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Abstract

Background

Evaluation of recurrent angina after percutaneous coronary interventions is challenging.

Since bioresorbable vascular scaffolds (BVS) cause no artefacts in magnetic resonance

imaging (MRI) due to their polylactate-based backbone, evaluation of vascular patency by

MRI might allow for non-invasive assessment and triage of patients with suspected BVS

failure.

Methods

Patients with polylactate-based ABSORB-BVS in proximal coronary segments were exam-

ined with 3 Tesla MRI directly (baseline) and one year after implantation. For assessment of

coronary patency, a high-resolution 3D spoiled gradient echo pulse sequence with fat-satu-

ration, T2-preparation (TE: 40 ms), respiratory and end-diastolic cardiac gating, and a spa-

tial resolution of (1.08 mm)3 was positioned parallel to the course of the vessel for bright

blood imaging. In addition, a 3D navigator-gated T2-weighted variable flip angle turbo spin

echo (TSE) sequence with dual-inversion recovery black-blood preparation and elliptical k-

space coverage was applied with a voxel size of (1.14 mm)3. For quantitative evaluation

lumen diameters of the scaffolded areas were measured in reformatted bright and black

blood MR angiography data.

Results

11 patients with implantation of 16 BVS in the proximal coronary segments were included, of

which none suffered from major adverse cardiac events during the one year follow up.
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Vascular patency in all segments implanted with BVS could be reliably assessed by MRI at

baseline and after one year, whereas segments with metal stents could not be evaluated

due to artefacts. Luminal diameter within the BVS remained constant during the one year

period. One patient with atypical angina after BVS implantation was noninvasively evaluated

showing a patent vessel, also confirmed by coronary angiography.

Conclusions

Coronary MRI allows contrast-agent free and non-invasive assessment of vascular patency

after ABSORB-BVS implantation. This approach might be supportive in the triage and

improvement of diagnostic workflows in patients with postinterventional angina and scaffold

implantation.

Trial registration

German Register of Clinical Studies DRKS00007456

Background

Within one year after percutaneous coronary interventions (PCI), up to 30% of patients either

re-develop symptoms of angina or continue to suffer from chest pain [1]. This causes a lot of

uncertainty in patients but also in physicians, resulting in non-invasive stress tests with often

inconclusive results, or invasive coronary angiograms [2]. In the majority of patients, the

angiograms confirm a good result at the treated target lesion, and can exclude a progression of

coronary artery disease at non-target vessels [3]. Most recent study results on bioresorbable

vascular scaffolds (BVS) have also increased uncertainty about the outcome of patients

implanted with the polylactate-based scaffold system [4].

Therefore, a non-invasive method for evaluating the results after PCI and stent/scaffold

implantation would be desirable. Currently available stent systems, however, can not be evalu-

ated by state-of-the-art imaging techniques. In coronary computed tomography (cCT), metal-

based alloys cause artefacts that challenge the assessment of vascular patency and, therefore,

stent function [5,6]. In magnetic resonance imaging (MRI), metal also causes artefacts and

imaging of mid/distal coronary segments is still challenging due to cardiac motion [7,8]. How-

ever, coronary MRI would be preferable as it provides high prognostic value for cardiac events

[9] as well as a high negative predictive value for coronary artery disease[10]. Furthermore,

MRI enables the assessment of vascular wall structure and functional parameters [11,12,13].

Over the last years, BVS have been developed as an alternative to metal-based stents [14].

Multiple randomized trials have been published during the last years comparing the polylac-

tate-based ABSORB-BVS with drug eluting stents (DES), showing heterogenous results depend-

ing on patient/lesion selection and quality of implantation, with increased rates of target vessel

revascularization (TVR) and scaffold thrombosis (ST) for ABSORB-BVS [4,15,16]. Since poly-

lactate does not cause metal artefacts, non-invasive evaluation of BVS after implantation would

be a helpful option, possibly allowing a triage and improvement of diagnostic workflows in

patients with post-interventional angina after BVS implantation. Recently, proof-of-principle of

imaging BVS for evaluating vascular patency has been demonstrated [17].

In this study, we therefore performed coronary MRI of patients implanted with the polylac-

tate-based ABSORB-BVS at baseline and after one year in a mixed setting of clinical scenarios.
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Methods

Ethics approval and consent to participate

The study was approved by the institutional review board (local ethics committee) of the Frei-

burg University (AZ 120/14), and was registered at the German Register of Clinical Studies

(DRKS00007456).

Patient selection and BVS implantation

The study was approved by the institutional review board (local ethics committee) of the Frei-

burg University (AZ 120/14), and was registered at the German Register of Clinical Studies

(DRKS00007456).

After obtaining written informed consent, patients with a routine implantation of a BVS at

our department were included according to the following criteria: implantation of a scaffold

within the proximal 45mm of a coronary vessel (for optimal MR image quality); no contraindi-

cation against MRI scans (e.g., metal implants); lesion criteria such as defined in the ABSORB

II-study [14] (no severe calcification; no ostial lesions; no left main lesions; no bifurcations);

no contraindication against 12 months dual antiplatelet therapy; no atrial fibrillation or other

significant rhythm disorders; ability to perform a 12-month follow up MRI scan. In this study,

we implanted the polylactate-based ABSORB GT1-BVS (ABBOTT Vascular, Wetzlar, Ger-

many), length and diameter was chosen according to the lesion characteristics. For drug elut-

ing stents (DES), we used the SYNERGY everolimus-eluting platinum chromium stent system

(BostonScientific, Quincy/MA, USA).

In order to obtain optimal results, BVS were implanted by interventionalists experienced in

BVS implantation according to the „5p-rules”(proper vessel sizing; preparation of the lesion

by pre-dilatation; pay attention to the expansion limits; post-dilation with NC-ballons; pre-

scribe dual antiplatelet therapy). Radial or femoral access was selected by discretion of the

interventionalist.

Study protocol

Within 7 days after BVS implantation, baseline MRI was performed as described below.

Patients were discharged and educated to contact the study center in case of recurrent angina

or any other significant cardiac condition requiring re-evaluation of the coronary status. After

11 months, patients were contacted by telephone, and a follow-up scan was scheduled for

month 12 (+/- 2 weeks) in the setting of an outpatient visit. At this time point, patients were

also interviewed for health status and episodes of recurrent angina.

Magnetic resonance imaging protocol

Coronary MR imaging was performed on a clinical 3 Tesla MR system (Siemens PRISMA,

Erlangen, Germany). Patients were placed on the patient table in supine position, and the sys-

tem’s ECG system was applied for cardiac triggering. For signal reception, the system’s body

(18 channels) and spine (32 channels) array coils were used.

For the assessment of coronary patency, a non-contrast enhanced targeted double-oblique

3D imaging approach was chosen [18]. First, a low-resolution 3D GRE image set covering the

whole heart (TE/TR: 1.2/5.2 ms, FoV: 121x248x320 mm3, matrix: 22x124x160, voxel size:

5.5x2.0x2.0 mm3, R = 2, bandwidth: 445Hz/px, fat-saturation, T2-preparation (TE: 40 ms),

respiratory and end-diastolic cardiac gating) was acquired for localization of the culprit vessel.

For respiratory gating, an MR navigator signal is used which monitors the breathing motion of

the diaphragm in the right lung. The navigator signal is acquired at every heartbeat and when
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the position of the diaphragm falls within a pre-defined position window. Using the MR sys-

tem’s three point positioning tool, the imaging slab of a high-resolution 3D GRE pulse

sequence was positioned parallel to the course of the vessel. Sequence parameters were set to

TE/TR: 1.9 ms/4.1 ms, FoV: 28x277x295 mm3, matrix: 26x256x272, voxel size: 1.08x1.08x1.08

mm3, parallel imaging acceleration factor: R = 2, bandwidth: 635 Hz/px, fat-saturation,

T2-preparation (TE: 40 ms), respiratory and end-diastolic cardiac gating.

Then, a 3D navigator-gated T2-weighted variable flip angle TSE sequence with dual-

inversion recovery black-blood preparation and elliptical k-space coverage was applied with

the following parameters: TEeff = 93 ms, TR = 2�(average duration of cardiac cycle), FoV:

16x234x294 mm3, matrix: 14x204x256, voxel size: 1.14x1.15x1.15 mm3.

Image analysis

As the BVS were not directly visible on the re-formatted images, the BVS position in the coro-

nary artery was determined from the X-ray angiograms by measuring the distance of the prox-

imal marker to the next proximal vessel bifurcation or the ostium. 3D MR image data sets

were then reformatted along the course of the vessel (IMPAX EE Extended Multi-planar

Reconstruction Plugin, AGFA Healthcare), and the BVS position was determined using the

X-ray distance. As a measure for image quality, the contrast-to-noise-ratio (CNR) of the

scaffolded artery segment was determined as (SIlumen-SIperivascular)/SDnoise. Here, SIlumen and

SIperivascular are the mean signal intensities of a region of interest (ROI) placed in the scaffolded

lumen and the adjacent perivascular area. As parallel imaging was used, the measurement of

the true noise is not straight-forward. Here, we measured the apparent noise as the standard

deviation SDnoise of the signal intensity measured in a ROI placed in the air of the lung in prox-

imity to the heart.

To quantify a potential intraluminal signal decrease caused by the BVS as a result of intra-

voxel dephasing the luminal SNR of the BVS segment was calculated as SIlumen/SDnoise and

compared to the adjacent segments. The SNR of the adjacent artery segments was measured

over a distance of 10 mm on each side of the scaffold and averaged to account for the signal

decrease due to decreasing vessel diameters towards the distal end. The averaged SNR of the

adjacent segments and the SNR of the BVS segment were then compared using a two-tailed

paired Student’s t test.

Potential re-stenosis was assessed by measuring the luminal diameters of the scaffolded ves-

sel segments both at baseline and at 12 months. Furthermore, these diameters were compared

to the luminal diameters of the adjacent un-stented segments to evaluate a potential apparent

diameter decreases from BVS artifacts. Therefore, the vessel was visualized in a straightened

projection of the reformatted image, and the full-width-at-half-of maximum of the signal

intensity was calculated along the BVS segment and the segments 10 mm proximal and 10 mm

distal from the BVS. This was done with two orthogonal views of the straightened projection

to ensure that a potential narrowing of the vessel is also detected if the narrowing is perpendic-

ular to one of the projections. The proximal end of the BVS was localized as described before,

and the position of the distal end was then determined using the known length of the BVS.

The average diameter of BVS segments and the average diameter of the adjacent segments

were calculated for each patient. A two-tailed paired Student’s t test was then performed on

these values both at baseline and follow up.

The diameters of the BVS segments at baseline and at follow-up were compared based on

the ratio of the BVS diameter to the diameter of the adjacent segments which was calculated

for each patient at both time points. This was done to compensate for differences in the geom-

etry or imaging artifacts between the baseline and the follow up examination that could affect

MRI of bioresorbable vascular scaffolds
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the apparent overall vessel diameters. The diameters ratios were compared with a two-tailed

paired Student’s t test.

Results

BVS implantation, clinical outcome, 1-year follow up

Implantation of ABSORB-BVS was performed in 11 patients presenting with different clinical

scenarios. As depicted in Table 1, 9% initially had a stable angina, 27% an unstable angina,

45% a non-ST Elevation myocardial infarction (NSTEMI), and 18% a ST Elevation Myocardial

Infarction (STEMI). In all patients, PCI with BVS-implantation was performed successfully

without any complications. On average, every patient was implanted with 1.45 scaffolds with a

mean diameter of 2.96 ± 0.35mm and a scaffold length of 20.13 ± 5.91mm. According to cur-

rent standards for BVS-implantation (“5-p-rule”), lesion-preparation and post-dilatation was

performed in all of these patients. Baseline MRI was done in average within 1.9 days after PCI,

with a 100% success rate, and a mean duration of the complete exam of 49.3 min. Average

heart rate during imaging was 70.3 bpm. Black blood imaging was not successful in all patients,

as the data was acquired with a long echo train (55 echoes). Hence, in patients with high and/

or variable heart rates, an ECG-triggered data acquisition was not possible, such that data

acquisition could not be finished or severe motion artifacts were seen in the images. The echo

train length was reduced to 45 for the follow-up examinations to increase the number of suc-

cessful image acquisitions.

In the initial examination of one patient bright blood images could not be acquired due to

technical problems with the ECG-signal. However, black blood imaging was successful in this

patient.

The 1-year follow up was performed in all 11 patients (Table 2). Duration of the MRI exam

and heart rate were comparable to baseline MRI (51.5 min, 65.1 bpm). None of the patients

Table 1. Baseline and procedural characteristics.

Age (years) 63,4 ± 12

Clinical presentation Stable angina 1 (9%)

Unstable angina 3 (27%)

Non-ST-elevation myocardial infarction 5 (45%)

ST-elevation myocardial infarction 2 (18%)

Cardiovascular risk factors Diabetes 3 (27%)

Hypertension 6 (54%)

Current smoker 4 (36%)

Hyperlipidemia 1 (9%)

Treated vessel LAD 7 (63%)

LCX 3 (27%)

RCA 4 (36%)

BVS-characteristics Total scaffolds implanted 16

Mean Scaffold diameter (mm) 2.96 ± 0.35

Mean Scaffold length (mm) 20.13 ± 5.91

Post-Dilation 16/16 (100%)

MRI characteristics Number of patients with MRI 11/11 (100%)

Duration (min) 49.3 ± 8.5

Heart rate (bpm) 70.3 ± 8.1

Black blood performed 7/11

Bright blood performed 10/11

https://doi.org/10.1371/journal.pone.0191413.t001
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suffered from major adverse cardiac events such as myocardial infarction, death, scaffold

thrombosis, target lesion revascularization (TLR), or target vessel revascularization (TVR). As

discussed below, one patient had a repeat coronary angiogram due to new symptoms of atypi-

cal angina, which, however, did not show any progression of coronary artery disease with a

good function of the BVS.

The average CNR of the bright blood images along the scaffolded segments was 9.8 ± 3.9 at,

baseline and 8.6 ± 2.3 at follow up. No significant difference was seen in the luminal SNR

between the BVS segment and the adjacent segments both at baseline (p = 0.36) and follow up

(p = 0.7). The mean SNR at baseline/follow up was 18.4±5.5/17.9±10.4 for the BVS and 19.0±
7.1/18.16±11.3 for the adjacent segments.

Fig 1 exemplarily shows a patient with an implantation of a ABSORB-BVS (3.0/18 mm) in

the left circumflex artery. At baseline MRI, vessel morphology and the scaffolded vessel were

easily recognizable in bright blood sequences. Also in the 1-year follow up, bright blood

sequences demonstrate a patent vessel without evidence of restenosis or thrombosis, and the

patient was free of symptoms.

Fig 2 demonstrates another patient with diffuse disease of the left anterior descending

artery (LAD). Due to multiple significant coronary artery stenoses, 3 ABSORB-BVS were

implanted (overlapping scaffold-technique). Due to vessel tortuosity in the mid-LAD segment,

which did not allow a BVS delivery, a drug eluting stent (DES) had to be implanted distally to

the 3 scaffolds. In baseline MRI, an open vessel is recognizable in bright and black blood

Table 2. 1-year follow up data.

Patients with one year MRI follow-up 11/11 (100%)

Duration of MRI (min) 51.5 ± 4.5

Heart rate (bpm) 65 ± 6.8

Black blood performed 10/11

Bright blood performed 11/11

Myocardial infarction 0/11 (0%)

Death 0/11 (0%)

Scaffold thrombosis 0/11 (0%)

Target lesion revascularization (TLR) 0/11 (0%)

Target vessel revascularization (TVR) 0/11 (0%)

https://doi.org/10.1371/journal.pone.0191413.t002

Fig 1. BVS-implantation in the proximal left circumflex artery (LCX). Left: coronary angiogram after implantation

of a 3.0/18mm BVS. Middle: MRI at baseline after 2 days, showing the patent scaffolded segment in bright blood (= 3D

FLASH) sequences. Follow up one year later confirms the patent vessel in 3D FLASH.

https://doi.org/10.1371/journal.pone.0191413.g001
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sequences. However, in the mid-LAD region with the DES, significant metal artefacts are rec-

ognizable, which do not allow for a judgement of vessel patency. Also in the 1-year follow up,

black and bright blood sequences show a patent vessel with artefacts in the region of the drug

eluting stent; also this patient was free of clinical symptoms.

Fig 2. Multiple BVS implantation in the left anterior descending artery (LAD). Left: result in the coronary

angiogram with 3 proximal and overlapping scaffolds. One drug eluting stent (SYNERGY 2.5/20mm) was implanted

distally, since BVS was not deliverable to this area. MRI at baseline shows open scaffolds in 3D FLASH and 3D TSE,

while the distal DES causes significant artefacts not allowing for judgement of vessel patency. Especially the black blood

3D TSE sequences confirm open scaffolds at baseline and after one year in this symptom-free patient.

https://doi.org/10.1371/journal.pone.0191413.g002

Fig 3. Coronary angiogram and MRI from a patient with two BVS-implantations in the right coronary artery

(RCA). Baseline MRI with maximum intensity projection confirms the open scaffold. After 340 days, two weeks before

the scheduled 1 year follow-up, the patient presented with atypical chest pain. MRI shows open scaffolds with some

artefacts in the coronary segment in between. Coronary angiogram confirmed a good angiographic result.

https://doi.org/10.1371/journal.pone.0191413.g003
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In Fig 3, a patient with 2 ABSORB-BVS in the right coronary artery is shown. Baseline MRI

confirms the good result after implantation and demonstrates an open vessel in bright blood

images. Unfortunately, black blood imaging could not be performed at baseline; therefore,

only bright blood images are shown over the time course. Two weeks before the scheduled

1-year follow up, the patient presented to our emergency department with recurrent symp-

toms of angina. Since the symptoms were atypical, a treadmill stress test was negative, and

there was no sign of myocardial ischemia/necrosis in ECG or laboratory, we decided to per-

form an MRI exam before conducting another coronary angiogram. In this MRI at 340 days

after baseline, bright blood images showed an open vessel especially in the scaffolded regions,

although there were some minor artefacts in the segment in between the two scaffolds. A coro-

nary angiogram was performed on the subsequent day and confirmed the MRI results of a

very good BVS implantation without progression of coronary artery disease.

As demonstrated in Table 1, at baseline the mean vessel diameter was comparable in the

scaffolded and the adjacent segments, showing no significant difference (p = 0.27). After 12

months, the mean diameters showed no significant difference (p = 0.37). In addition, no sig-

nificant difference was found in the ratio of the BVS diameter and the adjacent diameters at

baseline and at follow up p = 0.17).

Discussion

In this proof-of-principal study, we demonstrate that non-invasive magnetic resonance imag-

ing (MRI) of polylactate-based bioresorbable vascular scaffolds (ABSORB-BVS) is possible in a

mixed setting of patients initially presenting with stable angina, unstable angina, NSTEMI, or

STEMI. Proximal and mid segments of all coronary vessels with BVS could be imaged either

by bright blood or black blood MRI. With bright blood imaging, vascular patency was assess-

able at baseline and after one year, which might be helpful in the triage of patients presenting

with recurrent symptoms of angina after BVS-implantation. None of the patients in this study

suffered from major adverse cardiac events, such as device thrombosis, re-stenosis, myocardial

infarction, or death.

MRI allowed measuring the dynamics of scaffold diameters over time. Black blood TSE

imaging was added to the MR protocol as susceptibility artifacts that could arise from the BVS

are reduced in spin echo imaging compared to gradient echo sequences. This study showed

that no artifacts are seen with both imaging techniques. Successful black blood imaging with

clear delineation of the coronary artery was not possible in all patients which may be attributed

to the relatively long acquisition window used for the TSE sequence compared to the bright

blood GRE sequence. Bright blood imaging was successful in these patients such that the lumi-

nal patency could be assessed and the vessel diameters could be measured in all 11 patients.

For further studies, improved imaging techniques such as a recently proposed simultaneous

bright and black blood acquisition combined with motion correction may help to increase the

success rate of black blood imaging [19]. A general advantage of blood signal attenuation tech-

niques is the improved visualization of the coronary vessel wall compared to bright blood

imaging. This helps to identify and quantify plaques as well as to detect positive remodeling

[20,21]. This may provide additional insight in cases in which re-stenosis is detected with

bright blood imaging.

The difference between the polylactate-based scaffolds and metal-based stents in MRI

becomes evident in one of our cases, where both types were implanted. In this case, scaffolded

segments can be easily judged without any artefacts. However, the metal-based stent has sub-

stantial artefacts caused by susceptibility of metallic wire meshes and radio-frequency screen-

ing [22], so that no evaluation of vessel patency was possible. Also the concept of non-invasive

MRI of bioresorbable vascular scaffolds
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triage of patients presenting with new onset of angina after BVS implantation becomes evident

in our study: the one patient presenting with atypical angina was easily examinable with coro-

nary MRI, which showed a good result in the areas of BVS implantation.

In this study, we only included patients with lesion criteria corresponding to the ABSORB

II-study [14], i.e., we did not include patients with ostial lesions, severe calcification, bifurca-

tion involvement, or left main stenosis. All scaffolds were implanted after 1:1 predilatation

with a compliant balloon and were post-dilated with a quarter-size-up non-compliant balloon

in 100% of cases, showing an excellent postinterventional result. We did not implant patients

with vessel diameters of less than 2.75 mm, which was important for establishing our non-

invasive MR imaging protocol.

It may be questionable why MR imaging was used for BVS assessment. The advantage of

MRI is that no ionizing radiation is involved, and no contrast agent has to be injected for imag-

ing the coronary vessels. Furthermore, MRI offers the unique opportunity to have a “one stop

shop” for morphologic and functional information, such as delayed enhancement, cine-MRI,

or endothelial function [23]. Future approaches could also allow for combining this protocol

with stress perfusion imaging and measuring coronary flow velocities[24]. Importantly, all

MRI sequences in our studies were performed without contrast agent injection.

Recently, also magnesium-based scaffolds have been introduced [25]. The currently avail-

able magnesium scaffold (Magmaris, Biotronik, Germany) only contains an overall low

amount of magnesium as a metallic element, most likely not causing relevant artefacts. There-

fore, the approach of imaging magnesium-based scaffolds might be a promising perspective.

In general, due to the relatively long acquisition times, MR image quality strongly depends

on cardiac and respiratory motion, and new techniques will be needed to compensate for

motion artefacts, especially in patients with variable heart and breathing rates [18,26,27]. This

might also facilitate whole heart imaging for simultaneous functional assessment and high res-

olution imaging of peripheral coronary arteries.

In this proof of principle study, we only examined 11 patients. However, for obtaining opti-

mal image resolution and quality, strict selection of patients with proximal and mid segment

BVS implantation in more or less straight coronary segments was essential in this study, only

including patients with no contraindications against repeated MRI scans. Since decision to

include the patients into the study was made on the table in the cath lab according to the ana-

tomical and morphological criteria, it was also not possible to perform MRI scans in patients

before scaffold implantation: a large number of MRI scans would have been necessary, result-

ing in only a small number of patients selected for the study in the cath lab. Due to the small

number of patients, the study is definitely not powered to evaluate clinical endpoints: target

lesion revascularization rate in the ABSORB II-study after one year was 1% [14], which can

only evaluated in an MRI study involving a large number of patients in multiple centers. In

our patient group, there were no major adverse cardiac events. Definitely, as currently dis-

cussed, lesion selection, exact implantation of scaffolds, and post-dilatation is essential for

obtaining satisfying long term results [28,29].

An invasive follow up at the one year timepoint would have certainly been of interest as a

reference for stent patency, but could not have been performed in the context of this proof of

principle study in patients free of symptoms due to ethical issues.

Although desirable, resorption kinetics cannot be reliably assessed by this approach. Spatial

image resolution is limited in this setting, which might be overcome after further improvement

of the imaging protocol. Although in vitro studies showed that the platinum markers of the

scaffold can be recognized by MRI in a phantom setup, the markers are not reliably detectable

in vivo, as also described in two other proof-of-principle studies of scaffold imaging [17,30].

Therefore, an orientation towards e.g. side branches is necessary to reliably locate the BVS in
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the MRI scan. As an alternative, future scaffold generations could be enhanced with iron

oxide-based markers at the scaffold ends, which are easier to detect by MRI in dedicated

sequences.

Most recent studies have raised concerns in the application of the polylactate-based

ABSORB-BVS in clinical routine. In the AIDA-Study, scaffold-thrombosis was significantly

increased compared to DES after 2 years (3.5% vs. 0.9%, p<0.001), with no difference in tar-

get-vessel failure (TVF) [4]. In the ABSORB-III study comparing the ABSORB-BVS vs. the

XIENCE-DES, TLF-rates were significantly increased after 2 years in the patients treated with

BVS (10.9% vs. 7.8%, p = 0.03). Adverse events were increased in patients where vessel sizing

or implantation was not correctly performed. However, correct lesion selection and implanta-

tion techniques with pre- and postdilation of the lesion and the scaffold are crucial, and can

result in a significant decrease of TLF and scaffold thrombosis comparable to DES [29]. Due to

these most recent study results and a resulting decreased commercial success, the ABSORB-

BVS is not available any longer. However, our approach of non-invasive imaging of the

ABSORB-BVS might be of interest for those patients presenting with inconclusive clinical

symptoms before performing an invasive coronary angiogram.

It is not clear if these data can be transferred to other scaffold systems such the magnesium-

based systems, since these have a faster resorption of the system and a different design with

potential antithrombotic properties of the material. The data of the non-randomized BIOSOL-

VE-II/III-study look more promising with lower TLF and no scaffold thrombosis[31], but

need confirmation in larger randomized trials.

Conclusions

In this study, we show that assessment of coronary arteries implanted with a polylactate-based

ABSORB-BVS by MRI is possible without the application of contrast agent, allowing evalua-

tion of vascular patency at baseline and follow-up MRI after one year. Furthermore, the differ-

ence between the scaffold and metal-based stents in MRI becomes evident, since no material-

related artefacts are visible in coronary segments treated with BVS. In patients with recurrent

angina after BVS-implantation or inconclusive clinical symptoms, this approach might be

helpful to guide triage and diagnostic workflows for evaluating a possible ABSORB-BVS

failure.

Supporting information

S1 Fig. Overview of the reformatted bright blood images of all 11 patients acquired at the

baseline and follow-up MRI exam. BVS positions are indicated by the arrows.
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