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Abstract: On average, breast cancer kills one woman per minute. However, there are more reasons for
optimism than ever before. When diagnosed early, patients with breast cancer have a better chance
of survival. This study aims to employ a novel approach that combines artificial intelligence and a
multi-criteria decision-making method for a more robust evaluation of machine learning models. The
proposed machine learning techniques comprise various supervised learning algorithms, while the
multi-criteria decision-making technique implemented includes the Preference Ranking Organization
Method for Enrichment Evaluations. The Support Vector Machine, having achieved a net outranking
flow of 0.1022, is ranked as the most favorable model for the early detection of breast cancer. The net
outranking flow is the balance between the positive and negative outranking flows. This indicates
that the higher the net flow, the better the alternative. K-nearest neighbor, logistic regression, and
random forest classifier ranked second, third, and fourth, with net flows of 0.0316, −0.0032, and
−0.0541, respectively. The least preferred alternative is the naive Bayes classifier with a net flow
of −0.0766. The results obtained in this study indicate the use of the proposed method in making
a desirable decision when selecting the most appropriate machine learning model. This gives the
decision-maker the option of introducing new criteria into the decision-making process.

Keywords: benign; decision-making; machine learning; malignant; supervised learning

1. Introduction

For many years, disease diagnosis has consistently been recognized as a significant
factor for treatment through appropriate therapies. The diagnosis of a disease is still based
on various physical and chemical tests. Based on the results of these tests and examinations,
aspecific illness can be anticipated. Therefore, if not correctly predicted, a disease may have
no chance of being cured.

Breast cancer occurs primarily in women, even though a few recorded cases in men
have been recorded. Breast cancer is the most common cancer type and develops when the
breast cells divide and grow uncontrollably, resulting in the aggregation of tissues called a
tumor [1]. The cause of this uncontrolled growth is yet to be identified. Yet, certain risk
factors such as age, gender, genetic predisposition, weight, smoking, poor diet, birth control
pills, and race culminate in the occurrence of the disease [2]. Specific changes in the breast
do not always indicate tumor growth, as this can also be due to pre-menstrual hormonal
changes in females.

Nonetheless, if any growth persists, prompt evaluation should be performed. Breast
screening is key to finding breast cancer at early and treatable stages. It involves examining
the breast for evidence of breast cancer before the onset of signs or symptoms. These signs
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include skin changes such as redness and swelling or the presence of lumps. A breast tumor
can be benign or malignant. A benign breast tumor poses no danger, while a malignant
breast tumor has the potential to be dangerous to an individual’s health. Because a benign
tumor grows similarly to a normal cell, it is not considered cancerous. A malignant tumor
invades nearby tissues and proliferates to neighboring cells, tissues, and organs. If left
unchecked, it can proliferate beyond the primary tumor and reach other body parts.

Nearly 85% of breast cancer instances occur in women with no previous history of
breast cancer. This is often due to genetic mutations and aging [3]. However, about 5–10%
of breast cancer is related to an inherited gene mutation from the individual’s parents [4].
Breast cancer is the most commonly diagnosed cancer among women, with an estimated 2.3
million new cases in 2020 [5]. Breast cancer accounted for 1 in 4 cancer cases worldwide [5]
and approximately 685,000 deaths globally in 2020, with most mortality in developing
and low-income countries [6]. In the United States, about 325,000 breast cancer cases were
recorded in 2020 [7]. As of January 2021, around 3.8 million women have an existing history
of breast cancer in the United States, including cancer survivors and those recuperating [8].
In the last 30 years, great strides have been made in the early detection of breast cancer,
which has significantly reduced breast cancer mortality and the quality of life of breast
cancer survivors.

With its extraordinary advancement, artificial intelligence has provided new horizons
for predicting, detecting, decision-making, and planning—resulting in the option for
better and less costly elements of human life. Artificial intelligence can be instrumental
in diagnosing diseases [9–14], increasing accuracy in diagnosis and decision-making, and
even surpassing human capability. Due to limited human attention, changing mental
conditions, and a wide range of human tasks and functions, the power of human diagnosis
is limited in diagnosing complex and sensitive diseases. On the other hand, the growth of
machine learning (ML) techniques and the increasing volume of data generated in medical
diagnosis has provided the conditions for computers to play a significant role in disease
diagnosis. The results of ML in recent years have solved many of the problematic issues in
artificial intelligence and have created new hope in the minds of researchers.

Several supervised learning approaches for predicting breast cancer have been com-
pared in previous studies. Asri et al. [15] conducted a study to compare the performance of
support vector machine (SVM), decision tree, naive Bayes, and k-nearest neighbor (KNN)
on breast cancer in Wisconsin. The study aimed to assess the correctness of classifying data
based on the efficiency and effectiveness of each algorithm in terms of accuracy, precision,
sensitivity, and specificity. In the study, the 10-fold cross-validation resampling technique
was used. This ensured that computational time and bias were reduced while every data
point was tested precisely once.

Consequently, the dataset was fitted to the model, and the effectiveness of the model
was first evaluated based on time to build a model, correctly classified instances, incorrectly
classified instances, and accuracy. Although the SVM model took the longest to build, it
recorded the highest number of correctly classified instances with an accuracy of 97.13%
and the lowest value of incorrectly classified instances. Furthermore, the models were
evaluated using the kappa statistic (KS), mean absolute error (MAE), root mean squared
error (RMSE), relative absolute error (RAE), and root relative squared error (RRSE). It
was concluded that the SVM model proved its efficiency in breast cancer prediction and
diagnosis and achieved the best performance in terms of precision and low error rate. In
another study, Bayrak et al. [16] compared SVM and the artificial neural network (ANN)
to predict breast cancer in its early stages using the Wisconsin breast cancer (original)
dataset. Both 10-fold cross-validation and a random resampling technique were used.
The random resampling technique split the dataset into 66% for training and 33% for test
samples. Moreover, the SMO (sequential minimal optimization) algorithm and LibSVM
were used to classify SVM, while multi-layer perceptron and voted perceptron was used
as artificial neural network (ANN) classifiers in Weka software. Finally, the models were
evaluated based on accuracy, precision, recall, and ROC area, and the SMO (sequential
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minimal optimization algorithm) model outperformed the ANN model with an accuracy
of 96.9957%. Gbenga et al. [17] evaluated eight ML models to predict breast cancer using
the WEKA data mining and ML simulation environment. Then, the models were evaluated
using the kappa statistic (KS), mean absolute error (MAE), root mean squared error (RMSE),
relative absolute error (RAE), and root relative squared error (RRSP). SVM outperformed
all others with a classification accuracy of 97.07% and the lowest error rate compared to the
radial based function of 96.49%, simple linear logistic regression model of 96.78%, naive
Bayes of 96.48%, KNN of 96.34%, Adaboost of 96.19%, fuzzy unordered role induction
algorithm of 96.78%, and decision tree J48 of 96.48%. While previous research has shown
that SVM is the most accurate ML model, other comparative studies have shown that other
methods are equally valid and accurate.

Furthermore, Amrane et al. [18] compared two separate classifiers for breast cancer
classification: naive Bayes and KNN. Both cross-validation and random resampling tech-
niques were used to overcome overfitting. The models were then evaluated using accuracy,
training, and test processes. The result revealed that KNN outperformed naive Bayes
with an accuracy of 97.51%. These findings suggest that comparative research on these
approaches is possible, provided a common dataset is used. Naji et al. [19] conducted a
study using five ML algorithms to predict and diagnose breast cancer. The dataset em-
ployed for this investigation was the Wisconsin breast cancer (original) dataset. Afterward,
data cleaning, attribute selection, target role setting, and features extraction followed. The
dataset was split into a training (75%) and a test set (25%). Subsequently, the algorithm
was fitted with the dataset and evaluated using confusion matrix, accuracy, precision,
sensitivity, F1-score, and AUC. The support vector machine demonstrated its efficiency by
achieving higher efficiency of 97.2%, precision of 97.5%, AUC of 96.6%, and outperforming
all other algorithms.

In another study, Zebari et al. [20] propose a new method for classifying benign or
malignant breast cancer from mammogram images. The region of interest (ROI) is deter-
mined using a combination of thresholding and ML. The resulting ROI was divided into
five distinct blocks. The wavelet transform was used to suppress noise from each produced
block based on BayesShrink soft thresholding by capturing high and low frequencies within
particular sub-bands. Multiple features are extracted from each denoised block using an
upgraded fractal dimension (FD) approach dubbed multi-FD (M-FD). A genetic algorithm
was used to minimize the amount of extracted features. Five classifiers were trained and
combined with an artificial neural network (ANN) to classify the extracted features from
each block. Finally, the fusion process combined the five blocks’ outcomes to arrive at
the ultimate choice. The proposed method was validated and tested using four bench-
mark mammography image datasets (MIAS, DDSM, breast, and BCDR). The experiment
results showed that the proposed method yielded better results on the breast dataset in the
single-dataset evaluation. In comparison, better results were obtained on the remaining
datasets in the double-dataset evaluation. Zebari et al. [21] conducted a systematic review
of computing approaches for breast cancer detection based on computer-aided diagnosis
using mammogram images. The study was based on 118 publications published between
2018 and 2021 and retrieved from major scientific databases using a rigorous systematic
review methodology. A general description and analysis of existing computer-aided design
(CAD) systems that use ML methods and their current state based on mammogram image
modalities and classification methods were found. This systematic review discusses all as-
pects of CAD, including pre-processing, segmentation, feature extraction, feature selection,
and classification. Gaps in the literature were identified, and recommendations were made
for additional research. The study concludes that a systematic review may be beneficial for
doctors who employ CAD systems for breast cancer early detection, as well as researchers
who wish to identify knowledge gaps and contribute to breast cancer diagnostics.

All outlined research studies and many more have consistently based model evalua-
tion on performance evaluation metrics. None have implemented additional important
metrics and performance evaluation metrics to create robust, flexible, and encompassing
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metrics. This raises several questions, such as, what if a decision-maker needs more crucial
factors not covered by the performance evaluation metrics? What if the decision-makers
are interested in the useability of the accurate model? What if concerns such as the deploy-
ability of the model are paramount to the decision-maker? All of these questions remain
unanswered. Hence, a research gap has been created.

Our proposed study presents a novel approach that combines ML and multi-criteria
decision-making methods. This is a first-of-its-kind approach. It enables the evaluation
of machine learning models using criteria other than the typically used performance
metrics in the early detection of breast cancer. After developing a classification model, it
is necessary to assess the model’s predictive ability using performance metrics such as
accuracy, recall, precision, and F1 score. These metrics address false positive/false negative
notions, accuracy, recall, precision, and F1-score. Still, none addresses other important
factors such as the model’s usability, applicability, and the impact of different factors on
the model. This can be simplified to whether an “accurate model” can handle irrelevant
attributes or whether a “precise model” can be used for a large dataset. When selecting
a model, these are necessary factors that matter to decision-makers. These may include
the number of training samples needed, the impact of feature scaling, the impact of hyper-
parameter tuning, and tolerance to irrelevant attributes. As a result, MCDM methods are
crucial. MCDM methods are among the most important ways to select the most suitable
decision among several alternatives [22–25]. It is an effective method with a wide range of
potentiality [22] across the field of artificial intelligence. Our study proposes combining
and evaluating a model’s predictive, adaptability, and usability metrics using MCDM.
This will provide a robust approach for decision-makers when finding the appropriate
model for selection problems and ensure that decision-making tools are in the hands
of decision-makers.

2. Materials and Methods
2.1. Dataset

We used the Wisconsin breast cancer (diagnostic) dataset in this study. The Wisconsin
dataset is a multivariate dataset that contains 569 instances of breast cancer, each with
30 input attributes, a single output attribute indicating malignant or benign tumor, and
no missing values. The Wisconsin dataset was computed from a digitalized image of a
fine needle aspirate of a breast mass [26], as shown in Figure 1. The total numbers of
malignant and benign cancer cells indicated in the dataset are represented in Table 1, where
0 represents benign, and 1 denotes malignant. The dataset offers a well-validated database
to explore breast cancer screening. Data collection from various sources is often raw and
contains errors, outliers, or missing values. Hence, data preprocessing is necessary. Data
preparation is usually expected to account for about 60% of the entire data mining process.

Table 1. Class Distribution.

Label Count Designation

1 Malignant (M) 212 1
2 Benign (B) 357 0
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Figure 1. Digitalized image of the Wisconsin breast dataset [27].

2.2. Data Pre-Processing

Data preprocessing is one of the most significant steps in ML and data mining [28]. It
improves the quality of data and the performance of ML models. The dataset used for this
study was preprocessed in a Jupyter notebook using the python programming language
(python 3.8). Since there were neither missing nor null values, various techniques to remove
and replace relevant values were not implemented on the Wisconsin dataset. Additionally,
the dataset was relatively balanced; hence, oversampling or undersampling techniques
were unnecessary. The dataset’s outliers were replaced with values from the 25th and 75th
percentiles. This guaranteed that we maintained a sufficient quantity of usable datasets for
our investigation. The appropriate handling of missing values and outliers helps eliminate
redundancy, ambiguity, and noise, and promotes an accurate and reliable prediction model.
We implemented the 10-fold cross-validation technique to evaluate the models to ensure
that each fold of the dataset contained the same proportion of observations with a particular
label. Finally, we employed principal component analysis (PCA) because the dataset had
large dimensions. PCA is a dimensionality-reduction technique frequently used to reduce
the dimensionality of large datasets. It does so by transforming a large group of variables
into a smaller one that retains most of the information in the original dataset.

2.3. Supervised Learning Models
2.3.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning technique for classifying data
into two or more groups. SVM is primarily used for classification. However, it is seldomly
used for regression. The optimal hyperplane is the best possible distance margin between
two extreme points (support vector). It categorizes data by dividing it into two or more
groups. In contrast, the distance margin is the distance between the support vectors and
the hyperplane. An SVM model measures and maximizes the distance margin to achieve
the best hyperplane. The optimal hyperplane is the one for which the margin is the greatest.
If the hyperplane is not optimal (e.g., it has a low margin), misclassification is high. As
a result, SVM seeks to establish a decision boundary that allows for as much separation
between the two or more groups. A kernel function is employed to transform a non-linear
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dataset into one or two dimensions to identify the best hyperplane. SVM is unique because
of its high dimensional input space, called the curse of dimensionality, sparse document
vectors, and regularization parameter (λ).

2.3.2. Random Forest

Random forest or random decision forest is an ensemble tree-based supervised learn-
ing method that operates independently by constructing multiple decision trees. Each
tree in the random forest splits out a class prediction, and the class with the most votes
becomes our model’s prediction. The random forest model can recreate body movement
for object detection, remote sensing, and game console. It is used for both classification
and regression scenarios. The fundamental principle behind random forest is a simple but
powerful one. The random forest model builds multiple classifiers using randomly selected
subsets of observation and random subsets of the predictor variables. The predictions from
the tree ensemble are then tallied using a voting system for a classification tree. Its benefits
include high accuracy, running efficiently on a large dataset, handling thousands of input
variables without variable deletion, estimating variables significant in the classification,
and offering an experimental method for detecting variable interactions.

2.3.3. Logistic Regression

Logistic regression is a supervised learning model for performing binary classification.
Logistic regression can predict if something is true/false or yes/no. Rather than fitting a
line to the data as in linear regression, the line is fitted to an “S” shaped “logistic function”.
Logistic regression is a useful machine learning technique due to its ability to generate
probabilities and classify new samples using continuous and discrete variables. Its func-
tioning is based on the notion of “maximum likelihood”, which seeks the optimal fit of
a distribution to the data. Fitting a distribution (normal, exponential, or gamma) to data
simplifies its manipulation.

2.3.4. K-Nearest Neighbor (KNN)

KNN is a supervised machine learning model that is mainly used for classification.
It classifies a data point according to the classification of its neighbors, maintains all
available cases, and classifies new cases using a similarity metric (feature similarity). The
“K” parameter denotes the number of nearest neighbors in the majority voting process.
Choosing an appropriate value for K is referred to as parameter tuning, and it is critical for
improved accuracy.

2.3.5. Naive Bayes

The naive Bayes technique is a supervised learning model based on Bayes’ Theorem
with the “naive” assumption of conditional independence between every pair of features
given the class variable’s value. Naive Bayes is based on Bayes’ Theorem’s premise of
conditional probability. It determines the conditional likelihood of an event occurring based
on prior knowledge of possible event-related factors. Face recognition, weather forecasting,
medical diagnosis, and news classification use naive Bayes. It is simple to build, requires
less training data, works with both continuous and discrete data, is highly scalable in terms
of predictors and data points, is insensitive to irrelevant features, and may be used for
real-time prediction.

2.4. Performance Metrics

Performance metrics are part of every machine learning pipeline. Detailed information
about the performance of the proposed techniques based on multiple criteria will be
presented below.
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2.4.1. Confusion Matrix

A confusion matrix is a table layout of the different outcomes of predictions and
results of a classification problem. It helps visualize its outcome, as shown in Figure 2. The
confusion matrix helps identify the correct predictions for different classes and errors.
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Figure 2. Confusion Matrix [17].

True Positives (TP) indicate the number of times the actual positive values are equal
to the predicted positive values. In contrast, True Negatives (TN) indicate the number of
times the actual negative value equals the predicted negative value. False Positive (FP) is
the number of times the model wrongly predicts negative values as positives. In contrast,
False Negative (FN) is the number of times the model wrongly predicts positive values
as negatives.

2.4.2. Classification Accuracy

The most often used performance parameter for classification models is accuracy. It
is used to determine the proportion of correctly categorized values, and it indicates how
frequently the classification is correct. It can be calculated using:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

2.4.3. Classification Report

• Precision: is used to calculate the model’s ability to classify positive values correctly.
It answers the question, “when the model predicts a positive value, how often is it
right?” Precision is calculated using:

Precision =
TP

TP + FP
(2)

• Recall or Sensitivity: Recall is the model’s ability to predict positive values. “How
often does the model predict the correct positive values?” The equation for the recall
is presented below:

Recall =
TP

TP + FN
(3)
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• Specificity: Specificity can be defined as the number of negatives returned by our
machine learning (ML) model. It can be calculated by using:

Specificity =
TN

TN + FP
(4)

• Support: Support may be defined as the number of samples of the true response in
each class of target values.

• F1-Score/F-Measure: The F1-score is a weighted average of precision and recall (the
harmonic mean of recall, and precision). The F1-scores can be calculated using:

F1 − Score
2 × (Precision × Recall)

Precision + Recall
(5)

2.5. Model Development

This phase entails the steps and processes undertaken after the pre-processing stage.
Achieving the best tuning parameter for ML models can be a tedious undertaking. Thus,
we employed the use of a SkLearn library function called GridSearchCV. This function
helps to loop through pre-defined hyper-parameters and fit the model on the training
set. Finally, the best parameters from the list are highlighted. Each model was assigned
varying tuning parameters, and the parameters with the highest accuracy were selected.
To obtain the optimal value of k for the kNN algorithm, we explored a range of 1 to 41
and achieved an optimal k value of 14. The logistic regression and naive Bayes model’s
parameter were left at default, giving the best accuracy, while random forest recorded
the highest accuracy with a n_estimator of 10. The SVM model produced the best result
with a penalty parameter of the error term (c) as 10 and radial basis function (RBF) kernel.
The training dataset was utilized to generate trained models for prediction throughout
the model development phase of training. They were tested using the testing dataset
to determine how accurate the models were in predicting the corresponding class labels
in the testing dataset. Next, each model underwent 10-fold cross-validation (10-folds of
training and testing with randomized data-split) to get an accurate model performance
measurement. Finally, evaluation metrics were generated to compare the trained models.

2.6. Multi-Criteria Decision-Making Method (MCDM)

Multiple alternatives are a significant concern for decision-makers as they increase
decision-making complexity. Hence, it is necessary to find a technique that reduces errors
by incorporating influence decisions, decision-making processes, and criteria. Most of the
time, these techniques are challenging to carry out since the criteria for making decisions
are often in conflict, raising the ambiguity of the final result [29–31]. Subsequently, the
emergence of multi-criteria decision-making methods has improved the reliability and
credibility of the chosen solution [32,33]. Multi-criteria decision-making (MCDM), also
referred to as multiple-criteria decision analysis (MCDA), is a research area that analyzes
various available choices in a situation or research area which spans daily life, social
sciences, engineering, medicine, and many other areas. It analyzes the criteria that make
a parameter favorable or unfavorable for a particular application. MCDM aims to assist
in the decision-making process, reduce the responsibilities attributed to decision-makers,
and ensure a solution meets all criteria. In the health sector, these methods are much
more complicated. They entail technical or economic considerations and the human factor,
creating conflicts of interest and obstructing the final choice [31]. As a result, numerous
instances of research utilizing MCDM have been conducted to optimize entire health
systems [34–40].

Certain studies focus on a particular field, such as health technology evaluation [36],
while others take a more humanitarian approach, examining research that seeks to ascertain
patient preference [41]. Moreover, some studies go beyond, aiming to fully understand
and study the MCDM’s application in health [42–45]. There are several MCDM methods
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which include the analytic hierarchy process (AHP), technique for order of preference by
similarities to ideal solution (TOPSIS), elimination et choix traduisant la realité (ELECTRE),
preference ranking organization method for enrichment of evaluations (PROMETHEE),
visekriterijumska optimizcija i kaompromisno resenje (VIKOR), and data envelopment
analysis (DEA). It is challenging to state which method is the best, as they all have ad-
vantages and disadvantages. However, recent studies have indicated the effective use
of PROMETHEE in various medical applications. They include research on sterilization
methods for medical devices [22] and the postexposure prophylaxis regimens for prevent-
ing pediatric HIV-1 infection [46]. Furthermore, the PROMETHEE technique possesses
some advantages which make it unique when handling multiple criteria. These advantages
include its ease of use, applicability to real-life problems, completeness in the ranking [47],
and its ability to accommodate the use of both quantitative and qualitative data [48]. Hence,
we adopt the PROMETHEE technique for our study.

We propose implementing this method with ML to compare alternatives based on
selected criteria. This will be helpful to decision-makers in choosing an option with
minimal compromise and maximum advantages. The criteria used in this study have both
qualitative and quantitative values.

2.7. Fuzzy PROMETHEE

The preference ranking organization method for enrichment evaluations (PROMETHEE)
is an MCDM tool that enables users to examine and rank alternatives according to their
criteria. The PROMETHEE method was developed by Brans and Vince in 1985 [49] to
compare available alternatives based on the selected criteria [50]. It is favored over other
MCDM techniques, such as the analytic hierarchy process and the methodology for ordering
performance according to resemblance to the ideal solution [51]. It enables the user to exert
complete control on the preference values of the criteria [52]. PROMETHEE is one of the
most popular decision-making tools utilized in various fields [52–54]. It requires only a
few pieces of information from the decision-maker: the weights assigned to the specified
criteria and the preference function to assess the superiority of the alternative on each
criterion [52].

Fuzzy logic can be characterized in its simplest form as a decision mechanism design.
It enables decision-makers to determine vague conditions and, when necessary, examine
systems using linguistic data [55]. Following Zadeh’s proposal in 1965 and definition
of fuzzy set theory, researchers in various fields have studied hybrid models of classical
models, referred to as fuzzy-based models. Because many objects and cases in the actual
world lack crisp distinctions, it has been determined that characterizing and modeling
problems using fuzzy sets can result in a more responsive model to real-world difficulties.
Fuzzy-based MCDM is more suitable for several cases where numerical data are unavailable.
Moreover, it allows decision-makers to analyze alternatives in linguistic data [56].

To evaluate the alternatives, a variety of criteria are proposed. They include accuracy,
recall, precision, F1-score, receiver operating characteristic curve-area under the curve
(ROC-AUC), log loss, number of samples needed, the impact of feature scaling, hyper-
parameter tuning, and tolerance to irrelevant attributes. Accuracy, recall, precision, F1-score,
receiver operating characteristic curve–area under the curve (ROC-AUC), and log loss are
the performance indicators most frequently employed in ML [57]. Previous studies have
used these indicators to evaluate the best ML models for use in breast cancer [58–60]. These
criteria are selected because they are important factors when choosing an appropriate ML
model for use. Ideally, more training datasets result in lower test errors (model variance
decreases, indicating less overfitting). Theoretically, having more data does not always
result in a more accurate model, as high-bias models do not benefit from additional training
data. While some ML models work well with large datasets, others are only efficient
when the available data are small [61]. Moreover, ML models vary in their tolerance
to irrelevant attributes. Some models perform well in the presence of noise and other
irrelevant information, while others are greatly affected by them. Criteria are generally
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used as a bottom line for comparing alternatives [62]. To apply fuzzy PROMETHEE, each
criterion is simplified using a linguistic scale of importance. The weight was selected based
on the importance of each criterion with respect to the expert’s opinion.

Choosing the criteria upon which alternatives will be evaluated in the decision-making
process is vital. Because not all criteria are equally significant, assigning weights to establish
a relative priority is necessary. This indicates that the most important criteria are given
a higher weight, while the least critical criteria are given a lower weight. Weighting is
typically used to prioritize important criteria and highlight their relative importance by
assigning a weight to each. However, scientific research frequently requires expert opinion
to determine which criteria should be given more or less priority. Even though the study’s
co-authors are experts in medicine, laboratory medicine, engineering, and mathematics,
we consulted other experts in surgical oncology, breast surgery, radiology and radiography,
pathology, and radiation oncology. This ensured that we did not leave any stone unturned
while weighting all criteria.

Assigning weight to several criteria may differ from one decision-maker to another,
which is one of the uniquely important elements of the MCDM technique. When deploying
a model for breast cancer detection, it is crucial to know if the model predicts values
correctly or not, as this will hugely impact treatment. A decision-maker would not want to
commence treatment without a disease, thereby endangering the patient’s life. Moreover,
a decision-maker will want to know the wrong predictions made by the model and how
many there are. Accuracy, recall, precision, and F1-score are a few of the most commonly
used evaluation metrics to depict this scenario. They are the criteria that most directly
portray and impact the model’s performance, indicating correctly and incorrectly classified
values. As a result, they were assigned a very high weight as shown in Table 2. The
number of training samples needed is also important because there is a chance of noise that
may impact the algorithm’s performance and sometimes cause the crash of the machine,
among other things. Moreover, it has been demonstrated that a larger dataset directly
influences estimation variance and results in a model’s better predictive performance [63].
Thus, the number of training samples needed was assigned a high weight. Feature scaling
was used to ensure that all of the data’s independent features were on about the same
scale, making it easier for most ML algorithms to handle the data. An ML algorithm
weighs greater values higher and smaller values lower regardless of the value’s unit if
feature scaling is not completed. In ML, hyperparameters are parameters whose values
govern the learning process and thus control the model’s overall behavior. Hyperparameter
optimization is all about finding a combination of hyperparameters that will deliver the
best possible results. Therefore, feature scaling and hyperparameter tuning significantly
impact model performance and were also assigned a high weight. Irrelevant attributes
mislead the training process by increasing training time and error variance resulting in
bias. This ultimately affects the model’s performance. Tolerance to irrelevant attributes is
important, but not as much as the previously stated criteria, so it was assigned a medium
weight. All the criteria were distributed on a numerical scale of 0 to 1.

Table 2. The linguistic scale of importance.

Linguistic Scale Triangular Fuzzy Scale Criteria

Very High (VH) (0.75, 1, 1) Accuracy, recall, precision
F1-score, ROC-AUC, log loss

High (H) (0.50, 0.75, 1)
Number of training samples needed, the
impact of feature scaling, the impact of

hyper-parameter tuning
Medium (M) (0.25, 0.50, 0.75) Tolerance to irrelevant attributes

Low (L) (0, 0.25, 0.50) -
Very Low (VL) (0, 0, 0.25) -
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The gaussian preference function was applied to prevent minor deviations in the input
values of the parameters. Afterward, the Yager index was used to defuzzify the triangular
fuzzy set to enable an appropriate weight determination of each criterion [64]. The Yager
index is a preferred method for defuzzification because it allows the decision-maker to
compare fuzzy values rationally. The preference function adopted for this study is the
Gaussian function for each criterion. This is because it provides a continuous probability
distribution that is symmetrical around its mean and fits many natural phenomena.

3. Results and Discussion

The implementation tools and platforms of the ML models include python, pandas,
NumPy, matplotlib, and Jupiter notebook. Table 3 shows the decision matrix of alterna-
tives to be imputed into the PROMETHEE system for model evaluation. The accuracy,
recall, precision, F1-score, ROC AUC, and log loss values were obtained from the model
development, training, and prediction phase. The records for the impact of missing and
imbalanced datasets, irrelevant attributes, hyper-parameter tuning, and feature scaling
were obtained from the previous research literature. SVM outperformed other models with
the highest accuracy of 99.0% and lowest log loss of −0.828, whereas naive Bayes, random
forest, and logistic obtained the lowest accuracy of 97.5% and highest log loss of −0.815.
Log loss is one of the most important classification metrics based on probability, and lower
log-loss values mean better prediction. Even with the lowest accuracy of 97.5%, the results
obtained were satisfactory. This makes the model entirely appropriate and satisfactory to
implement in the early detection of breast cancer. The recall (sensitivity) for all the models
was also satisfactory. The SVM performed best with a recall of 99.0%. The KNN model
had a recall of 98.0%, while random forest, logistic regression, and naive Bayes had a lower
recall of 97.0%, respectively.

Table 3. Decision matrix of alternatives.

Criteria Accuracy Recall Precision F1-Score ROC
AUC Log Loss

Number of
Training Samples

Needed

Impact of
Feature
Scaling

Impact of Hy-
perparameter

Tuning

Tolerance to
İrrelevant
Attributes

SVM 99.0% 99.0% 99.5% 99.0% 99.5% −0.828 0.92 0.92 YES 0.92
Random

Forest 97.5% 97.0% 98.0% 97.0% 99.0% −0.815 0.75 0.08 YES 0.08
Logistic

Regression 97.5% 97.0% 98.0% 97.0% 99.0% −0.815 0.50 0.25 NO 0.50
KNN 98.0% 98.0% 98.5% 98.0% 99.0% −0.819 0.08 0.92 YES 0.50
Naive
Bayes 97.5% 97.0% 98.0% 97.0% 99.0% −0.815 0.50 0.08 NO 0.75

When compared with previous studies employing the Wisconsin breast cancer (diag-
nostic) dataset, it is clear that our proposed method outperforms them. The result obtained
from the study conducted by Ak [65] indicated that logistic regression outperformed all
other models, including KNN, SVM, naive Bayes, and random forest, with the highest
classification accuracy of 98.1%. This is lower than the 99.0% highest classification accuracy
recorded by our most preferred model (SVM). Moreover, Kaklamanis and Filippakis [66]
indicated that KNN, with the highest accuracy of 96.5% and kappa of 92.4%, performed
better than other models such as CART, naive Bayes, and SVM radial basis function (RBF)
kernel. Naive Bayes recorded the lowest accuracy, in addition to kappa, of 88.3% and 74.4%,
making it the least preferred alternative. In contrast, the accuracy of KNN in our study
was about 1.5% higher. Moreover, in contrast to the two performance metrics used in that
research, our study implemented more performance metrics.

The accuracy and recall of each model were then analyzed with other criteria, in-
cluding the number of training samples needed and tolerance to irrelevant attributes
to fully evaluate which model was the most preferred in this circumstance using fuzzy
PROMETHEE. A model with low accuracy and high tolerance to irrelevant attributes is
unsuitable, so there should be balance when selecting an appropriate model. The reliance
on accuracy, recall, and specificity for choosing the best model can be faulty depending on
the scenario.
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With a net flow of 0.3954, SVM was determined as the most favorable and preferred
model for the early detection of breast cancer using the Wisconsin breast cancer dataset.
KNN, logistic regression, and the random forest classifier came second, third, and fourth,
with net flows of 0.0845, −0.0841, and −0.1401, respectively. Naive Bayes with a net flow
of −0.2557 was the least preferred alternative, as shown in Table 4. However, the results
may differ if a different weight is assigned to each criterion.

Table 4. The complete ranking of alternatives using the Wisconsin dataset.

Ranking Alternatives Positive Outranking Flow Negative Outranking Flow Net Flow

1 SVM 0.3954 0.0000 0.3954
2 KNN 0.1807 0.0962 0.0845
3 Logistic Regression 0.0516 0.1357 −0.0841
4 Naive Bayes 0.1401 0.1718 −0.1401
5 Random Forest 0.013644 0.2693 −0.2557

Figure 3 shows a comprehensive rainbow ranking of the model, indicating its strengths
and weaknesses and the final ranking of alternatives. This graph showcases a represen-
tation of each model from the most preferred to the least preferred. The values above
the 0 threshold represent the alternatives’ strengths, while the parameters below the
0 threshold represent their weaknesses. The rainbow diagram illustrates the net flow
values where alternatives are displayed from left to right based on their ranks. The alterna-
tives are depicted by a vertical bar made up of criteria. Every section of this bar represents
how a single criterion contributes to determining an alternative’s total net flow value. The
height of the vertical bar shows the difference between the positive and negative preference
flow, multiplied by the corresponding weight of the provided criterion. The indicators at
the top of the vertical bar have the highest positive values, while the indicators at the bottom
of the vertical bar have the highest negative values. As a result, the PROMETHEE rainbow
diagram provides a comprehensive overview of all alternatives and criteria, including the
relative importance of each.
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Furthermore, we tested our approach on the BIRADS dataset [67]. The BIRADS
dataset contains a mammographic mass of 961 instances, 6 attributes, 516 benign, and
445 malignant breast cancer patients. Data pre-processing was carried out to remove
missing and null values, and the outliers present were replaced with values in the 25th and
75th percentile. We obtained results similar to those achieved using the Wisconsin dataset,
and the decision matrix of alternatives was designed as shown in Table 5. The SVM model
had a significantly higher values of 97.0%, 96.5%, 97.5%, and 98.5% for accuracy, recall,
precision, and F1-score. The naive Bayes model recorded the lowest value of 94.0% for both
accuracy and precision but a substantially higher value for tolerance to irrelevant attributes.
Moreover, the negative log loss of −0.8110 obtained by the SVM model further proves its
outranking performance compared with other models. After applying the same weight
and preference function to the criteria, we obtained a complete ranking of alternatives,
as shown in Table 6. The rankings indicated similarity in the results obtained when the
Wisconsin dataset was used. The SVM ranked top among other alternatives with a net
outranking flow of 0.1022. The KNN model ranked second with a net outranking flow of
0.0316, while the logistic regression, random forest, and naive Bayes classifier ranked third,
fourth, and fifth with a net outranking flow of −0.0032, −0.0541, and −0.0766, respectively.
The SVM outranked other models when the two datasets were used. This indicates that
our approach is applicable and efficient in evaluating model performance. The results may
differ if the weight assigned to different criteria is altered. The result obtained indicates the
applicability and use of the MCDM approach in model selection.

Table 5. Decision matrix of alternatives for the BIRADS dataset.

Criteria Accuracy Recall Precision F1-Score ROC
AUC Log Loss

Number of
Training Samples

Needed

Impact of
Feature
Scaling

Impact of Hy-
perparameter

Tuning

Tolerance to
İrrelevant
Attributes

SVM 97.0% 95.5% 97.5% 98.5% 99.5% −0.8110 0.92 0.92 YES 0.92

Random
Forest 96.0% 96.0% 98.0% 98.0% 99.0% −0.8026 0.75 0.08 YES 0.08

Logistic
Regression 95.5% 95.5% 97.0% 96.5% 99.0% −0.7984 0.50 0.25 NO 0.50

KNN 95.5% 96.0% 97.5% 96.0% 98.5% −0.7990 0.08 0.92 YES 0.50

Naive
Bayes 94.0% 94.0% 96.0% 96.0% 98.0% −0.7860 0.50 0.08 NO 0.75

Table 6. The complete ranking of alternatives using the BIRADS dataset.

Ranking Alternatives Positive Outranking Flow Negative Outranking Flow Net Flow

1 SVM 0.315 0.0000 0.3152
2 KNN 0.1734 0.1493 0.0241
3 Logistic Regression 0.08336 0.1157 −0.0321
4 Random Forest 0.0729 0.1438 −0.0709
5 Naive Bayes 0.0044 0.2408 −0.2363

As shown in Figure 4, the rainbow ranking indicates the highest positive and negative
values for all alternatives. The SVM model has the highest positive values for the impact of
feature scaling, the number of training samples needed, tolerance to irrelevant attributes, the
impact of hyper-parameter tuning, accuracy, F1-score, precision, and recall. Subsequently,
the naive Bayes model recorded the highest negative values for F1-score, precision, recall,
accuracy, the number of the training samples, the impact of hyper-parameter tuning,
tolerance to irrelevant attributes, and the impact of feature scaling.
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4. Conclusions

This study proposes a novel approach to determine the most appropriate ML model
for breast cancer screening. This novel approach takes the evaluation of ML models to the
next step by incorporating more factors than simply the often-used performance metrics,
and therefore creates a new path to model evaluation. Recently, decision-makers have
sought a more robust method for incorporating metrics other than accuracy, precision,
recall, F1-score, ROC-AUC, and log loss into their model selection process. The findings in
this study provide that. This study considers other important criteria, such as the number
of samples needed, the impact of feature scaling, hyper-parameter tuning, and tolerance to
irrelevant attributes. The results of this study show that these criteria matter.
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Approaches for Breast Cancer Detection Based Computer-Aided Diagnosis Using Mammogram Images. Appl. Artif. Intell. 2021,
11, 1–47. [CrossRef]

22. Taiwo, M.; Ozsahin, I.; Ozsahin, D.U. Evaluation of sterilization methods for medical devices. In Proceedings of the 2019
Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26 March–10
April 2019; IEEE Xplore: Piscataway, NJ, USA, 2019; pp. 1–4.

23. Ozsahin, I.; Mustapha, M.; Albarwary, S.; Sanlidag, B.; Ozsahin, D.; Butler, T. An investigation to choose the proper therapy
technique in the management of autism spectrum disorder. J. Comp. Eff. Res. 2021, 76, 423–437. [CrossRef] [PubMed]

http://doi.org/10.1186/s12929-018-0426-4
http://www.ncbi.nlm.nih.gov/pubmed/29506506
http://doi.org/10.7759/cureus.8010
http://www.ncbi.nlm.nih.gov/pubmed/32528752
https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/risk-and-prevention/breast-cancer-risk-factors-you-cannot-change.html
https://www.cancer.org/cancer/breast-cancer/risk-and-prevention/breast-cancer-risk-factors-you-cannot-change.html
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
https://www.nhs.uk/conditions/breast-cancer/
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
http://doi.org/10.3390/app9081526
http://doi.org/10.1007/s12282-020-01100-4
http://www.ncbi.nlm.nih.gov/pubmed/32385567
http://doi.org/10.1155/2020/9756518
http://doi.org/10.1016/j.aej.2021.02.007
http://doi.org/10.1504/IJNT.2021.10040115
http://doi.org/10.1016/j.procs.2016.04.224
http://doi.org/10.1016/j.procs.2021.07.062
http://doi.org/10.3390/app112412122
http://doi.org/10.1080/08839514.2021.2001177
http://doi.org/10.2217/cer-2020-0162
http://www.ncbi.nlm.nih.gov/pubmed/33709772


Diagnostics 2022, 12, 1326 16 of 17

24. Mustapha, M.; Uzun, D.; Ozsahin, D.; Ozsahin, D. Comparative evaluation of point-of-care glucometer devices in the management
of diabetes mellitus. Appl. Multi Criteria Decis. Mak. Theor. Healthc. Biomed. Eng. 2021, 88, 117–136.

25. Albarwary, S.; Kibarer, A.; Mustapha, M.; Hamdan, H.; Ozsahin, D. The Efficiency of AuNPs in Cancer Cell Targeting Compared
to Other Nanomedicine Technologies Using Fuzzy PROMETHEE. J. Healthc. Eng. 2021, 2021, 1566834. [CrossRef]

26. UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set. Available online: https://archive.ics.uci.edu/
ml/datasets/breast+cancer+wisconsin+(diagnostic) (accessed on 15 July 2021).

27. Sumbria, S. Breast Cancer Diagnostic Dataset—EDA. Medium. 2022. Available online: https://medium.com/analytics-vidhya/
breast-cancer-diagnostic-dataset-eda-fa0de80f15bd (accessed on 14 March 2022).

28. García, S.; Luengo, J.; Herrera, F. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining.
Knowl. Based Syst. 2016, 98, 1–29. [CrossRef]

29. Kahraman, C.; Onar, S.; Oztaysi, B. Fuzzy Multicriteria Decision-Making: A Literature Review. Int. J. Comput. Intell. Syst. 2015,
8, 637. [CrossRef]

30. Tanios, N.; Wagner, M.; Tony, M.; Baltussen, R.; van Til, J.; Rindress, D. Which criteria are considered in healthcare decisions?
Insights from an international survey of policy and clinical decision-makers. Int. J. Technol. Assess. Health Care 2013, 29, 456–465.
[CrossRef]

31. Keeney, R. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Wiley: New York, NY, USA, 1976.
32. Marsh, K.; Goetghebeur, M.; Thokala, P. Multi-Criteria Decision Analysis to Support Healthcare Decisions; Springer: Cham, Switzer-

land, 2017.
33. Kaksalan, M.; Wallenius, J. Multiple Criteria Decision Making from Early History to the 21st Century; World Scientific Publishing

Limited: Singapore, 2011.
34. Thokala, P.; Devlin, N.; Marsh, K.; Baltussen, R.; Boysen, M.; Kalo, Z. Multiple Criteria Decision Analysis for Health Care Decision

Making. An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force. Value Health 2016, 19, 1–13.
[CrossRef] [PubMed]

35. Delice, E.; Zegerek, S. Ranking Occupational Risk Levels of Emergency Departments Using a New Fuzzy MCDM Model: A Case
Study in Turkey. Appl. Math. Inf. Sci. 2016, 10, 2345–2356. [CrossRef]

36. Dehe, B.; Bamford, D. Development, test and comparison of two Multiple Criteria Decision Analysis (MCDA) models: A case of
healthcare infrastructure location. Expert Syst. Appl. 2015, 42, 6717–6727. [CrossRef]

37. Liu, H.; Wu, J.; Li, P. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision-making
method. Waste Manag. 2013, 33, 2744–2751. [CrossRef]

38. Mustapha, M.; Uzun, B.; Uzun Ozsahin, D.; Ozsahin, I. A comparative study of X-ray-based medical imaging devices. Appl. Multi
Criteria Decis. Mak. Theor. Healthc. Biomed. Eng. 2021, 53, 163–180.

39. Ozsahin, D.; Gelisen, M.; Mustapha, M.; Agachan, Y.; Rahi, D.; Uzun, B. Decision analysis of the COVID-19 vaccines. EuroBiotech
J. 2021, 5, 20–25. [CrossRef]

40. Mühlbacher, A.; Kaczynski, A. Making Good Decisions in Healthcare with Multi-Criteria Decision Analysis: The Use, Current
Research and Future Developments of MCDA. Appl. Health Econ. Health Policy 2015, 14, 29–40. [CrossRef]

41. Gutknecht, M.; Schaarschmidt, M.; Herrlein, O.; Augustin, M. A systematic review on methods used to evaluate patient
preferences in psoriasis treatments. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1454–1464. [CrossRef]

42. Adunlin, G.; Diaby, V.; Xiao, H. Application of multicriteria decision analysis in health care: A systematic review and bibliometric
analysis. Health Expect. 2014, 18, 1894–1905. [CrossRef]

43. Marsh, K.; Lanitis, T.; Neasham, D.; Orfanos, P.; Caro, J. Assessing the Value of Healthcare Interventions using Multi-Criteria
Decision Analysis: A Review of the Literature. Pharmacoeconomics 2014, 32, 345–365. [CrossRef]

44. Mukerjee, P.; Chan, C.C. Effects of high salt concentrations on the micellization of octyl glucoside: Salting-out of monomers and
electrolyte effects on the micelle–water Interfacial tension. Langmuir 2002, 18, 5375–5381. [CrossRef]

45. Gokcekus, H.; Ozsahin, D.; Mustapha, M. Simulation and evaluation of water sterilization devices. Desalination Water Treat. 2020,
177, 431–436. [CrossRef]
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