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Abstract

Native Americans developed agronomic practices throughout the Western Hemisphere

adapted to regional climate, edaphic conditions, and the extent of dependence on agricul-

ture for subsistence. These included the mounding or “corn hill” system in northeastern

North America. Iroquoian language speakers of present-day New York, USA, and Ontario

and Québec, Canada were among those who used this system. While well-known, there

has been little archaeological documentation of the system. As a result, there is scant

archaeological evidence on how Iroquoian farmers maintained soil fertility in their often-

extensive agricultural fields. Using δ15N values obtained on fifteenth- and sixteenth-century

AD maize kernels from archaeological sites in New York and Ontario, adjusted to take into

account changes that result from charring as determined through experiments, we demon-

strate that Iroquoian farmers were successful at maintaining nitrogen in their agricultural

fields. These results add to our archaeological knowledge of Iroquoian agronomic practices.

Our results also indicate the potential value of obtaining δ15N values on archaeological

maize in the investigation of Native American agronomic practices.

Introduction

Native American farmers developed agronomic practices throughout the Western Hemisphere

adapted to climatic and edaphic conditions and the degree of reliance on agricultural produc-

tion for subsistence. Well known systems of groups who relied heavily on agricultural produc-

tion include the terraced fields in the Andes of South America [1], the milpa systems of

Central America [2], the irrigation systems of the American Southwest [3], and the ridge sys-

tems of the upper Mississippi drainage [4]. How these systems functioned is evinced by archae-

ological investigations of extant features, ethnohistorical documentation, and in some cases,

ethnographic documentation. Well known, but less-well understood, are the mounding (“corn

hill”) systems in temperate northeastern North America. While portions of several fields have

been documented (e.g., [5]), and they are recorded in the seventeenth century ethnohistorical

record (e.g., [6]), few have been subject to archaeological investigations [7,8]. As a result, there

is little direct archaeological information on how these agronomic systems were managed.
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Groups using the mounding system in northeastern North American included Iroquoian

language family speaking peoples in present-day New York, USA, and Ontario and Québec,

Canada. From the fourteenth century AD onwards, Iroquoians lived in villages and towns that

were occupied for 20 to 40 years or more [9] and housed hundreds to well over 1,000 individu-

als [10–12]. A major source of calories for these communities derived from agricultural pro-

duce, primarily maize (Zea mays ssp. mays) [13], but also other crops, including common

bean (Phaseolus vulgaris), squash (Cucurbita pepo), and sunflower (Helianthus annuus) [14].

Non-cultivated foods included a wide range of terrestrial animals and plants [14,15], but with

freshwater fish being an important source of animal protein for at least some populations [16,

17]. The only domesticated animal present was dog (Canis lupus familiaris), which was con-

sumed occasionally at feasts and ceremonies [18].

The typical seventeenth-century AD ethnohistorically documented Iroquoian agricultural

field consisted of many small mounds measuring approximately 46–120 cm in diameter and

spaced 76–180 cm apart, which were formed with wooden, bone, antler, or stone hoes ([18],

p. 178). Each mound contained 3–4 maize plants [18]. Common bean vines often were grown

in the same hills with maize whose stalks acted as climbing poles for the bean vines, while

squash vines were planted at intervals and occupied spaces around the mounds [19,20]. These

fields were highly productive with some estimates suggesting they surpassed that of contempo-

raneous European and Euro-American farms [21]. While the agronomic [22–24] and nutri-

tional [25] benefits of such polycultures are well established, how earlier Iroquoian farmers

maintained the productivity of their fields is not (but see [21]).

Archaeological estimates of the number of cultivated acres needed to feed individual Iro-

quoian settlement populations are in the hundreds to thousands of acres (e.g., [26], pp. 99–

100). Extensive agricultural fields are attested by the seventeenth-century AD ethnohistorical

record (e.g., [18]). Analyses of Iroquoian archaeological site locations demonstrate that settle-

ments were sited in locations favorable to agricultural production. For example, Iroquoians in

some areas located settlements and fields at elevations that took advantage of thermal belts,

which extended growing seasons up to 30 days [27,28]. These analyses also showed that loca-

tions selected by some Iroquoian farmers correlated with heavy, moisture-retaining, upland

soils with high lime content, which may have facilitated rhizobia bacteria symbionts that pro-

vide nitrogen to common bean-plants [28]. Other analyses have found that Iroquoian archaeo-

logical settlement sites in New York are located near loamy, well-drained soils [29,30].

Contrary to suggestions that well drained sandy soils were selected by seventeenth-century AD

Wendat (Huron) farmers for agricultural fields south of Georgian Bay in Ontario [18], these

were simply the most common soils in the area [31].

It is apparent, then, that at least some Iroquoian farmers selected their settlement locations

in part with agricultural productivity in mind [26,32]. While the per-acre productivity of Iro-

quoian agriculture is debatable [18, 21, 33–36], production needed to be sustained throughout

the occupational history of each settlement. Given the large number of acres under cultivation

it seems unlikely that Iroquoian farmers practiced frequent shifting cultivation throughout the

occupational spans of each settlement [37]. Ethnohistoric accounts indicate continuous culti-

vation of fields for 10–30 years; while 12 years may have been a more likely maximum for sev-

enteenth-century AD Wendat (Huron) fields, where settlements were associated with sandy

soils not well suited to maize production [18]. Seventeenth- and eighteenth-century Haudeno-

saunee (Iroquois) populations in New York, likely practiced continuous cropping over long

periods of time, which was achieved by maintaining soil organic matter in naturally fertile Alfi-

sols and Inceptisols [21,36].

Although many thousands of acres were under cultivation at any given time across the Iro-

quoian region, which had profound impacts on regional biota [32], only a portion of a single
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Iroquoian agricultural field located south of Georgian Bay in Ontario with extant mounds has

been subjected to archaeological excavation [7]. The mounds at this site had a mean diameter

of 102±11 cm and heights of 20 cm and were spaced an average of 140±23 cm apart. Unlike in

a buried field remnant in southern New England [8, 38], no evidence for the use of fish as fer-

tilizer in the form of bone and scales was found in the Ontario mounds. The most notable

result of soil analysis of the mounds and interstices is that the mounds contained greater

amounts of charcoal and at greater depths than did the interstices [8]. This led to the sugges-

tion that the mounds were created from topsoil and wood ash from the initial clearing of the

field [8]. It is also likely that charcoal and ash were incorporated into the mounds as a result of

annual burning to rid the fields of unwanted vegetation and previous years’ crop detritus [8].

One of the primary limiting factors for maize production is nitrogen [39, 40]. Charcoal (bio-

char) can be effective at increasing or maintaining plant-available soil nitrogen [41–44]. The

incorporation of ash may raise the pH of acidic soils [18].

Given the lack of reporting of Iroquoian agricultural fields that date prior to the adoption of

European agronomic practices, it is likely that historical Euro-American and Euro-Canadian

farming have obliterated those fields. This evident lack of Iroquoian agricultural field preserva-

tion precludes direct archaeological assessments of agronomic practices to maintain soil fertil-

ity. The seventeenth-century AD Ontario field cannot be taken as representative of

agricultural practices across time and throughout the Iroquoian region [21, 36]. We can only

surmise that Iroquoian farmers’ agronomic practices included efforts to maintain soil fertility

adapted to local edaphic conditions based on indirect evidence. This includes site locations,

actualistic experiments, ethnohistoric documentation, and general agronomic knowledge,

including the evident need for soil amendments to maintain soil fertility over extended periods

of time. It is likely that specific practices to maintain soil fertility varied across the Iroquoian

region both spatially and chronologically. Intercropping maize with common bean can result

in increased availability of nitrogen to maize [24,45–47]. The annual incorporation of

unburned crop detritus into the mounds would have maintained soil organic matter, which in

turn, provided needed mineralized nitrogen for maize production [21,24, 34, 45–47]; a critical

aspect of agronomic systems in naturally fertile temperate soils [48,49]. To the east of the Iro-

quoian region, archaeologically excavated mounds in a seventeenth-century AD agricultural

field on Cape Cod, Massachusetts evinced intensive use of organic inclusions, including fish

[8,37]. However, there has been no archaeological evidence directly from Iroquoian mounds

themselves to test this hypothesis in the Iroquoian region.

Soil organic matter tends to be depleted in plowed, continuously cropped fields (e.g., [36,

50–52]), thus necessitating the use of fertilizer, such as animal manure, to maintain productiv-

ity. Eastern Hemisphere grains (e.g., wheat, Triticum spp.) recovered from prehistoric archaeo-

logical sites in Europe often exbibit δ15N values higher than those of uncultivated plants. This

evidently resulted from use of draft-animal manure as fertilizer, which increased plant-avail-

able nitrogen in plowed fields. Experiments have documented that manure results in high

δ15N values in grains (e.g., [53–57]); high plant δ15N values are positively correlated globally

with high nitrogen content in soil [58,59]. Ammonium (NH4+) and then nitrate (NO3–) pro-

duction by soil organisms increase with higher N availability. Soil 15N proportions increase

from the loss of 14N through N mineralization, nitrification, leaching, denitrification, and

ammonia volatilization, resulting in higher δ15N values in plants [58,60].

Farmers in eastern North America did not have draft animals—all cultivation was done by

hand. There is no ethnohistorical documentation of the use of manure for fertilization by

Native Americans prior to the widespread, often forced, adoption of Euro-American agro-

nomic practices [61]. As a result, the use of δ15N values to assess Native American agronomic

practices has not been pursued because it is generally thought that eastern Native American
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farmers did not practice any form of crop fertilization [18,26]. However, if Iroquoian farmers

used varied soil amendments to increase and sustain plant-available nitrogen to maintain fer-

tility of their agricultural fields including unburned crop detritus, then we would expect

charred archaeological maize δ15N values to be consistently higher than values for uncultivated

terrestrial plants. Here, we provide the results of δ15N analyses of charred maize remains,

adjusted to take into account the effects of charring, from primarily fifteenth- and sixteenth-

century AD Iroquoian sites in portions of New York and Ontario, prior to European ethnohis-

torical documentation and the consolidation of Wendat (Huron) settlements in an area with

sandy soils deficient in natural fertility (Fig 1).

Results

δ15N values were obtained on 81 maize kernels and 1 cob fragment from 36 Iroquoian archae-

ological sites dating primarily to the fifteenth and sixteenth centuries AD in northern New

York, the Mohawk River valley of New York, and southern Ontario (Tables 1 and 2, Fig 1).

Fig 1. Locations of Iroquoian archaeological sites from which maize samples originate. Yellow shading denotes

distribution of Alfisols (New York) and Luviols (Ontario). This map was produced in ArcGIS v 10.6 at the New York

State Museum in Albany by compiling GIS shape files obtained from publicly available sources including Statistics

Canada, the United States Census, the United States Geological Survey, the United States Department of Agriculture,

and the Canadian Soil Information Service.

https://doi.org/10.1371/journal.pone.0230952.g001
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Values ranged from +0.60 to +9.37‰ with a mean of +5.30±1.54‰ and a median of +5.25‰

(Table 2).

Experiments on Eastern Hemisphere grain kernels, including wheat indicate that charring

results in average Δ15N values of 0.31‰ to 1.00‰ [62,63]. Similar experiments have not been

performed on maize. For the present project, samples of contemporary dried Tuscarora White

Flour and Dent maize kernels from collections used in previous experiments [64,65] and

freeze-dried commercial canned hominy kernels were halved. Following established protocols

for experimental charring of maize kernels in non-oxidizing conditions [66,67], one half of

each kernel was placed in a loose foil packet, buried in sand within a ceramic crucible, and

heated in a muffle furnace at 180˚, 220˚, or 260˚C for 2 h. δ15N and δ13C measurements were

Table 1. Archaeological maize samples.

Site Location Age (century AD) Samples (n)

Baker Southern Ontario 15th 3

Coulter Southern Ontario 16th 2

Damiani Southern Ontario 16th 2

Dunsmore Southern Ontario 15th 2

Grandview Southern Ontario 15th 2

Hidden Spring Southern Ontario 15th 4

Jarrett-Lahmer Southern Ontario 16th 3

Jones Southern Ontario 15th/16th 1

Mackenzie-Woodbridge Southern Ontario 16th 2

Maynard-McKeown Southern Ontario 16th 2

McNair Southern Ontario 15th 2

New Southern Ontario 15th 1

Parsons Southern Ontario 16th 2

Sopher Southern Ontario 16th 2

Spang Southern Ontario 16th 4

Wapoos Southern Ontario 16th 3

Wellington Southern Ontario 14th 4

Carlos Northern New York 15th/16th 1

Durfee Northern New York 15th/16th 1

Durham Northern New York 15th/16th 1

Morse Northern New York 15th/16th 2

Pine Hills Northern New York 15th/16th 1

Potocki Northern New York 15th/16th 1

Sanford Corner Northern New York 15th/16th 2

Talcott Northern New York 15th/16th 2

Whitford Northern New York 15th/16th 1

Cayadutta Mohawk Valley 16th 4

Garoga Mohawk Valley 16th 3

Getman#1 Mohawk Valley 15th 1

Klock Mohawk Valley 16th 4

Otstungo Mohawk Valley 16th 3

Pethick Mohawk Valley 14th 3

Smith-Pagerie Mohawk Valley 15th/16th 2

Snell Mohawk Valley 13th 3

Roundtop Susquehanna Valley 12th–16th 4

Kelso Finger Lakes 14th 1

https://doi.org/10.1371/journal.pone.0230952.t001
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Table 2. δ15N and δ13C data for individual maize samples.

Lab #a Region Site Material δ15N δ15N adj δ13C

UGAMS-37382 Northern New York Carlos kernel +2.97 +2.43 −9.06

UCIAMS-205978 Northern New York Durfee kernel +5.29 +4.75 −9.52

UCIAMS-205971 Northern New York Durham kernel +4.74 +4.20 −9.21

UCIAMS-205977 Northern New York Morse kernel +6.08 +5.54 −8.80

UGAMS-37383 Northern New York Morse kernel +6.07 +5.53 −10.24

UGAMS-37380 Northern New York Pine Hills kernel +2.67 +2.13 −9.17

UCIAMS-205969 Northern New York Potocki kernel +5.44 +4.90 −11.13

UCIAMS-205974 Northern New York Sanford Corner kernel +9.37 +8.83 −9.81

UCIAMS-205975 Northern New York Sanford Corner kernel +5.46 +4.92 −9.21

UGAMS-34445 Northern New York Talcott kernel +5.70 +5.16 −8.80

UGAMS-34446 Northern New York Talcott kernel +4.87 +4.33 −8.80

UGAMS-205972 Northern New York Whitford kernel +5.86 +5.32 −8.87

UCIAMS-205965 Mohawk Valley Cayadutta kernel +4.85 +4.31 −8.56

UCIAMS-205966 Mohawk Valley Cayadutta kernel +3.98 +3.44 −8.88

UCIAMS-205967 Mohawk Valley Cayadutta kernel +3.06 +2.52 −8.88

UCIAMS-205968 Mohawk Valley Cayadutta kernel +6.48 +5.94 −10.24

UCIAMS-218473 Mohawk Valley Klock kernel +4.29 +3.75 −9.35

UCIAMS-218474 Mohawk Valley Klock kernel +6.76 +6.22 −8.78

UCIAMS-218475 Mohawk Valley Klock kernel +4.55 +4.01 −9.50

UCIAMS-218476 Mohawk Valley Klock kernel +4.72 +4.18 −9.05

UCIAMS-218477 Mohawk Valley Garoga kernel +5.54 +5.00 −8.84

UCIAMS-218478 Mohawk Valley Garoga kernel +4.62 +4.08 −9.27

UCIAMS-218479 Mohawk Valley Garoga kernel +5.80 +5.26 −8.55

UCIAMS-218480 Mohawk Valley Getman #1 kernel +4.33 +3.79 −8.07

UCIAMS-218483 Mohawk Valley Otstungo kernel +5.02 +4.48 −9.00

UCIAMS-218487 Mohawk Valley Otstungo kernel +4.27 +3.73 −9.98

UCIAMS-218489 Mohawk Valley Otstungo kernel +6.71 +6.17 −9.11

UCIAMS-218494 Mohawk Valley Pethick kernel +0.81 +0.27 −9.52

UCIAMS-218495 Mohawk Valley Pethick kernel +2.50 +1.96 −8.96

UCIAMS-218496 Mohawk Valley Pethick kernel +4.73 +4.19 −8.96

UCIAMS-218492 Mohawk Valley Smith-Pagerie kernel +4.66 +4.12 −8.68

UCIAMS-218493 Mohawk Valley Smith-Pagerie kernel +4.75 +4.21 −8.93

NYSM-A39855A Mohawk Valley Snell kernel +7.97 +7.43 −9.82

NYSM-A71102 Mohawk Valley Snell kernel +5.08 +4.54 -10.08

NYSM-A71098 Mohawk Valley Snell kernel +7.08 +6.54 −10.46

AA26541/114197 Susquehanna Valley Roundtop, 12th/13th cen. kernel +0.60 +0.06 −8.70

AA21979/114195 Susquehanna Valley Roundtop, 14th century kernel +2.80 +2.26 −8.70

AA26539/114196 Susquehanna Valley Roundtop, 15th century kernel +2.40 +1.86 −8.70

AA21978/114194 Susquehanna Valley Roundtop, 16th century kernel +4.30 +3.76 −8.80

UGAMS-35644 Finger Lakes Kelso kernel +7.65 +7.11 −8.86

UGAMS-32991 Southern Ontario Baker kernel +6.49 +5.95 −9.40

UGAMS-32992 Southern Ontario Baker kernel +4.41 +3.87 −9.31

UGAMS-40364 Southern Ontario Barrie kernel +5.06 +4.52 −9.71

UGAMS-32755 Southern Ontario Coulter kernel +5.98 +5.44 −9.47

UGAMS-32756 Southern Ontario Coulter kernel +3.84 +3.30 −9.31

UGAMS-33005 Southern Ontario Damiani kernel +5.22 +4.68 −9.64

UGAMS-33006 Southern Ontario Damiani kernel +4.48 +3.94 −8.89

(Continued)
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obtained on fractions of the carbonized and uncarbonized halves. Whole kernels were also car-

bonized to assess heating effects on kernel integrity [66–68].

Results are presented in Table 3 and S1 Table. Kernels heated for 2 h at 180˚C did not fully

carbonize and those heated at 260˚C for 2 h did not maintain their structural integrity, consis-

tent with outcomes obtained by others [66,67]. As a result, it is unlikely that either would have

survived in the archaeological record. The kernels heated at 220˚C fully carbonized and

Table 2. (Continued)

Lab #a Region Site Material δ15N δ15N adj δ13C

UGAMS-40350 Southern Ontario Dunsmore kernel +7.66 +7.12 −8.23

UGAMS-40351 Southern Ontario Dunsmore kernel +4.37 +3.83 −9.34

UGAMS-40348 Southern Ontario Grandview kernel +6.25 +5.71 −9.24

UGAMS-40347 Southern Ontario Grandview kernel +3.94 +3.40 −8.87

UGAMS-40359 Southern Ontario Hidden Spring kernel +5.89 +5.35 −10.34

UGAMS-40362 Southern Ontario Hidden Spring kernel +5.83 +5.29 −8.79

UGAMS-40361 Southern Ontario Hidden Spring kernel +5.28 +4.74 −9.84

UGAMS-40360 Southern Ontario Hidden Spring kernel +5.01 +4.47 −9.80

UGAMS-40358 Southern Ontario Jarrett-Lahmer kernel +6.43 +5.89 −7.95

UGAMS-40356 Southern Ontario Jarrett-Lahmer kernel +5.37 +4.83 −9.86

UGAMS-40357 Southern Ontario Jarrett-Lahmer kernel +4.96 +4.42 −9.25

UGAMS-40363 Southern Ontario Jones kernel +7.52 +6.98 −9.31

UGAMS-40365 Southern Ontario Mackenzie-Woodbridge kernel +6.86 +6.32 −9.00

UGAMS-40366 Southern Ontario Mackenzie-Woodbridge kernel +4.20 +3.66 −9.66

UGAMS-41528 Southern Ontario Maynard-McKeown kernel +5.75 +5.21 −9.50

UGAMS-41529 Southern Ontario Maynard-McKeown kernel +6.23 +5.69 −9.08

UGAMS-32995 Southern Ontario McNair cob +4.87 +4.33 −9.70

UGAMS-32994 Southern Ontario McNair kernel +4.61 +4.07 −10.32

UGAMS-40353 Southern Ontario New kernel +6.40 +5.86 −9.29

UGAMS-40352 Southern Ontario New kernel +6.10 +5.56 −8.19

UGAMS-33009 Southern Ontario Parsons kernel +6.54 +6.00 −9.81

UGAMS-33008 Southern Ontario Parsons kernel +4.54 +4.00 −9.24

UGAMS-40154 Southern Ontario Sopher kernel +8.83 +8.29 −9.10

UGAMS-40155 Southern Ontario Sopher kernel +7.58 +7.04 −9.28

UGAMS-38398 Southern Ontario Spang kernel +7.50 +6.96 −8.22

UGAMS-37834 Southern Ontario Spang kernel +7.04 +6.50 −8.73

UGAMS-38397 Southern Ontario Spang kernel +5.94 +5.40 −9.44

UGAMS-37833 Southern Ontario Spang kernel +5.20 +4.66 −9.65

UGAMS-41530 Southern Ontario Waupoos kernel +5.31 +4.77 −8.89

UGAMS-41531 Southern Ontario Waupoos kernel +4.76 +4.22 −8.63

UGAMS-41532 Southern Ontario Waupoos kernel +4.98 +4.44 −9.05

UGAMS-40346 Southern Ontario Wellington kernel +6.98 +6.44 −8.99

UGAMS-40343 Southern Ontario Wellington kernel +5.77 +5.23 −9.21

UGAMS-40345 Southern Ontario Wellington kernel +5.38 +4.84 −8.92

UGAMS-40344 Southern Ontario Wellington kernel +4.31 +3.77 −8.55

a Isotopic measures were obtained on maize samples submitted for previously published AMS radiocarbon dating as indicated in the methods section except those

identified by NYSM catalog numbers, which were assayed for this project at the University of Florida Light Stable Isotope Mass Spectrometry Lab. No permits or new

permissions were required. AA = University of Arizona AMS Laboratory, UCIAMS = University of California-Irvine Keck Carbon Cycle AMS Laboratory,

UGAMS = University of Georgia Center for Applied Isotope Studies.

https://doi.org/10.1371/journal.pone.0230952.t002
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maintained their structural integrity appearing much like charred kernels recovered from

archaeological sites; the mean Δ15N for these kernels is 0.51 ‰. The experiments were repeated

with different kernels for 24 h at 180˚ and 220˚C, which duplicated the results for kernels

heated for 2 hr. The 24 h Δ15N values are statistically the same as those kernels heated for 2 h

(df = 26, t = 0.413, p = 0.6831). Combining the 220˚C 2 and 24 h experiments results in a mean

Δ15N of 0.54±0.53. This value was subtracted from the archaeological maize δ15N values, and

the standard deviation for the archaeological maize mean value was adjusted with the standard

deviation of the Δ15N mean through error propagation calculation. This resulted in a range in

δ15N values for the archaeological kernels of +0.06 to +8.83 ‰, a mean of +4.76±1.63 ‰, and a

median of 4.71 ‰.

Terrestrial plants should have δ15N values 3–4 ‰ lower than terrestrial herbivore bone col-

lagen ([42], p. 3). Archaeologists exploring Neolithic and later agronomic practices in Europe

have used this as one means to establish baselines to identify the use of animal manure for

crop fertilization. That is, δ15N values of crop seeds higher than estimated plant browse are

interpreted as evidence for manure fertilization [53–55]. Following this line of reasoning we

calculated an estimated mean for plant browse from collagen of bone recovered form archaeo-

logical sites in the study region. δ15N values from 227 white tailed deer (Odocoileus virginia-
nus) bone collagen samples obtained from Iroquoian archaeological sites in the three areas

with sampled maize kernels have a range of +2.8 to +8.6 ‰, a mean of +5.6±1.0 ‰, and a

median of +5.5 ‰ (S2 Table). Captive, control-fed, white-tailed deer had a mean δ15N for ant-

ler collagen of +4.29±0.42 ‰ [69]; for a pure C3 diet, the mean was +3.73±0.43‰. Subtracting

25 red deer (Cervus elaphus) antler collagen values from same-individual bone collagen values

[70] resulted in a mean difference of +0.38±0.37 ‰, suggesting that there is essentially no dif-

ference between bone collagen and antler collagen δ15N values. As a result, we subtracted 4.0

‰ from individual archaeological deer bone collagen values to estimate average consumed

plant δ15N values, resulting in a mean of +1.6±1.0 ‰ and a median of +1.5 ‰ (Fig 2). This

range of results is consistent with similar estimates in Europe based on large herbivore collagen

values, ranging from +0.9 to +3.1 ‰ [54].

Subtracting 4.0 ‰ from rabbit/hare (Leporidae) collagen values from southern Ontario Iro-

quoian archaeological sites (n = 6) resulted in a mean of −0.39±0.73 ‰ and a median of −0.04

‰. Subtracting the value from woodchuck (Marmota monax) collagen values from southern

Ontario Iroquoian sites (n = 18) resulted in a mean of −0.93±0.70 ‰ and a median of −0.97

‰ (S2 Table). These results suggest that the plants consumed by these herbivores had lower

δ15N values than the plants consumed by deer. To be conservative, we used the values for deer

to calculate the value for non-cultivated plants in the data evaluation that follows.

Approximately 80% of land plant species are mycorrhizal including maize [71]. Like the

majority of these plants, maize is associated with arbuscular mycorrhizae [42,58]. One study

found that plants associated with arbuscular mycorrhizae have mean δ15N values ~2‰ lower

than nonmycorrhizal plants, with a mean value of −1.1±0.1 ‰ [58]. Because of the high per-

centage of arbuscular mycorrhizal plants globally, the estimated browse values should provide

Table 3. Results of experimental maize charring on δ15N and δ13C values.

˚C Time (h) n Mean Δ15N Std. Dev. Median Δ15N n Mean Δ13C Std. Dev. Median Δ13C

180 2 20 0.06 0.57 0.19 23 0.00 0.29 0.00

180 24 9 0.39 0.66 0.58 9 0.07 0.04 0.01

220 2 20 0.51 0.59 0.43 15 0.02 0.36 0.12

220 24 9 0.60 0.40 0.74 9 0.16 0.24 0.10

260 2 6 0.96 0.2 0.91 6 0.56 0.38 0.61

https://doi.org/10.1371/journal.pone.0230952.t003
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a reasonable baseline for interpretation of the archaeological maize and are consistent with the

lowest δ15N values obtained on archaeological maize kernels. While maize plants may obtain

some nitrogen from these fungal symbionts, they primarily obtain mineralized nitrogen from

the soil with enhanced phosphorus uptake being the primary benefit to arbuscular mycorrhizal

plants [72]. Given the global positive correlation between high soil N and plant δ15N values

[58] these values and the overall range in values of +8.77 ‰ suggest that they resulted from

varied N pools, with the higher values reflecting high plant-available nitrogen pools. The 72

values greater than two standard deviations above the estimated mean of plant values (>3.6

‰) is +5.14 ± 1.16 ‰. Two lowest values, +0.06‰ and +0.26‰, are greater than two standard

deviations below the mean for estimated plant values, suggesting low soil nitrogen. A t-test

indicates that the maize values as a whole are statistically different from the estimated terres-

trial plant values based on deer collagen values (p = 0.0000); the maize δ15N values are higher

than would be expected for terrestrial plants (difference in means = 3.20‰; Fig 2). Similar

results are obtained for the three subregions (Table 4).

The large area encompassed in our study has varied edaphic and climatic conditions, which

likely resulted in differing agronomic practices. However, one goal of the varied practices was

to maintain productivity to support settlement populations. This included maintaining plant-

available nitrogen levels. T-tests of adjusted maize δ15N values between subregions indicate no

significant differences between Northern New York and the Mohawk Valley and southern

Ontario. There is a significant difference, however, between the Mohawk Valley and southern

Ontario; the southern Ontario mean is higher than the Mohawk Valley mean, suggesting the

possibility of regional variation (Table 5; Fig 3).

Fig 2. Box plots of adjusted δ15N values of archaeological maize, archaeological white-tailed deer bone collagen, and

estimated deer forage. The horizontal lines within the boxes are medians, boxes represent the 25th to 75th percentile and

whiskers indicate 10th and 90th percentiles.

https://doi.org/10.1371/journal.pone.0230952.g002
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Discussion and conclusion

There is little doubt that fifteenth–sixteenth century AD Iroquoian farmers in present-day

New York and Ontario needed to maintain the fertility of their extensive, hand-cultivated

maize fields over extended periods of time lasting up to several decades. While it is possible

that some of the high δ15N values we obtained are the result of initial field clearance involving

cutting down and burning trees and other vegetation ([42], p.7), given the probable lengths of

time Iroquoian agricultural fields were in continuous cultivation, the effects of these activities

on the isotopic compositions of the plants are insufficient to explain the range of δ15N values

observed. For example, one study found an initial increase in foliar δ15N values after wildfires,

followed by sharp drop offs in the first post-fire decade [73]. A meta-analysis of fire effects on

nitrogen pools found that NH4
+ increased immediately following fire and then declined syn-

optically to pre-fire levels within 3 yr, while NO3
– increased following the fire peaking at 1 yr

and then decreasing to pre-fire levels within 5 yr [74]. An analysis of clearcutting forests also

indicated short-lived increase in foliar δ15N values, reaching their peak in 2 yr and falling

thereafter [75] (see [42] for an overview). Therefore, clearance involving burning may have

resulted in a very short-term pulse of mineralized nitrogen into the soil, possibly elevating

plant δ15N values, but this effect would have dissipated well before these fields ceased to be

cultivated.

While we do not have direct evidence of soil amendments to increase and maintain plant

available nitrogen, Iroquoian agronomic systems were evidently well adapted to local edaphic

conditions. All but six (7.3%) of the 82 δ15N maize values used in this analysis exceed the mini-

mal threshold of ~+2.5‰ suggested for identifying fertilization with manure in Europe, and

14 (17.07%) exceed ~+6.0‰ for identifying heavy use of manure [55] (Fig 4). The maintenance

of soil organic matter in naturally fertile soils of New York through the incorporation of crop

detritus into “corn hills” allowed continuous cropping systems over extended periods of time

[21,34]. Long-term incorporation of organic matter with high nitrogen content (>1%), such

as common bean and squash vine detritus, can promote the accumulation of nitrogen in soil

organic matter [76]. The addition of organic matter to contemporary no-till systems results in

high levels of microbial respiration and nitrogen mineralization [77]. Naturally fertile soils

containing 4% organic matter can annually produce 90 lbs per acre (102 kg/ha) of plant-avail-

able nitrogen [21] in excess of amounts provided under some systems of manure fertilization

Table 4. T-test results of maize and estimated plant δ15N values.

Region maize (n) planta (n) t p Difference in means Confidence interval (95%)

All 82 227 17.445 0.0000 3.2009 2.9002–3.5007

Southern Ontario 42 191 19.965 0.0000 3.4983 3.1531–3.8436

Northern New Yorkb 12 9 4.870 0.0000 3.0811 1.9681–4.1864

Mohawk Valleyb 23 27 10.388 0.0000 3.6347 2.9312–4.3382

aEstimates (see text)
bExact permutation p, bootstrap confidence interval,.

https://doi.org/10.1371/journal.pone.0230952.t004

Table 5. T-test results of sub-regional δ15N values. (Monte Carlo permutation p-values, bootstrap confidence intervals).

Regions t p Difference in means Confidence Interval (95%)

Northern NY-Ontario 0.7852 0.4372 0.3298 -0.5900–1.3649

Northern NY-Mohawk 0.8447 0.4084 0.4797 -0.6906–1.5610

Mohawk-Ontario 2.3899 0.0204 0.8094 0.0903–1.5151

https://doi.org/10.1371/journal.pone.0230952.t005
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[78]. Agronomic systems that included annual burning of fields may have increased plant-

available nitrogen [44,79] while the incorporation of charcoal from maize detritus into “corn

hills” may have helped maintain plant-available nitrogen [80] and in some cases increased

plant nitrogen uptake [81]. Intercropping maize with common bean may also have enhanced

the availability of nitrogen to maize [45–47].

Our results suggest that Iroquoian agronomic practices were as effective at providing nitro-

gen to crops. The contrary interpretations of the seventeenth-century AD Ontario ethnohisto-

rical record [7], which emphasizes the exhaustion of soils after short periods of time, may have

been a development of that century when the Wendat (Huron) Confederacy occupied an area

with sandy soils having low natural fertility as opposed to areas to the south in Ontario where

most settlements were located prior to the seventeenth-century consolidation [31]. Southern

Ontario has dominantly Luviols, the equivalent of Alfisols in the U.S.D.A. system [82], the lat-

ter of which were exploited by Iroquoian farmers in New York [21,32]. In central New York,

Iroquoian village sites, for example, are associated with high fertility Alfisols and areas that

experienced high frequencies of evidently anthropogenic fire, presumably from agronomic

practices [32,83]. At least some fifteenth-and sixteenth-century Iroquoian villages in southern

Ontario were sited to take advantage of soils with high natural soil fertility [26]. The low fertil-

ity of the acidic soils exploited by Wendat (Huron) farmers in the seventeenth century after

consolidation of the Confederacy [18] were not typical of soils exploited by Iroquoian farmers

in other areas and times. Mineralization of nitrogen from the microbial breakdown of soil

organic matter is negatively affected by lower temperatures in the presence of low soil pH,

higher sand content, and lower clay content [84,85], all of which characterize the acidic, sandy

soils of the seventeenth-century Wendat (Huron) region [18].

Fig 3. Box plots of δ15N values of archaeological maize from southern Ontario, northern New York, and the Mohawk

Valley. The solid horizontal lines within the boxes are medians, boxes represent the 25th to 75th percentile and whiskers indicate

10th and 90th percentiles.

https://doi.org/10.1371/journal.pone.0230952.g003
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While Iroquoian farmers may not have used fertilizer in the Eastern Hemisphere sense, our

results suggest that as with Native Americans in other regions [86], their agronomic practices

maintained plant-available nitrogen, as evinced by high δ15N values. These relatively high δ15N

values are suggestive of the addition of soil amendments with δ15N values higher than that of

the original soil organic matter. At this early stage it is not possible to say what these soil

amendments might have been, but human and/or dog excrement or fish are plausible. Addi-

tional studies are required to examine the effects of these practices on plant δ15N values. Our

results indicate that reliance on ethnohistoric accounts of seventeenth-century AD agriculture

in Ontario to model Iroquoian agriculture in general is unwarranted [21]. The results also

demonstrate the utility of obtaining δ15N values on maize as a tool for increasing knowledge of

pre-Contact Native American agronomic practices.

Methods and materials

All statistical analyses were performed in PAST v. 3.25 [87].

Isotopic measures were obtained on maize samples submitted for AMS radiocarbon dating

as reported in [88–91] except those obtained on the three samples from the Snell site, which

were obtained independently of AMS dating for this project. The values from the Roundtop

site were obtained on samples originally reported in [92] on remaining portions of the samples

archived at the University of Arizona AMS Laboratory.

The stable isotope results in this study are expressed in standard δ-notation. X = [(Rsample/

Rstandard)– 1] � 1000, where X (in units permil, ‰) is δ13C or δ15N and R = 13C/12C or 15N/14N.

Fig 4. Scatter diagram of archaeological maize δ15N and δ13C values. The blue horizontal lines are estimates for boundaries for

medium (lower) and high (upper) manuring rates for European Neolithic crops, respectively [53–55].

https://doi.org/10.1371/journal.pone.0230952.g004
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The δ13C values are reported relative to the V-PDB standard, while the δ15N values are

reported relative to atmospheric N2.

In this study we directly analyzed the δ13C and δ15N values from modern maize kernels.

For analysis, dried maize kernels were crushed to a powder using a mortar and pestle then

weighed (@ 3.5mg) into tin capsules. The samples were analyzed in the Light Stable Isotope

Mass Spectrometry Lab in the Department of Geological Sciences at the University of Florida,

Gainesville, FL, USA. Specifically, tin capsules were loaded into a 50-position automated Zero

Blank sample carousel on a Carlo Erba NA1500 CNS elemental analyzer. Each sample was

combusted at 1020˚C in a quartz column in an oxygen-rich atmosphere. The sample gas was

transported and passed through a hot reduction column (650˚C) consisting of elemental cop-

per to remove oxygen in a He carrier stream. The remaining sample gas then passed through a

chemical (magnesium perchlorate) trap to remove water followed by a 0.7-meter GC column

at 120˚C to separate N2 from CO2. The sample gas next passed into a ConFlo II interface and

into the inlet of a Thermo Electron Delta V Advantage isotope ratio mass spectrometer run-

ning in continuous flow mode where the sample gas was measured relative to laboratory refer-

ence N2 from CO2 gases. Precision for the analyses were<0.2‰ for δ15N and<0.1‰ for

δ13C.

Isotopic analyses of charred archaeological maize were carried out at Keck Carbon Cycle

Facility at the University of California Irvine (UCIAMS) or the Center for Applied Isotope

Studies at the University of Georgia (UGAMS). Samples at both facilities were subjected to

standard acid-base-acid pretreatment. UCIAMS δ15N was measured to a precision of<0.2 ‰

using a Fisons NA1500NC elemental analyzer/Finnigan Delta Plus isotope ratio mass spec-

trometer. At UGAMS, δ15N was measured using an elemental analyzer isotope ratio mass

spectrometer to a precision of<0.1 ‰.
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