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Abstract: The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem
during soil emergence. Regulated by many phytohormones, the apical hook has been taken as
a model to study the crosstalk between individual signaling pathways. Over recent decades, the
roles of different phytohormones and environmental signals in apical hook development have been
illustrated. However, key regulators downstream of canonical hormone signaling have rarely been
identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation.
Chemical genetics that utilize small molecules to perturb and elucidate biological processes could
provide a complementary strategy to overcome the limitations in classical genetics. In this review,
we summarize current progress in hormonal regulation of the apical hook, and previously reported
chemical tools that could assist the understanding of this complex developmental process. We
also provide insight into novel strategies for chemical screening and target identification, which
could possibly lead to discoveries of new regulatory components in apical hook development, or
unidentified signaling crosstalk that is overlooked by classical genetics screening.
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1. Introduction

Unlike motile animals, which can elude danger and stressful conditions, sessile plants
are forced to develop a series of adaptive strategies to thrive in an ever-changing envi-
ronment. The apical hook results from differential cell elongation across the inner and
outer side of the upper hypocotyl in dicot seedlings [1,2]. It protects the fragile shoot
apical meristem against mechanical stress exerted by the soil during etiolated growth,
and is crucial for seedling survival [3,4]. Due to its spontaneous nature, which makes it
readily observable, the apical hook has been taken as a model to study the mechanisms
underlying differential growth for decades [5]. In natural conditions, two environmental
factors, soil compaction and light, dictate the process of apical hook development. Two sets
of transcription factors, ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1) and PHY-
TOCHROME INTERACTING FACTORs (PIFs), integrate intrinsic hormone and external
environmental signals to elaborately regulate apical hook development [5–7]. Among them,
ethylene surrounds the seedlings when compact soil restricts its diffusion [8] and activates
EIN3/EIL1 transcription factors. Therefore, the abundance of EIN3/EIL1 means they could
serve as indicators of soil conditions. Additionally, mutants with a constitutive activation of
ethylene signaling, such as ctr1-1, display an exaggerated hook phenotype [9]. Meanwhile,
PIFs are also positive regulators of the apical hook and are rapidly degraded upon light
exposure via the PHYTOCHROME B (phy B)-mediated light signaling pathway [6,10].
The degradation of PIFs leads to not only the opening of the apical hook, but also the
dark-to-light growth transition of etiolated seedlings [10].
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It is well-known that PIFs and EIN3/EIL1 directly bind to the promoter of HOOK-
LESS1 (HLS1), a key regulatory gene in apical hook development, and activate its transcrip-
tion [6,7,11]. hls1-1 with a loss of function in HLS1 displays a complete defect in apical
hook formation, which cannot be recovered by ethylene or any other phytohormones [6,11].
Although the pifq ein3 eil1 sextuple mutant phenocopies the hls1-1 mutant, it remains un-
clear whether there exist other regulators downstream of the transcription factors other
than HLS1 [6].

Auxin, due to its polar distribution, directly regulates cell elongation and dictates the
differential growth at the apical hook [12,13]. A high concentration of auxin accumulates
at the concave side of the apical hook, which activates AUXIN RESPONSE FACTORs
(ARFs) to promote the transcription of D CLADE TYPE 2C PROTEIN PHOSPHATASE
(PP2C-D1), a negative regulator of cell elongation, to establish growth asymmetry [14].
Peng et al. demonstrated that HLS1 is necessary for the establishment of polar auxin
transport (PAT) after apical hook initiation; however, the relationship between HLS1 and
PAT is still unclear [15]. To date, possibly due to genetic redundancy or lethal mutation,
only one regulator downstream of HLS1 has been identified. The mutation of ARF2 could
slightly rescue the developmental defect of apical hook in hls1-1 mutant, indicating that
HLS1 might regulate apical hook development via negatively regulating ARF2, although
the effect is rather weak [16]. It is noteworthy that Arabidopsis LAZY1 and LAZY1-LIKEs
(LZYs) were reported to be involved in the gravitropism of roots and shoots via regu-
lating PAT [17,18]. Despite the mode of actions of LAZY1/LZYs being characterized in
root gravitropism [19–21], there is still no report on their roles in apical hook develop-
ment. Hence, it is increasingly interesting to utilize novel approaches to investigate the
regulation of PAT by HLS1 and LAZY1/LZYS in apical hook, as well as to uncover their
downstream components.

Chemical genetics has emerged as a powerful tool in plant science research as a com-
plementation of mutant screening-based classical genetics in the past two decades [22,23].
Chemical screening is usually much easier to handle than classical genetics screening, due
to the absence of mutagens such as EMS (ethylmethylsulfone) [24]. Moreover, chemical
inhibitors generally inhibit proteins with similar ligand-binding pockets, hence overcoming
the genetic redundancy of the targets [22]. To date, there has been no report on how HLS1
interacts with polar auxin transport, and there remain certain key regulatory components
to be discovered. Due to the high genetic redundancy in auxin signaling and transport
mechanisms, chemical genetics might greatly complement the discovery of the mysterious
components in apical hook development.

2. Recent Advances in Hormonal Regulation of the Apical Hook

Since the biological function of the apical hook is to protect the fragile cotyledon while
seedlings penetrate through soil, two predominant factors that regulate its developmental
dynamics are the degree of soil compaction and intensity of light. The transcription factors
EIN3/EIL1 and PIFs are responsible for responding to the soil compaction and light,
respectively [5–8]. Moreover, the six transcription factors (EIN3, EIL1, PIF1, PIF3, PIF4, and
PIF5) form a signaling hub, which is indispensable for all reported phytohormones that
impinge on apical hook development [5] (Figure 1).

NON-EXPRESSER OF PR 1 (NPR1), which is bound and activated by salicylic acid
(SA) and responsible for SA-induced transcriptional reprogramming events, suppresses
apical hook formation via interacting with EIN3, and inhibits its binding to the HLS1
promoter [25–27]. Meanwhile, jasmonic acid (JA), a hormone that mediates the response to
wounding, antagonizes apical hook development via both EIN3 and PIFs. On the one hand,
the JA-activated transcription factor MYC2 promotes the expression of EIN3-BINDING F-
BOX PROTEIN 1 (EBF1), which encodes an E3-ubiquitin ligase that ubiquitinates EIN3/EIL1
to promote their degradation [28]. On the other hand, MYC2 interacts with both EIN3
and PIF4 to inhibit their transcriptional activation of HLS1, thereby antagonizing apical
hook development [6,29,30]. Apart from intrinsic phytohormones, environmental stress
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conditions could also affect apical hook development. A high ambient temperature an-
tagonizes the ethylene-induced exaggeration of apical hook curvature via disrupting the
expression of auxin biosynthetic genes YUCCAs, which encode rate-limiting enzymes in
Trp-dependent auxin biosynthesis, therefore reducing auxin content and attenuating its
polar distribution [29].
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Figure 1. The hormonal regulatory network fine-tuning apical hook development. Multiple intrinsic
hormonal signals and extrinsic environmental factors regulate apical hook development via the
transcriptional hub formed by EIN3/EIL1 and PIFs. The six transcription factors integrate upstream
signals and bind to promoters of genes that are related to apical hook development, such as HLS1,
PILs, etc. In the dynamic development process, EIN3/EIL1 play a predominant role during apical
hook formation, while PIFs are more crucial during apical hook maintenance in darkness. Light
exposure results in the immediate degradation of PIFs, but not EIN3/EIL1; the apical hook undergoes
post-light exposure opening because the key players of maintenance, PIFs, are degraded. ET, thylene;
SA, Salicylic acid; Temp, high temperature; BR, Brassinosteroid; GA, Gibberellic acid; JA, Jasmonic
acid; CK, Cytokinin.

Meanwhile, positive regulators, including gibberellin Acid (GA), cytokinin (CK), and
brassinosteroid (BR), also influence the apical hook via PIFs and theEIN3/EIL1 regulatory
hub. GA promotes apical hook development via the de-repression of the DELLA-mediated
inhibition of EIN3 as well as PIFs [30,31], which is supported by an exaggerated hook
phenotype observed in the della quintuple mutant. In comparison, the mode-of-action
of cytokinin is more complex. As downstream regulators that are activated by cytokinin
via a two-component signaling pathway, B-type ARABIDOPSIS RESPONSE REGULA-
TORs (ARRs) ARR1/10/12 promote the transcription of type-2 ACC SYNTHETASE (ACS)
genes, which encode a key enzyme in the ethylene biosynthesis pathway, and stabilize the
ACS proteins from degradation by proteasome [32]. In addition to promoting ethylene
biosynthesis, cytokinin also facilitates apical hook maintenance in darkness via the post-
transcriptional stabilization of PIF4 and PIF5 transcription factors [33]. BR facilitates apical
hook development by activating its master transcription factor BRASSINAZOLE RESIS-
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TANT1 (BZR1), which can interact with both EIN3 and PIF4 to synergistically promote the
transcription of downstream targets, including HLS1 [34,35].

In previous studies, the angle of apical hook curvature was taken as a phenotypic
output to study hormone signaling crosstalk; however, apical hook development is a dy-
namic process awaiting thorough understanding [5]. The development of the apical hook
could be roughly divided into three phases: formation, maintenance, and opening, which
happen in a sequential order at 0–24 h, 24–48 h, and after 48 h post-germination [1,2,13]. It
has been demonstrated that cytokinin and ethylene display different modes of action in
the dynamic developmental progress of the apical hook, although they both trigger the
exaggeration of the hook angle. Cytokinin prolongs apical hook maintenance in darkness
in a PIF-dependent and EIN3/EIL1-independent manner, pinpointing the functional diver-
gence of PIFs and EIN3/EIL1 [33]. There exists evidence for the molecular mechanisms
underlying the capability of PIFs to promote hook maintenance. First, PIFs inhibit the
expression of PIN-LIKES (PILS), which encode putative auxin carriers and are known to
be negative regulators of apical hook maintenance, since their loss-of-function mutants
display longer apical hook maintenance [36]. Moreover, PIFs also inhibit the cytokinesis
of cells residing on the inner side of the apical hook, further facilitating the maintenance
of differential growth [37]. Given the fact that hormones such as cytokinin also affect
cytokinesis, it would be interesting to investigate whether this also contributes to certain
aspects of hook development, either dependent on or independent of PIFs. Despite our
understanding of the dynamic regulation of the apical hook by cytokinin and ethylene,
how other phytohormones and environmental cues control the different phases of apical
hook development remains largely unexplored.

Furthermore, it is worth noting that different phytohormones might exert their ef-
fects in regulating apical hook development via distinct physiological roles. For instance,
although both ethylene and gibberellin promote apical hook development, they display
opposite effects on the elongation of hypocotyl [30,38]. Since the establishment of the apical
hook results from differential elongation across the inner and outer cells [13], it is intriguing
to observe how these hormones regulate apical hook development at cellular resolution.

3. Existing Chemical Tools That Could Help Us Understand Apical Hook Development

Being the first discovered phytohormone, the actions and dynamics of auxin have
been extensively investigated over recent decades [39]. Chemical biologists have also
participated actively in this field and have developed a set of chemical tools that have
provided a profound understanding of auxin actions [40,41]. Given the importance of the
phytohormone auxin, which directly impinges the differential cell elongation across the
inner and outer sides of the apical hook, many chemical regulators of auxin signaling,
as well as polar transport, could significantly affect apical hook development. Here, we
summarize the chemical regulators that could facilitate the research of the apical hook
(Table 1).

3.1. Chemicals Regulating Auxin Biosynthesis and Metabolism

Chemical regulators influencing auxin biosynthesis usually target the tryptophan (Trp)-
dependent auxin synthetic pathway, since it is the predominant route [42]. L-kynurenine
(Kyn), a structural mimic of Trp, has been reported to inhibit the enzymatic activities of
TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1/TRYPTOPHAN AMINO-
TRANSFERASE RELATEDs (TAA1/TARs) that converts tryptophan into indole-3-pyruvic
acid [43]. Kyn significantly inhibits primary root length in green seedlings and the auxin
signaling marker DR5::GUS, staining signals at the inner side of the apical hook; however,
its effects on apical hook curvature are rather weak [43] (Figure 2). This implies that a lower
degree of auxin asymmetry is sufficient to mediate the differential growth at the apical
hook, although its further effects on later stages of apical hook development, including
maintenance and opening, remain to be further studied. In comparison, p-phenoxyphenyl
boronic acid (PPBo), a YUCCA flavin mono-oxygenase inhibitor, displayed more potent
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effects, which could be explained by a canonical notion that YUCCAs are rate-limiting
steps in auxin biosynthesis [44] (Figure 2). By using KOK2099 as a chemical tool, a recent
report demonstrated that indole-3-pyruvic acid (IPyA), as a major intermediate product
of IAA biosynthesis, can competitively inhibit TAA1 and be reversely converted to Trp
by TAA1 [45], which deepens our understanding of IAA biosynthesis mechanism. Since
chemical regulators usually inhibit several homologous target proteins, and the dose and
application time window can be flexibly regulated, a combination of Kyn and PPBo could
possibly be utilized to explain how local auxin biosynthesis fine-tunes the dynamic process
of apical hook development. There are also many other regulators (Table 1) that target
TAA1 or YUCCA that can facilitate the regulation of endogenous auxin levels [46–50].
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Figure 2. Effects of auxin synthesis and transport regulators on apical hook development and auxin
signaling. GUS staining of 3.5-day-old etiolated Arabidopsis seedlings grown on 1/2 MS medium
with or without the addition of DMSO, 5 mM Kyn, 5 mM PPBo, 5 mM Kyn + 5 mM PPBo, or 5 mM
NPA. The GUS reported was driven by a synthetic, auxin-responsive DR5 promoter in Columbia-0
(Col-0) background and stained for 8 h in darkness at 37 ◦C. Scale bar = 1000 mm in hook and
hypocotyl; scale bar = 200 mm in root tip.

The major auxin inactivation pathways in Arabidopsis are catalyzed by two families of
enzymes. DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) and its homolog DAO2 are
2-oxoglutarate and Fe(II)-dependent oxygenases that oxidize IAA into oxIAA, an inactive
form [51,52]. In parallel, another family of acyl acid amido synthetases GRECHEN HAGEN
3 (GH3) catalyzes reversible auxin conjugation to amino acids, resulting in their inacti-
vation [53,54]. The GH3 protein family can be generally divided into three subfamilies:
groups I, II, and III of GH3 conjugates amino acid to salicylic acid (SA), indole-3-acetic acid
(IAA), and jasmonic acid (JA), respectively [53,55]. To date, three small-molecule inhibitors
targeting GH3 enzymes have been developed. Adenosine-5′-[2-(1H-indol-3-yl) ethyl]
phosphate (AIEP), which structurally mimics adenylated IAA intermediate during amino
acid conjugation reaction, competitively inhibits the in vitro enzymatic activities of GH3.1
and GH3.6 in the Grape [56]. Kakeimide (KKI) also displays competitive inhibition on
auxin-conjugating GH3s and biological activities on root growth and development [57]. Ad-
ditionally, high-dose KKI treatment phenocopies the septuple mutant of group II GH3s [57].
Conversely, another reported GH3 inhibitor, nalacin, can elevate local auxin concentration
via inhibiting auxin-conjugating group II GH3s [58]. Exogenous treatment with IAA re-
duces the angle of curvature, possibly by hindering the asymmetrical distribution of auxin
signal across the apical hook (Figure 3). In contrast, nalacin treatment can promote the
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formation of a fully closed apical hook together with a more enhanced auxin asymmetry
(Figure 3). These results indicate that the increase in endogenous auxin level does not
jeopardize apical hook development, while the exogenous application of auxin breaks the
asymmetrical distribution and leads to defects in hook formation. Moreover, the accu-
mulation of the auxin signal at the inner side of the apical hook upon nalacin treatment
indicates a potential role of GH3-mediated auxin conjugation in apical hook development.
It would be exciting to utilize nalacin, together with the aforementioned tools, to study the
role of auxin metabolism in the formation, maintenance, and post-light exposure opening
processes of the apical hook, which awaits further investigation.
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3.2. Chemicals Regulating Auxin Transport and Signal

The polar distribution of auxin is tightly controlled by influx carriers that transport
auxin into the cells, and efflux carriers that function oppositely, and the transporter proteins
are also regulated at multiple levels including reversible protein phosphorylation and
proteosomal degradation [59–62]. 1-Naphthoxyacetic acid (1-NOA) has been reported to
inhibit auxin influx into tobacco BY-2 cells [63]. Moreover, 1-NOA-treated Arabidopsis
seedlings phenocopies aux1 mutant, displaying disordered root gravitropic bending [64].
Taken together, 1-NOA possibly blocks auxin influx via targeting the AUX1/LAX auxin
influx carriers. Compared to auxin influx, the mechanisms of auxin efflux via PIN-FORMED
efflux carriers have been extensively investigated, and abundant chemical regulators have
been reported to interfere with this process [23]. Among them, Naphthylphthalamic acid
(NPA), which associates with PINs and inhibit their functions, has been thoroughly studied
and widely used in the study of auxin actions [65,66]. Very recently, the structure of PIN8,
with or without NPA binding, has been resolved with single-particle cryo-EM; this further
clarified the mode-of-actions of PINs in auxin transport and could possibly guide the design
of more potent regulators [67]. Etiolated Arabidopsis seedlings treated with 10 mM NPA or
1-NOA fully abolished apical hook formation (Figure 2). However, NPA treatment strongly
induced the accumulation of auxin at the upper hypocotyl, the site of apical hook formation,
indicating the active auxin efflux event that happens at this region (Figure 2). In contrast,
although 1-NOA phenocopies NPA treatment, it does not significantly promote the auxin
accumulation in the hypocotyl. Instead, 1-NOA resulted in the accumulation of auxin
within the cotyledon, where auxin was predominantly synthesized, possibly due to the
inability of transporting auxin to other parts of the seedling (Figure 2). Through a screening
of the auxin analog that affects PIN trafficking, pinstatic acid (PISA) was identified [68].
PISA can interrupt the gravitropism of the root, possibly via influencing the accumulation
and internalization of PIN, but not activating TIR1/AFB-mediated signaling. It would be
interesting to investigate the effects of PISA in apical hook development. Besides transport,
uxin perception is also a key regulating point for apical hook development. Several
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chemical regulators that target the auxin receptor have been reported, such as auxinole
as an antagonist [69], fluorescent auxin analogs [70], and selective agonists for specific
subsets of AUX/IAA [71], among which auxinole was applied to dissect the developmental
processes of the apical hook [15]. In addition, an orthogonal auxin–TIR1 receptor pair
(convex IAA–concave TIR1) has been developed [72], providing a strategy for the precise
manipulation of auxin signal. These receptor regulators and orthogonal pair could serve as
chemical toolkits for the study of apical hook development.

3.3. Other Chemicals That Regulate the Apical Hook

Small-molecule regulators of the apical hook that do not directly correlate with auxin
actions are rather scarce. Upstream of the polar auxin transport events, functional mi-
crotubule arrays are indispensable for the correct distribution of auxin transporters, and
guarantee the establishment of auxin asymmetry [73,74]. The application of 50 mM oryzalin
completely abolished the normal apical hook formation in Col-0, and a lower concentration
(200 nM) could revert the positive contribution of the external mechanical constraint on
apical hook development in the ktn1-5 mutant [15,73], hinting at a fundamental role of
functional microtubule arrays in hook development. Moreover, a previous chemical screen-
ing using the co-treatment of compounds with ACC, a precursor of ethylene, identified
several interesting compounds that either promote or inhibit the apical hook [75]. Among
them, 6,825,783 inhibits both apical hook formation and ethylene signaling, while restoring
the shortening of root induced by ethylene, hinting that it could possibly be a regulator of
ethylene signaling. Notably, another compound, 7545271, facilitates the ethylene-induced
exaggeration of the apical hook, while antagonizing ethylene signaling. Given the pos-
itive role of ethylene in apical hook development, the co-occurrence of the two events
seems intriguing and demonstrates the complexity of the regulatory network of the apical
hook. EH-1, a pyrazole derivative, was identified to trigger apical hook exaggeration in
an ethylene-independent manner [76]. However, to date, none of these compounds has a
clear mode-of-action or is known to target proteins in Arabidopsis. In addition, researchers
also designed a screening system that aimed to identify apical hook promoters that are
independent of ethylene signaling. Using ein3 eil1 ethylene-insensitive mutant seeds as the
substrate, two small-molecule compounds, Apical Hook Inducer 1 (AHI1) and AHI2, were
identified. Among them, AHI1 was identified to be a cytokinin precursor kinetin riboside,
which functions after being metabolized into a free base active form [33]. Meanwhile, AHI2
directly promotes PIN-dependent polar auxin transport via promoting PIN3 accumulation,
in addition to the intracellular trafficking of PIN2 (unpublished). Notably, AHI2 not only
promotes the apical hook but also other auxin transport-related phenotypes, including
the gravitropic bending of hypocotyl and root, as well as adventitious root formation,
suggesting that AHI2 might be a positive regulator of polar auxin transport and the rele-
vant responses. Further studies on the modes of action of the above-mentioned chemical
regulators could assist in deepening our understanding of apical hook development.

Table 1. Available chemicals for dissecting apical hook development.

Full Name Description Reference CAS NO.

A
ux

in
bi

os
yn

th
es

is

L-Kynurenine (Kyn) TAA1/TAR2 inhibitor [43] 2922-83-0
Pyruvamine2031 OSTAR1 inhibitor [47] N.A

p-Phenoxyphenyl boronic acid
(PPBo) YUCCAs inhibitor [44] 51067-38-0

Yucasin YUCCAs inhibitor [48] 26028-65-9
Yucasin DF YUCCAs inhibitor [49] 443797-96-4

Ponalrestat (PRT) YUCCAs inhibitor [50] 72702-95-5

A
ux

in
m

et
ab

ol
is

m Adenosine-5′-[2-(1H-indol-3-
yl)ethyl]phosphate

(AIEP)
GH3 inhibitor [56] 260430-02-2

Kakeimide (KKI) GH3 inhibitor [57] N.A
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Table 1. Cont.

Full Name Description Reference CAS NO.

Nalacin GH3 inhibitor [58] 1019105-44-2

A
ux

in
tr

an
sp

or
ta

nd
si

gn
al

in
g 1-naphthoxyacetic acid

(1-NOA)
Putative AUX1/LAXs

inhibitor [63,64] 2976-75-2

2-naphthoxyacetic acid
(2-NOA)

Putative AUX1/LAXs
inhibitor [63,64] 120-23-0

Naphthylphthalamic acid
(NPA) PINs inhibitor [65,66] 132-66-1

4-ethoxyphenylacetic acid
(PISA) Auxin transport promoter [68] 132-66-1

Auxinole Auxin receptor agonist [69] 86445-22-9
NBD-IAA Fluorescent auxin analog [70] N.A

RN1-4 Selective auxin agonists [71] N.A
cvxIAA-ccvTIR1 pair Engineered IAA-TIR1 pair [72] N.A

O
th

er
re

gu
la

to
rs Oryzalin Apical hook suppressor [16,73] 19044-88-3

6825783 Apical hook suppressor [75] N.A
7545271 Apical hook promoter [75] N.A

Apical Hook Inducer 1
(Kinetin Riboside) Apical hook promoter [33] 4338-47-0

Apical Hook Inducer 2 Apical hook promoter unpublished N.A

4. Developing Chemical Tools with Novel Targets to Further Delineate Apical Hook

Chemical biology is a powerful tool for drug discovery. Chemical genetics screening
is one of the major strategies for developing plant growth regulation [23]. The apical hook
forms stably in a short time-window (3–4 days in darkness) and the etiolated seedings
are a suitable size to fit for 96-well plates, making them an excellent model for high-
throughput phenotype-directed screening (PDS) for bioactive chemicals. Since apical hook
development is orchestrated by multiple signals [5], the PDS should be performed with
mutants or marker lines, rather than wild-type Col-0, to make the screen more specific for
discovering novel targets.

A target search of small-molecule regulators is a key step for chemical genetics studies
and has been a time-consuming step and bottleneck for a long time. Although many
available regulators in apical hook development have been reported, the targets and modes
of action are yet to be determined. Previously described methods mostly concerned the
study of drug actions in animal cells, while less attention has been paid to their applications
in plant chemical genetics [77]. Owing to recent progress in both analytic techniques, the
targets of several chemical probes have been determined by proteome-wide cellular thermal
shift assay (CETSA) [78,79]. High-resolution mass spectrometry-based profiling of the
proteome could reveal proteins whose stability has changed upon chemical treatment [77].
In Arabidopsis, CETSA was performed with intact PSB-D suspension cell cultures or cell
lysates [80,81]. Intact cells with functional signaling pathways allow the investigation
of not only the target protein alone, but also proteins that are modified downstream of
the direct target. Meanwhile, cell lysate is more powerful when the direct target is to be
spotted [80,81].

Protein–ligand docking has been proven to be a powerful approach towards the
understanding of protein–small molecule interactions, and the discovery of novel regulators
of a specific protein of interest [82–85]. Due to the development of artificial intelligence
and big data science, AlphaFold has predicted over 200 million structures of various
organisms, including Arabidopsis and rice, which are released to a database with free
access [86]. This revolutionary advance not only makes it easier to obtain highly confident
predicted protein structure of interest to perform high-throughput virtual screening, but
also provides the possibility of reverse docking (RevDock) with a single small-molecule
ligand to proteome-wide pockets in one or multiple organisms. With a refined algorithm, a
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novel protein–ligand scoring function, OnionNet-SFCT, was developed to assist the target
search of ligands [87]. This artificial intelligence (AI) drug discovery and design (AIDD)
strategy displayed satisfactory precision, for a well-established plant hormone ABA, which
is identified by 14 receptors in planta, 4 of which could be found in the top 10 interacting
proteins, and 8 of which could be found in the top 100 proteins [87]. Taken together,
although both CETSA and RevDock possess a certain degree of error rate, we can suppose
that the combination of these two methods would be promising in improving the drug
target identification. In other words, if a protein could be identified in CETSA-MS analysis,
and be ranked front in RevDock, it would be worthwhile to examine if the protein could
indeed interact with the ligand.

5. Conclusions and Future Perspectives

To date, a rather complex hormone framework regulating apical hook development has
been illustrated, and the role of individual signaling pathways has been extensively stud-
ied. Nevertheless, it is noteworthy that epigenetic regulation is important in many aspects
of plant growth and development, and it shows plasticity in response to environmental
cues [74] and interplays with phytohormones, regulating somatic embryogenesis, seedling
development, flowering, and developmental plasticity at multi-layered levels [88–92]. In
considering that HLS1, a key factor in apical hook development, is a putative histone
acetyltransferase, the relationship between apical hook development and epigenetics, in-
cluding DNA methylation, histone modification, and chromatin remodeling, should be
one of the major open questions being investigated. To gain a better understanding of the
physiological significance of the apical hook, together with the regulatory mechanisms
behind it, the following issues need to be addressed: (1) Resolve the molecular mecha-
nism of stress-induced ethylene biosynthesis, which is crucial for seedlings to sense the
compaction of soil when buried underground; (2) identify key regulators downstream of
HOOKLESS1; (3) clarify the relationship between epigenetics and apical hook development;
and (4) utilize transcriptomic analysis and genetics to identify key genes that are involved
in the dynamic process of apical hook formation, maintenance, and opening. The ultimate
goal of these studies is to provide a holistic view of the molecular landscape governing the
spatial-temporal development of the apical hook.

Chemical genetics overcomes the genetic redundancy and lethality of mutations, and
therefore provides a great opportunity to address the remaining questions by overcoming
the bottleneck of classical genetics. With emerging techniques to identify target proteins
of small-molecule regulators, it is increasingly promising to reveal the mechanisms un-
derlying apical hook development via studies towards chemical tools. More importantly,
the core mechanism for apical hook development is asymmetric growth that determines
many aspects of plant tropism responses. The mechanism dissection of apical hook de-
velopment with chemical tools is expected to deepen our insights into more general and
fundamental mechanisms, and provide us with chemical tools in both basic research and
agricultural applications.
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