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Abstract: Background: Deregulation of DNA methylation/demethylation reactions may be the
source of C > T mutation via active deamination of 5-methylcytosine to thymine. Exposome, that is
to say, the totality of exposures to which an individual is subjected during their life, can deregulate
these reactions. Thus, one may wonder whether the exposome can induce C > T mutations in the
breast cancer-predisposing gene PALB2. Methods: Our work is based on the exposure of MCF10A
mammary epithelial cells to seven compounds of our exposome (folate, Diuron, glyphosate, PFOA,
iron, zinc, and ascorbic acid) alone or in cocktail. The qMSRE and RMS techniques were used to
study the impact of these exposures on the level of methylation and mutation of the PALB2 gene.
Results: Here, we have found that exposome compounds (nutriments, ions, pollutants) promoting
the cytosine methylation and the 5-methylcytosine deamination have the ability to promote a specific
C > T mutation in the PALB2 gene. Interestingly, we also noted that the addition of exposome
compounds promoting the TET-mediated conversion of 5-methylcytosine (Ascorbic acid and iron)
abrogates the presence of C > T mutation in the PALB2 gene. Conclusions: Our study provides a
proof of concept supporting the idea that exposomes can generate genetic mutation by affecting DNA
methylation/demethylation.

Keywords: epigenetics; DNA methylation; C > T mutation; exposome; PALB2; breast cancer

1. Introduction

DNA methylation is an epigenetic process involving the transfer of a methyl group
(CH3) to the 5’ position of a cytosine from S-adenyl methionine (SAM) molecules. Proteins
of the DNA methyltransferase family or DNMTs are the enzymes catalyzing this transfer [1].
In contrast, DNA demethylation can be defined as the epigenetic process resulting in the
loss of the methyl group (CH3) at the 5’ position of a cytosine. This loss can be passive by
the absence of maintenance of the DNA methylation profile or active, that is, catalyzed
by enzymes such as proteins of the TETs (Ten eleven translocation) family, those of the
AID/APOBEC (cytidine deaminase/apolipo-protein B mRNA-editing enzyme) proteins,
or by the TDG (Thymine-DNA glycosylase) protein [2,3].

Literature reports several crosstalks between DNA methylation/demethylation and
genetic alterations: (i) hypomethylation of retrotransposons that promotes chromosomal
instability [4–6], (ii) mutations in genes encoding for enzymes governing the DNA methy-
lation/demethylation reactions (such as the one occurring in DNMT3a or TET2 as an
example) [7,8], and (iii) C > T mutations occurring via the deamination of 5-methylcytosine
whether this reaction is spontaneous or catalyzed by the APOBEC enzyme, for exam-
ple [9,10].
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As reported by Alexendrov et al., (2020), C > T mutation is part of the repertoire of
mutational signatures in human cancer [11]. This type of mutation is classified as one
of the six listed single-base substitutions or SBS. In addition, several C > T mutations
are defined as driver mutations, that is, as “changes” in the DNA sequence of genes that
cause cells to become cancer cells and grow and spread in the body. Characterizing driver
mutations in tumor tissue may help plan treatment to stop cancer cells from growing,
including drugs that target a specific mutation (NCI’s dictionary of cancer terms, https:
//www.cancer.gov/publications/dictionaries/cancer-terms (accessed on 16 August 2022)).
Today, several molecular mechanisms are proposed to be at the origin of driver C > T
mutations including spontaneous and AID/APOBEC-catalyzed deamination of 5 mC
and defective DNA mismatch repair [12]. C > T mutations have been detected in a large
number of genes including ERBB2c.929C > T, PTENc697C > T, TP53c637C > T, ARID1Ac.5965C > T,
IDH1c.394C > T, BRCA1c.4183C > T and BRC2Ac.8827C > T. C > T mutations were also detected in
the PALB2 gene with the c.1240C > T [13], c.2257C > T [14], c.3256C > T [15], and c.1027C
> T mutations [16]. In addition to being detected in breast cancer at a somatic level, note
that the PALB2 gene is considered a high-risk breast cancer gene if mutated at a germline
level [17–19].

The exposome, that is, the totality of exposures (chemical, microbiological, physi-
cal, and medicinal environment, food, ....) to which an individual is subjected during
their life, has the capacity to affect DNA methylation/demethylation reactions, and by
ricochet, the presence of C > T mutations, putatively [20]. Indeed, the literature shows
that the expression level of several enzymes catalyzing DNA methylation/demethylation
reactions can be affected by the chemical environment of an individual: glyphosate (CAS
No: 1071-83-6) can induce the overexpression of TET3 [21], PFOA (CAS No: 335-67-1)
modulates the expression of epigenetic enzymes such as DNMTs), TETs, TDG, or some
HDACs (Histone deacetylase) [22]. Diuron (CAS No:330-54-1) modulates the expression
of some APOBEC proteins [23]. Food and nutraceuticals also have the ability to modulate
DNA methylation/demethylation reactions by modulating the supply of cofactors and co-
substrates of enzymes catalyzing these reactions (as introduced above) [24]. The literature
shows that folic acid induces a gain in DNA methylation since folic acid contributes to the
supply of methyl groups for DNMTs via S-adenosylmethionine (SAM) production [25–27].
Several ions act as co-factors for DNA methylation/demethylation enzymes. TET enzymes
that hydroxylate 5 mC to 5 hmC utilize iron ions as a cofactor [28]. Ascorbic Acid is also
described to enhance TET-mediated DNA demethylation [29].

In this work, we provide a proof of concept supporting the idea that different com-
pounds of exposome have the ability to guide the DNA methylation/demethylation reac-
tions to promote C > T mutation in the PALB2 gene. In our work, the PALB2 gene choice
as a “demonstrator gene” is based on the fact that this gene is methylated or mutated in
different types of cancer including breast cancer [17,30–33]. Thus, the results obtained for
this “demonstrator gene” may be translated to other genes.

2. Results

In this work, we hypothesized that exposome compounds could promote C > T
mutation in the PALB2 gene by enhancing or inhibiting DNA methylation/demethylation
reactions (Figure 1).

https://www.cancer.gov/publications/dictionaries/cancer-terms
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Figure 1. Schematic representation of nutraceuticals (orange) and pollutants (blue) effects on DNA 
methylation/demethylation reactions. 

2.1. Folic Acid Supplementation Promotes the Methylation of PALB2 Gene Region Susceptible to 
Promote the c.1027C > T Mutation  

Our first hypothesis is based on the fact that Folate could induce the methylation of 
cytosine giving birth to C > T mutations in the PALB2 gene. To investigate this hypothesis, 
we exposed epithelial breast cells (MCF-10A cells) for 3 weeks to three doses of Folate 
equal to the recommended daily intake (RDI), three times RDI (3RDI), and 10 times RDI 
(10RDI) [34] (Figure 2). As expected, the quantification of 5-methylcytosine (5 mC) by 
ELISA method indicated that Folate increased in a dose-dependent manner the global 5 
mC level (Figure 3A). Next, we analyzed whether the Folate-induced cytosine methyla-
tion could occur on cytosine giving birth to C > T mutations seen in the PALB2 gene. 
Based on the ClinVar Miner database, we focused our study on 4 C > T mutations: 
c.1027C > T, c.1240C > T, c.2257C > T, and c.3256C > T. The choice of these four mutations 
is based on the fact that these mutations must be included in a “methylable” CG dinu-
cleotide. In practice, the Folate-induced methylation of cytosine was then analyzed using 
the MeDIP method. The MeDIP assay showed that only the c.1027C > T mutation-prone 
region was methylated following Folate supplementation at the indicated RDI (Figure 
3B). Based on this finding, next, we focused our study on the c.1027C > T mutation in 
PALB2 gene (PALB2c.1027C > T). 

Figure 1. Schematic representation of nutraceuticals (orange) and pollutants (blue) effects on DNA
methylation/demethylation reactions.

2.1. Folic Acid Supplementation Promotes the Methylation of PALB2 Gene Region Susceptible to
Promote the c.1027C > T Mutation

Our first hypothesis is based on the fact that Folate could induce the methylation of
cytosine giving birth to C > T mutations in the PALB2 gene. To investigate this hypothesis,
we exposed epithelial breast cells (MCF-10A cells) for 3 weeks to three doses of Folate
equal to the recommended daily intake (RDI), three times RDI (3RDI), and 10 times RDI
(10RDI) [34] (Figure 2). As expected, the quantification of 5-methylcytosine (5 mC) by
ELISA method indicated that Folate increased in a dose-dependent manner the global
5 mC level (Figure 3A). Next, we analyzed whether the Folate-induced cytosine methylation
could occur on cytosine giving birth to C > T mutations seen in the PALB2 gene. Based
on the ClinVar Miner database, we focused our study on 4 C > T mutations: c.1027C > T,
c.1240C > T, c.2257C > T, and c.3256C > T. The choice of these four mutations is based on the
fact that these mutations must be included in a “methylable” CG dinucleotide. In practice,
the Folate-induced methylation of cytosine was then analyzed using the MeDIP method.
The MeDIP assay showed that only the c.1027C > T mutation-prone region was methylated
following Folate supplementation at the indicated RDI (Figure 3B). Based on this finding,
next, we focused our study on the c.1027C > T mutation in PALB2 gene (PALB2c.1027C > T).

2.2. Diuron and PFOA Supplementation Affect APOBEC Expression and TDG
Activity, Respectively

Our second hypothesis is based on the idea of using exposome compounds to guide
the DNA demethylation reaction toward 5 mC deamination while blocking the action
of the TDG enzyme, that is, the enzyme that initiates T/G mismatch repair (Figure 1).
To investigate this hypothesis, we used Diuron and PFOA as two exposome compounds
since these both compounds are already known or suspected to modulate DNA methyla-
tion levels [23,35,36] (Figure 2). About our working dose, we used concentration ranges
based on the consideration of the maximum allowable concentrations (MAC) of these
both compounds [37,38]. Thus, our data indicated that Diuron increased expressions of
APOBECs enzymes (Figure 4A) and PFOA decreased the TDG activity in a dose-dependent
manner (Figure 4B).
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Figure 2. Schematic representation of the experimental design used. Nutraceutical and/or pollutant 
doses are based on the consideration of Maximum Allowable Concentration (MAC) and Recom-
mended Daily Intake (RDI). The cells were exposed to six doses of the compounds over three weeks 
(two doses per week for 3 weeks). The first two arrows indicate the days of treatment of the cells 
and the last arrow indicates the day when the cells were used for analysis. 

 
Figure 3. Folic acid supplementation at indicated RDI promotes the methylation of PALB2 gene 
region susceptible to the c.1027C > T mutation. (A) Impact of folic acid on global 5mC level (ELISA 
method). Graph illustrates the relative fold change of global 5mC level seen in MCF10A cells ex-
posed to Decitabine (DNA demethylating agent used here as an inducer of global DNA hypo-
methylation, 10 μM) or to folic acid at different doses (RDI and multiple of RDI). “Ctrl” represents 
the control exposure performed with PBS/DMSO5%. A significant difference (*) was observed 
between the different doses of folate used. (B) Impact of folic acid on methylation level of PALB2 
gene region susceptible to the c.1027C > T mutation (MeDIP method). Graph illustrates the en-

Figure 2. Schematic representation of the experimental design used. Nutraceutical and/or pollutant
doses are based on the consideration of Maximum Allowable Concentration (MAC) and Recom-
mended Daily Intake (RDI). The cells were exposed to six doses of the compounds over three weeks
(two doses per week for 3 weeks). The first two arrows indicate the days of treatment of the cells and
the last arrow indicates the day when the cells were used for analysis.
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Figure 3. Folic acid supplementation at indicated RDI promotes the methylation of PALB2 gene
region susceptible to the c.1027C > T mutation. (A) Impact of folic acid on global 5mC level (ELISA
method). Graph illustrates the relative fold change of global 5mC level seen in MCF10A cells exposed
to Decitabine (DNA demethylating agent used here as an inducer of global DNA hypomethylation,
10 µM) or to folic acid at different doses (RDI and multiple of RDI). “Ctrl” represents the control
exposure performed with PBS/DMSO5%. A significant difference (*) was observed between the
different doses of folate used. (B) Impact of folic acid on methylation level of PALB2 gene region
susceptible to the c.1027C > T mutation (MeDIP method). Graph illustrates the enrichment of 5-
methylcytosine (m5C) of PALB2 gene region susceptible to the c.1027C > T mutation seen in MCF10A
cells exposed to folic acid at different doses (RDI and multiple of RDI). ”Ctrl” represents the control
exposure performed with PBS/DMSO 5%. Methylated DNA: Universal Methylated DNA Standard
(Ozyme/Zymo, Saint Cyr L’Ecole, France). A significant difference (*) was observed between control
and all investigated conditions.
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Figure 4. Diuron and PFOA supplementation affect APOBEC expression and TDG activity, respec-
tively. (A) Impact of Diuron on the APOBEC3α and APOBEC3γ expression (ELISA method). Graph
illustrates the fold change expression of APOBEC3α and APOBEC3γ expression seen in MCF10A
cells exposed to Diuron at different doses (MAC and multiple of MAC). ”Ctrl” represents the control
exposure performed with PBS/DMSO 5%. siRNA-A (control) and siRNA-APOBECs are used as
control conditions inducing down-expression of APOBEC3α and APOBEC3γ. A significant difference
(*) was observed between the different doses of Diuron used. (B) Impact of PFOA on TDG activity
(Activity assay method). Graph illustrates the fold change of TDG activity seen in MCF10A cells
exposed to PFOA at different doses (MAC and multiple of MAC). ”Ctrl” represents the control
exposure performed with PBS/DMSO5%. A significant difference (*) was observed between the
different doses of PFOA used.

2.3. A Mixture Composed of Folate, Diuron or Zinc, and PFOA has the Ability to Promote the
c.1027C > T Mutation in PALB2 Gene

Based on these findings, we extended our study by using a mixture including Folate,
Diuron, and PFOA. A restriction site mutation (RSM) assay was developed to study the pres-
ence of PALB2c.1027C > T. Our data indicated that the exposure of MCF-10A cells to a mixture
including folate at RDI, Diuron at 3 MAC and PFOA at 3 MAC (FolateRDI/Diuron3MAC/
PFOA3MAC) promoted PALB2c.1027C > T (Figure 5A).

APOBECs enzymes being zinc (Zn)-dependent deaminases [39], we also analyzed
whether the use of Zinc instead of Diuron in FolateRDI/Diuron3MAC/PFOA3MAC could in-
duce PALB2c.1027C > T. Our data indicate that FolateRDI/Zn5RDI/PFOA3MAC and FolateRDI/
Zn10RDI/PFOA3MAC cocktails promoted PALB2c.1027C > T (Figure 5B).

2.4. Ascorbic Acid and Iron Have the Ability to Limit the Presence of the c.1027C > T Mutation in
PALB2 Gene

Finally, we hypothesized that some exposome compounds could redirect the DNA
demethylation reaction toward TET-mediated DNA demethylation in order to minimize the
5 mC deamination leading to PALB2c.1027C > T. For this purpose, we considered glyphosate,
ascorbic acid, and iron since these compounds increased the TET3 expression (Figure 6A) or
the TET activity (Figure 6B) [40]. Among the tested mixture, we noted that the addition of
Ascorbic Acid (AA3RDI) and Iron at 3 RDI (Fe3RDI) limited the presence of PALB2c.1027C > T in-
duced by FolateRDI/Diuron3MAC/PFOA3MAC or FolateRDI/Zn5RDI/PFOA3MAC (Figure 6C).
More interestingly, we noted that this effect was not observed in the presence of FolateRDI/
Diuron10MAC/PFOA10MAC or FolateRDI/Zn10RDI/PFOA10MAC, that is, in the presence of a
high concentration of PFOA, Diuron, or Zinc (Figure 6C).
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Figure 5. A mixture composed of Folate, Diuron or Zinc, and PFOA has the ability to promote
the c.1027C > T mutation in PALB2 gene. (A,B) Graphs illustrate the Impact of nutraceuticals and
pollutants as single agent or in a mixture on the presence of the c.1027C > T mutation in PALB2 gene
(Restriction site mutation (RSM) method. Doses used are indicated in multiples of RDI or MAC.
(*) indicates a significant t test (p < 0.05).
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Iron at different doses (RDI and multiple of RDI). “Ctrl” represents the control exposure performed 
with PBS/DMSO 5%. DMOG was used as control condition inducing a decrease in TET activity 
since DMOG acts as a TET inhibitor. A significant difference (*) was observed between the different 
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Figure 6. Ascorbic acid and Iron have the ability to limit the presence of the c.1027C > T mutation in
PALB2 gene. (A) Impact of Glyphosate on TET3 expression (ELISA method). Graph illustrates the fold
change expression of TET3 expression seen in MCF10A cells exposed to Glyphosate at different doses
(MAC and multiple of MAC). “Ctrl” represents the control exposure performed with PBS/DMSO
5%. siRNA-A (control) and siRNA-TET3 are used as control conditions inducing down-expression
of TET3. A significant difference (*) was observed between the different doses of glyphosate used.
(B) Impact of Ascorbic Acid or Iron on TET activity (Activity assay method). Graph illustrates the
fold change of TDG activity seen in MCF10A cells exposed to Ascorbic Acid or Iron at different doses
(RDI and multiple of RDI). “Ctrl” represents the control exposure performed with PBS/DMSO 5%.
DMOG was used as control condition inducing a decrease in TET activity since DMOG acts as a
TET inhibitor. A significant difference (*) was observed between the different doses of ascorbic acid
and iron used. (C) Graphs illustrate the Impact of nutraceuticals and pollutants as single agent or
in a mixture on the presence of the c.1027C > T mutation in PALB2 gene (Restriction site mutation
(RSM) method). Doses used are indicated in multiples of RDI or MAC. A significant difference (*)
was observed between the indicated comparisons.
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3. Discussion

Gene-Environment interaction (GxE) studies are an opportunity to understand the
complexity of the interactions between genes and environment, and if necessary to identify
predictive biomarkers for the development of pathologies such as cancer. For several years,
GxE studies have benefited from the integration of complex data from epidemiological
studies and omics-based technology analyses that comprehensively assess an individual’s
exposome, transcriptome, epigenome, or metabolome [41,42]. Although these approaches
allow and will allow the definition of multiple interactions between the exposome and
the occurrence of cancers, it remains important to decipher the molecular mechanisms
by which the exposome is likely to modify gene integrity and expression. Indeed, a
better understanding of these mechanisms could permit the consideration of preventive
or medicinal actions counteracting these mechanisms and thus limit the risk of cancer
occurrence. It is in this global context that the results of our study are placed while raising
different points for discussion.

By reporting that the FolateRDI/Diuron3MAC/PFOA3MAC, FolateRDI/Zn5RDI/PFOA3MAC,
FolateRDI/Diuron3MAC/PFOA3MAC/Ascorbic Acid3RDI/Iron3RDI, and FolateRDI/Zn5RDI/
PFOA3MAC/Ascorbic Acid3RDI/Iron3RDI exposures have the capacity to regulate the action
of proteins catalyzing DNA methylation/demethylation reactions and the PALB2c.1027C > T

occurrence, our work is fully in line with the deciphering of the molecular mechanisms by
which the exposome is likely to modify the integrity of the genes predisposing to cancer risk
(Table 1). Thus, from a mechanistic point of view, our work reinforces the idea that epigenetics
can be a source of genetic aberrations promoting cancer. Indeed, several studies show that epi-
genetic aberrations such as the loss of DNMT1 protein expression or DNMT1/PCNA/UHRF1
complex integrity are the source of genetic instability (deletion, translocation) and point
mutations promoting tumor formation [43–45]. The initiator role of environmental factors
in epigenetic/genetic-induced tumorigenesis has been already reported. Sciandrello et al.,
(2004) report that arsenic-induced DNA hypomethylation affects chromosomal instability
in mammalian cells [46]. Shimizu et al. (2014) report that the increase of AICDA-catalyzed
cytidine deaminase activity in patients with H pylori infection promotes the accumulation of
somatic mutations in TP53 that might promote gastric carcinogenesis [47]. Yoon et al., (2001)
report that genetic mutations can occur selectively at methylated CpG sequences in response
to polycyclic aromatic hydrocarbons in smoking-associated lung cancers [48].

Table 1. Effect of nutraceutical and pollutant mixtures composing our exposome on the presence (or
not) of PALB2c.1027C > T mutation.

Mixtures inducing the
PALB2c.1027C>T mutation

Mixtures having a protective effect against the
induction of the PALB2 c.1027C>T mutation

FolateRDI/Diuron3MAC/PFOA3MAC FolateRDI/Diuron3MAC/PFOA3MAC/Ascorbic
Acid3RDI/Iron3RDI

FolateRDI/Zn5RDI/PFOA3MAC FolateRDI/Zn5RDI/PFOA3MAC/Ascorbic
Acid3RDI/Iron3RDI

FolateRDI/Diuron10MAC/PFOA10MAC Ascorbic
Acid3RDI/Iron3RDI

FolateRDI/Zn10RDI/PFOA10MAC/Ascorbic
Acid3RDI/Iron3RDI

Interestingly, the PALB2c.1027C > T has been described at the germline level in a study
on Italian familial breast cancer cases [16]. This mutation was described to be recurrent
in the province of Bergamo as it was found in 6/113 (5.3%) familial breast cancer cases
and 2/477 (0.4%) controls coming from this area. Germline PALB2 mutations are inherited
in an autosomal dominant manner, of ancestral origin in most cases. To our knowledge,
one case of a de novo germline frameshift PALB2 mutation was described in 2020 [49].
It would be also important to know if the PALB2c.1027C > T has already been described at
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an exclusive somatic level as a driver mutation acquired during breast carcinogenesis.
Indeed, the identification of environmental factors as potential sources of PALB2c.1027C > T

may echo some cases. In addition, the presence of PALB2c.1027C > T in MCF10A cells ex-
posed to FolateRDI/Diuron3MAC/PFOA3MAC raises the question of the potential cancer
driver role of this mutation. Answering this question is very complex and requires the
development of a specific research program. However, our data show that subcutaneous
injection of MCF10A cells exposed to FolateRDI/Diuron3MAC/PFOA3MAC does not induce
tumor formation as does the injection of MCF10A cells that have lost the integrity of the
DNMT1/PCNA/UHRF1 complex [21,45] (Supplementary Figure S1).

Our work also highlights the interest in studying the impact that an environmental
factor can have alone but also within cocktails/mixtures. Among the several points il-
lustrating this idea in our work, here is the example of Folate. Indeed, Folate as a single
agent is devoid of the ability to promote PALB2c.1027C > T, but it appears as a crucial actor of
the FolateRDI/Diuron3MAC/PFOA3MAC-induced PALB2c.1027C > T since the absence of this
mixture abrogates this mutation presence. Thus, an environmental factor such as Folate can
harbor two faces against a cancer-predisposing mutation such as PALB2c.1027C > T: neutral
in single use or at risk in the FolateRDI/Diuron3MAC/PFOA3MAC mixtures, as an example.
The interest to study the impact of an environmental factor alone is also illustrated in our
study by choosing Ascorbic Acid and Iron to redirect DNA methylation/demethylation
reactions toward the DNA demethylation pathway catalyzed by TET enzymes at the ex-
pense of that catalyzed by APOBECs and TDG. Indeed, without the knowledge of the
enhancer role of Ascorbic Acid and Iron in the TET enzyme activity, we would not have
investigated the possibility of using these two compounds to counteract the effect of the
FolateRDI/Diuron3MAC/PFOA3MAC and FolateRDI/Zn5RDI/PFOA3MAC mixture via the in-
duction of the TET enzymes activity. Thus, through all these considerations, our work
participates in the debate on the “experimental reproduction” of exposure to mixtures of
environmental factors. Indeed, the development of omics analysis techniques allows an
increasingly deep characterization of the mixtures of environmental factors to which an
individual can be exposed. However, the more these mixtures are composed of entities, the
more complex their reproduction in the laboratory is complex since it requires, at least, the
consideration of the different “combinations of entities” composing the considered mixture.

Our work also points out the importance of the exposure doses since (i) FolateRDI/
DiuronMAC/PFOAMAC does not induce PALB2c.1027C > T contrary to the FolateRDI/
Diuron3MAC/PFOA3MAC and (ii) Ascorbic Acid3RDI/Iron3RDI has a “protective effect”
against FolateRDI/Diuron3MAC/PFOA3MAC- and FolateRDI/Zinc5MAC/PFOA3MAC-induced
PALB2c.1027C > T but not against FolateRDI/Diuron10MAC/PFOA10MAC- and FolateRDI/
Zinc10MAC/PFOA10MAC-induced PALB2c.1027C > T (Table 1). More generally, the dose con-
sideration echoes the question of acute and chronic exposure to environmental factors. In
our study, we considered the RDI and MAC as minimum exposure doses, and multiples of
these doses were then taken into consideration. The fact of observing an effect with doses
equal to three or five times the RDI or MAC may seem high. However, dietary supplements
of vitamins, trace elements, ions, or nutraceuticals are likely to contain such doses. Thus, a
person following a cure of food supplements could be exposed to doses similar to those
used during our study. A similar observation prevails also for the PFOA dose inducing
PALB2c.1027C > T since this dose (3MAC: 0.6 ng/mL) is of the same order of magnitude as
that detected in the blood of different individuals by several studies (6.78 ng/mL of PFOA
are detected in healthy people (n = 194) and PFOA concentration was 9.3 ng/mL with
values ranging from 0.8 to 35.2 ng/mL [50,51].

4. Conclusions

In conclusion, our work provides a proof of concept supporting the idea that the
exposome can generate, by affecting DNA methylation/demethylation reactions, a ge-
netic mutation predisposing to a cancer risk such as PALB2c.1027C > T while discussing the
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complexity of conducting such a study in the laboratory through the consideration of the
number and dose of compounds selected to mimic exposome.

5. Materials and Methods
5.1. Cell Culture

MCF10A cells were cultured in DMEM/F12 supplemented with 5% horse serum (Invit-
rogen, Cergy Pontoise, France), 500 ng/mL hydrocortisone (Sigma-Aldrich, Saint Quentin
Fallavier, France), 100 ng/mL cholera toxin (Sigma-Aldrich, Saint Quentin Fallavier, France),
10 µg/mL insulin (ThermoFisher, Courtaboeuf, France) and 20 ng/mL epidermal growth
factor (EGF, Sigma-Aldrich, Saint Quentin FallavierFrance), penicillin (100 U/mL), and
2 mmol/L L-glutamine. Glyphosate (CAS 1071-83-6, sc-211568) and Diuron (CAS 330-54-1,
sc-239818) were purchased from Santa Cruz (Heildelberg, Germany). DMOG (CAS No:
89464-63-1) was purchased from MedChemExpress (Sollentuna, Sweden). Ascorbic Acid
(CAS 50-81-7, A4544), iron (CAS 7782-63-0, F8633), Perfluorooctanoic acid (PFOA, CAS
335-67-1), and Zinc (CAS 7446-20-0, Z0251) were purchased from Sigma (Saint Quentin
Fallavier, France). All nutraceuticals or pollutants used in our study are resuspended in
PBS/DMSO5% solution.

5.2. DNA Extraction

A QIAcube automate and QIAmp DNA Mini QiaCube kit (Qiagen, Courtaboeuf,
France) were used to isolate DNA. Qubit (ThermoFisher, Courtaboeuf, France) was used to
quantify DNA.

5.3. Restriction Site Mutation (RSM) Assay

Digestions were performed with adequate restriction enzymes, HpaII and AciI (NEB,
Evry, France). Typically, 1 µg of genomic DNA was digested with 40 U of enzymes at
37 ◦C for 2 h in 50 µL of reaction. Control samples were treated in the same way but
without the addition of the enzyme. Furthermore, 5 µL of digested and undigested mixtures
were used for qPCR using QuantiFast SYBR Green PCR Kit and Rotor-Gene Q (Qiagen,
Courtaboeuf, France). The primers used in these qPCRs are: S: cctaaaggtagcagtgaa and
as: gcctccaaacttacagg. The mutation level was calculated using Ct values from qPCRs
performed with digested and undigested DNA and the 100 × 2−∆Ct formula.

5.4. Methylated DNA Immunoprecipitation (MeDIP)

After treatment with 1 ng/µL RNase, 5 µg genomic DNA into 130 µL of TE buffer
were sonicated with Bioruptor (12 cycles 30 s on/30 s off, Diagenode, Seraing, Belgium).
Sonicated DNA was next diluted in 400 µL of TE buffer and denatured in a dry bath
heating block for 10 min at 95 ◦C. On ice, 100 µL of cold 5 × IP and 4 µg of 5 mC anti-
body (Abcam, Amsterdam, Netherlands) were added to the denatured sonicated DNA.
The mixture was then incubated on a rotating platform at 4 ◦C overnight. 50 µL of mag-
netic beads (Dynabeads M-280) were washed two times with washing buffer (1 × PBS
with 0.1% BSA and 2 mM EDTA) before being resuspended in 50 µL 1x IP buffer. Then,
these magnetic beads were added to the antibody-DNA mixture for incubation of 3 h
on a rotating platform at 4 ◦C. After three washes, magnetic beads were resuspended in
250 µL Digestion Buffer and incubated in presence of 3.5 µL Proteinase K (20 mg/mL) for
2–3 h on a rotating platform at 55 ◦C. DNA purification was next performed by adding
250 µL phenol–chloroform–isoamyl alcohol to each tube. After centrifugation (RT,
14,000× g, 5 min), aqueous supernatant was transferred to a fresh microcentrifuge tube
in presence of 250 µL of chloroform. After centrifugation (RT, 14,000× g, 5 min), aqueous
supernatant was transferred to a fresh microcentrifuge tube in presence of 2 µL of the
coprecipitant GlycoBlue (20 mg/mL, ThermoFischer, Courtaboeuf, France), 20 µL 5 M
NaCl and then 500 µL of 100% ethanol. The mixture was then incubated overnight in a
−20 ◦C freezer. After centrifugation (4 ◦C, 14,000× g, 20 min), the supernatant was re-
moved, and the pellet was washed two times with 1 mL 70% ethanol by incubating at
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−20 ◦C for 10 min then spun again for 10 min. After discarding the supernatant using a
pipette and air-drying, the pellet was resuspended in 25 µL of nuclease-free water in order
to obtain the MeDIP sample. Then, 2 µL of the MeDIP sample was used for qPCR analysis.
qPCR analysis was performed using QuantiFast SYBR Green PCR Kit and Rotor-Gene
Q as real-time thermocycler (Qiagen, Courtabouef, France). The primers used in these
qPCR are defined in the RSM assay section. Next, the 5-methylcytosine enrichment was
calculated using Ct values from qPCRs performed with DNA issue to 5 mC and IgG (a
specific antibody) antibody immunoprecipitation and corresponding input sample.

6. Elisa

All ELISA kits (5-mC DNA ELISA Kit (Zymo/Ozyme, Saint Cyr l’Ecole, France), Epi-
genase™5mCHydroxylase TET Activity/Inhibition Assay Kit and Epigenase™Thymine
DNA glycosylase Activity/Inhibition Assay Kit (Epigentek/Euromedex, Souffelweyer-
sheim, France), APOBEC3α, APOBEC3γ and TET3 ELISA kit (MyBioSource, San Diego,
CA, USA) were used in accordance with the recommendations of the manufacturers.

6.1. siRNA Transfection

siRNA-APOBEC3γ (sc-60091, Santa Cruz, Heidelberg, Germany), siRNA-APOBEC3α
(sc-72514, Santa Cruz, Heidelberg, Germany), siRNA-TDG (sc-44142, Santa Cruz, France),
and siRNA-TET3 (sc-154206, Santa Cruz, Heidelberg, Germany) were transfected in
MCF10A as previously described (Duforestel et al. 2019). siRNA-A (sc-37007, Santa
Cruz, Heidelberg, Germany), that is, a scrambled sequence devoid of specific degradation
of any cellular message was used as control.

6.2. Statistical Analysis

All experiments were conducted at least in biological triplicates. Differences in means
were assessed using the Student’s t test. t. p < 0.05 was considered significant (*).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/epigenomes6040032/s1, Figure S1: Tumorigenicity of MCF10A
cells exposed to FolateRDI/Diuron3MAC/PFOA3MAC.
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