

[37,38,39,40,41,42,43,44], and our findings provide proof-of-

principle that this study design can reliably detect gene/SNP

combinations where the relative risks are relatively low. ADH1C is

the third gene of the class I alcohol dehydrogenase family

consisting of ADH1A, ADH1B, and ADH1C. These genes are

tandemly organized as a gene-cluster on chromosome 4q21–q23

and encode the alpha, beta and gamma subunits responsible for

most of the ethanol-oxidizing capacity in the liver [45]. The

Figure 2. HAPLIN analyses of the Norwegian and Danish samples. Schweder-Spjøtvoll plot of p-values for (A) isolated cleft lip with or
without cleft palate (I-CL/P) and (B) isolated cleft palate (I-CP). All genes with p-values #0.1 are shown on the X-axis and ordered according to
observed p-values (Y-axis). Genes with p-values #0.05 are highlighted in red. The sloping line represents the expected uniform distribution under the
null (of no effect). Genes that had p-values #0.1 in both the Norwegian and Danish samples are indicated by vertical lines connecting the upper
(Norway) and lower (Denmark) plots.
doi:10.1371/journal.pone.0005385.g002
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gamma 2 enzyme was previously reported to oxidize ethanol to

acetaldehyde at a lower rate than the major gamma 1 variant [46].

Furthermore, the gamma 2 allele also appears to have a protective

effect on the risk of facial clefts [47].

Alcohol consumption during the first trimester of pregnancy is

a recognized risk factor for facial clefts [4]. Our recent analysis of

maternal binge drinking in the same Norwegian sample

suggested that women who reported binge drinking were more

likely to have an infant with either CL/P or CP [48]. However,

our preliminary analyses show no evidence of interaction

between variants in ADH1C and maternal alcohol consumption

(results not shown). Previous support for a role of ADH1C in

facial clefting stems from an exploratory study from the US

where 64 candidate genes were investigated in a combined

sample of 58 I-CL/P and I-CP case-parent triads [49]. Despite

the small number of triads analyzed in that study, the strong

association with ADH1C persisted even after correcting for

multiple comparisons.

Figure 3. Quantile-quantile (QQ) plots of p-values. The QQ plot compares the distribution of the observed Fisher-combined p-values (2log
scale) for both populations with an expected uniform distribution under the null (sloping line). The plots for I-CL/P and I-CP are provided separately
for TRIMM in (A) and (B), respectively, and the corresponding plots for HAPLIN are shown in (C) and (D). Gene labels for the top six most significant
genes are displayed in each plot.
doi:10.1371/journal.pone.0005385.g003

Genetic Risk of Facial Clefts
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FGF12 was significantly associated with I-CL/P in both samples

in our analyses. Although numerous studies have investigated

several members of the FGF and FGFR family in clefting, there

are no previously published association studies with FGF12

specifically. The FGF signaling pathway is known to play a

crucial role in craniofacial development [50], and when dysreg-

ulated causes craniosynostosis and other facio-skeletal malforma-

tions in humans [51]. Using a combination of direct sequencing,

association studies and in silico protein modeling, our group

recently showed that the FGF signaling pathway may contribute to

as much as 3–5% of I-CL/P [11].

Our data also suggest population-specific differences in

susceptibility to facial clefts. For example, both HAPLIN and

TRIMM identified FOXE1 as being significantly associated with I-

CL/P in the Danish sample, but a significant association did not

emerge in the larger Norwegian sample. Conversely, both

methods identified MSX1 among the genes most significantly

associated with I-CL/P in the Norwegian sample, whereas no such

association was seen in the Danish sample (Figures 1 and 2).

Although these findings do not contradict our previously reported

associations with these genes [9,52,53], this population-specific

susceptibility nevertheless highlights the problem with lack of

replication across diverse populations [54,55].

Among other genes significantly associated with facial clefts in

one population but not the other, zinc finger homeobox 1b

(ZFHX1B [MIM 605802]; a.k.a. ZEB2) is of particular interest.

Mutations in this gene underlie the autosomal dominant Mowat-

Wilson syndrome (MWS [MIM 235730]), characterized by severe

Figure 4. Genomic location of the seven genes identified in both populations by TRIMM and HAPLIN. Fisher-combined p-values are
shown for all genes with p-values #0.05 in both the Norwegian and Danish populations for either analysis. The distance between genes on the same
chromosome is indicated in megabases (Mb). Gene structure is shown in red for coding regions and blue for untranslated regions, with exon boxes
connected by intron lines. The seven identified genes are on the minus strand compared to the reference sequence and are scaled relative to one
another based on the length shown in kilobases (kb). Each SNP is represented by a symbol for its functional status as indicated at the bottom of the
figure. Two SNPs represented by a square with a star were considered in the region of IRF6, but actually fell within the neighboring gene TRAF3IP3.
doi:10.1371/journal.pone.0005385.g004
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mental retardation and multiple congenital anomalies [56].

Among the wide range of clinical features associated with MWS,

a small subset of patients also present with facial clefts [57]. In the

mouse model, cranial neural crest cells fail to dissociate and

migrate when Zfhx1b is knocked out [58]. These cells are early

progenitors of craniofacial cartilage, bone, and facial connective

tissue. It is thus plausible that a failure of the cells to delaminate

could underlie the distinctive facies and occasional clefting seen in

MWS patients.

The paralog Zfhx1a (a.k.a. Zeb1) when knocked out in mice

causes a cleft palate phenotype with 100% penetrance [59,60].

The defect appears to be largely due to a delay in palatal elevation.

In addition, the Zfhx1a null embryos also show reduced expression

of Jag2, Tgfb3 and Mmp13—genes known to be involved in

palatogenesis. There also appears to be complex synergistic

interactions between Zfhx1a and Zfhx1b during mouse embryo-

genesis [61]. Notably, the double Zfhx1a/Zfhx1b mutants have

midline defects at the fusion sites of the nasal and maxillary

processes.

I-CP—ALX3, MKX, PDGFC and ETV5. TRIMM and

HAPLIN identified four genes strongly associated with I-CP in

both populations. Aristaless (ALX)-related genes are a subset of the

Paired-related homeobox genes involved in the development of

craniofacial structures [62,63]. ALX3 encodes a nuclear protein

containing a homeobox DNA-binding domain that functions as a

transcriptional regulator in embryonic development. In mice,

expression of Alx3 is highly localized and the characteristic

expression pattern suggests an important role in patterning of

neural-crest derived mesenchyme and shaping of craniofacial

structures [64]. Compound mutants of Alx3 and Alx4 exhibit

severe craniofacial abnormalities that are otherwise absent in Alx4

single mutants [65]. In addition, Alx3/Alx4 double mutant newborn

mice have cleft nasal regions, most likely as a result of a failure of the

medial nasal processes to fuse in the facial midline [65].

The mohawk homeobox (MKX) gene product is another

important regulator of vertebrate development [66]. In mice, Mkx

is expressed in somite-derived cell lineages that give rise to skeletal

muscle, among other cell types [67]. Mkx was formerly described as

Irxl1 (iroquois homeobox protein-like 1) in Liu et al. [68]. Localized

in the middle of the 4.3 Mb critical region in the spontaneous

Twirler mouse mutant, Mkx is a likely candidate for the Twirler (Tw)

gene. Mice heterozygous for the Twirler mutation have inner ear

defects, whereas those homozygous have cleft lip and cleft palate.

Mkx is also highly expressed in the palatal mesenchyme during

palatal growth and fusion [68]. Interestingly, both MKX and

ZFHX1A (a paralog of ZFHX1B described above) are located within

the 10p15-11 region which is associated with cleft lip and cleft palate

when duplicated [69], but not when deleted [70]. Finally, Blanton

and co-workers have reported strong associations between markers

from the 10p13 region and I-CL/P [71].

Compared with ALX and MKX, the gene for platelet-derived

growth factor C (PDGFC) has a well-substantiated role in

palatogenesis. Linkage, association and cytogenetic studies have

supported the existence of a CL/P locus in the chromosome 4q31-

ter region containing the PDGFC locus [70,72,73,74]. More

recently, Choi and colleagues showed that a SNP in the PDGFC

regulatory region decreased promoter transcriptional activity and

was associated with CL/P in multiple populations [75]. Animal

studies have also shown a specific role for PDGFC in palatal

development. For example, Pdgfc2/2 mice die in the perinatal

period, presumably due to feeding and respiratory difficulties from

having a complete cleft of the secondary palate [6]. In these mice,

the palatal bones fail to extend across the roof of the oral-nasal

cavity, suggesting that hypoplasia of palate tissues combined with

fusion defects of the medial edge epithelia may contribute to the

cleft palate seen in the Pdgfc2/2 mice [6]. In vitro PDGFC, a potent

stimulator of mitosis, is downregulated by retinoic acid in mouse

embryonic palatal mesenchymal cells [76]. Reduced PDGFC by

retinoic acid may cause inhibition of proliferation in palatal

shelves, resulting in the pathogenesis of cleft palate in Pdgfc2/2

mice or retinoic acid-treated mice. Consistent with the absence of

cleft lip in Pdgfc2/2 mice, the association with PDGFC was found

exclusively in the I-CP group in our data.

Lastly, the gene encoding transcription factor ETV5 (ets variant

5) is located on chromosome 3q28 (as FGF12 above). In the E13.5

mouse palatal epithelium, expression of Etv5 is strong on the oral

surface of the palatal shelf and overlaps to some extent with that of

the FGF signaling antagonist Spry2 [77]. Mice carrying a deletion

that disrupts Spry2 have cleft palate, and point mutations in SPRY2

may be rare causes of I-CL/P [9]. The link between ETV5, SPRY2

and members of the FGF family offers an exciting opportunity to

further explore these interacting developmental pathways in the

pathogenesis of cleft palate.

Methodological aspects
Multiple testing. Both TRIMM and HAPLIN correct for

within-gene multiple testing, ensuring the validity of the individual

p-values for each gene. When assessing the overall results, no

single gene remained significant after a full Bonferroni correction.

However, it is generally agreed that the Bonferroni requirement of

ensuring an overall type 1 error rate of below 5% is too strict and

may result in too many false negatives [78], particularly in this

study where the selected genes already had an a priori connection

to clefting. As an alternative, we focused here on genes showing

significance in both populations. As proof-of-principle, our

approach consistently replicated the previously known strong

associations with IRF6 and PDGFC, while proposing several new

candidate genes including ETV5, FGF12, MKX, ADH1C and ALX3

for further analyses.

Quantile-quantile (QQ) plot. A QQ plot compares the

observed p-values with the expected uniform distribution under

the null when multiple tests are performed. If the plot reveals a

marked difference between the expected and observed p-value

distribution, this may indicate that a number of genes are

significantly associated with disease, although individual genes

may not have a marginal effect that is strong enough to withstand

Bonferroni correction. We used the plot to test for within-gene

differences in SNP genotype distribution across the two national

samples, as well as to evaluate the results of the genetic association

tests by TRIMM and HAPLIN.

Our data revealed systematic differences in genotypes for a

subset of the SNPs across the Norwegian and Danish samples.

These differences cannot be simply ascribed to random genotyping

errors, as these had already been filtered out by our initial HWE

check and data-cleaning steps. Biases in genotype call rates may

arise if DNA comes from different sources (e.g. blood versus buccal

swab). However, the genotype call rates were 99.6% for DNA

extracted from blood (Norwegian sample) and 99.1% for DNA

extracted from buccal swabs (Danish sample). Even if the marked

heterogeneity is a true indication of population differences,

different genotype frequencies do not imply differences in gene-

effects on phenotype. Moreover, our methods, based on analysis of

case-parent triads, insulate against population-based differences of

this kind.

QQ plots of the combined p-values from the TRIMM and

HAPLIN analyses for I-CL/P and I-CP are depicted in Figure 3.

Of the two cleft categories, the QQ plot for I-CP showed the least

evidence of association with the selected SNPs, yet this is the cleft
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subtype with the stronger recurrence risk in families [79]. If there

are real but weak genetic effects, these would still be expected to

deviate from the uniform distribution. The lack of associated genes

in I-CP may be a direct consequence of insufficient SNP coverage

rather than a lack of statistical power. Also, there may be

important gene-gene/gene-environment interactions that were not

considered in the current analyses.

SNP resolution. Our selection of htSNPs was based

primarily on genotype information publicly available from the

International HapMap Consortium. Although the use of

haplotypes may guard against the loss of power in detecting an

association signal, inadequate SNP resolution might still be a

concern in this study, as pointed out for the lack of associated

genes in I-CP. Adequate representation of the genetic architecture

of each candidate gene is feasible only if htSNPs are selected from

complete re-sequencing of the genes in the two populations

examined. Furthermore, the effect of SNP resolution on inferred

haplotype block structure is not fully understood. Studies using

lower marker density identify progressively longer blocks, and vice-

versa [80]. The small set of reference samples (30 CEPH trios) of

[Western] European descent in HapMap may not be sufficiently

representative of the Danish or Norwegian population, especially if

common alleles are overrepresented and rare alleles more strongly

linked to facial clefting are underrepresented. Hence, blocks

detected at low marker density may not adequately reflect the true

genetic diversity in our data.

HAPLIN and TRIMM. These two analytic methods are both

designed to detect multi-marker transmission distortion, but they

accomplish this in different ways. TRIMM is non-parametric and

can accommodate population structure, deviation from HWE,

multiple SNPs, missing SNPs and non-negligible recombination

rates. TRIMM does not attempt to infer haplotypes and,

consequently, is computationally efficient. TRIMM performs

best when there is one important risk haplotype or one SNP

associated with risk. When applied to a set of SNPs within a gene,

TRIMM accounts for within-gene SNP correlations by permuting

alleles at all SNPs simultaneously. HAPLIN on the other hand is

better suited to handle more complicated scenarios, for example,

when there is more than one risk-associated haplotype. Being

parametric, HAPLIN estimates the full haplotype distribution over

a set of SNPs and also estimates relative risks associated with each

haplotype. Through the use of a full maximum likelihood model, it

produces a complete description of the ‘‘risk structure’’ over the set

of haplotypes in a region. HAPLIN requires HWE, assumes no

recombination, and is computationally more demanding.

Of particular relevance to our analyses here is that if one of the

genotyped SNPs has a direct effect on disease risk, independently

of the other SNPs, TRIMM would be most likely to detect it.

Alternatively, if the specific risk locus has not been genotyped

directly, it is still likely to be associated with a haplotype composed

of SNPs measured in the surrounding region. Since HAPLIN

scans window-lengths of 3 and 4 SNPs, it will typically surround

such a locus with 1–2 SNPs on either side, provided the disease

locus resides within the genotyped region. In such cases, the

sliding-window approach of HAPLIN should have a better chance

of detecting the true association.

Replication of findings. Replication has a central role in the

evaluation of association findings, particularly in studies involving

large numbers of statistical tests [55]. To help separate true

associations from spurious ones, we looked for associations that were

consistent across the two populations of shared ancestry, which are

more likely to represent true associations as opposed to spurious

associations that show up randomly—even in populations of similar

ancestral background. We opted not to combine the Norwegian and

Danish samples (although this would have boosted power) because

we had no prior data to assume that the same haplotype(s)

contribute to the risk of clefts in both populations. Although our

data do not speak to that issue, our test for heterogeneity between

these two populations showed marked and systematic differences in

genotypes for a subset of the SNPs (data not shown), suggesting

ancestral differences between the two populations.

Concluding remarks
In this search among 357 candidate genes for facial clefting, we

found a relatively small number of genes to be significantly

associated with either I-CL/P or I-CP. The modest number of

genes associated with this strongly genetic birth defect has several

possible interpretations. It may suggest the presence of etiological

variants not genotyped in the current study (copy number variants

for example), or cleft candidate genes overlooked in our gene

selection. It may also reflect the effects of non-additive interactions

with other genetic variants and/or with environmental factors that

have been and will be explored in other studies [81]. Furthermore,

it is possible that the remaining genetic risks arise in the context of

allelic heterogeneity, in which case they would not be detectable

by the current LD-based association approach. We have analyzed

only individual genes; epistasis between these may play an

important role as well. There is also the possibility that, regardless

of apparent similarities between the Norwegian and Danish

populations, these two populations may have inherently distinct

genetic susceptibilities to facial clefting.

The use of two powerful and complementary statistical methods

for haplotype analysis of genetic data from offspring-parent triads,

two well-defined cleft phenotypes, two national cleft cohorts of

similar ancestry, and the use of a very large number of SNPs in

many genes (10 times the number of SNPs previously used to look

for cleft associations), provided a powerful opportunity to look for

associations that are most likely to be genuine. Our approach

effectively replicated the strongest previously known association

with cleft lip—the one with IRF6—in both populations and by

both methods, and suggested new associations with ADH1C and

PDGFC. Finally, the novel genes detected here (MKX, ALX3,

ETV5, and FGF12) provide new insights for future analyses of this

common and complex birth defect.
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