
Citation: Kim, J.M.; Kang, Y.-M.

Optical Fluorescence Imaging of Native

Proteins Using a Fluorescent Probe

with a Cell-Membrane-Permeable

Carboxyl Group. Int. J. Mol. Sci. 2022,

23, 5841. https://doi.org/10.3390/

ijms23105841

Academic Editors: Vladimir N. Uversky

and Konstantin K. Turoverov

Received: 12 April 2022

Accepted: 21 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Optical Fluorescence Imaging of Native Proteins Using a
Fluorescent Probe with a Cell-Membrane-Permeable
Carboxyl Group
Jung Min Kim 1,* and Young-Mi Kang 2

1 BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University,
145 Anam-ro, Seongbuk-gu, Seoul 02842, Korea

2 Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu,
Seoul 03722, Korea; ymkang@yuhs.ac

* Correspondence: erine7.kim@gmail.com; Tel.: +82-2-3290-4778

Abstract: Although various methods for selective protein tagging have been established, their ap
plications are limited by the low fluorescent tagging efficiency of specific terminal regions of the
native proteins of interest (NPIs). In this study, the highly sensitive fluorescence imaging of single
NPIs was demonstrated using a eukaryotic translation mechanism involving a free carboxyl group of
a cell-permeable fluorescent dye. In living cells, the carboxyl group of cell-permeable fluorescent dyes
reacted with the lysine residues of acceptor peptides (AP or AVI-Tag). Genetically encoded recognition
demonstrated that the efficiency of fluorescence labeling was nearly 100%. Nickel-nitrilotriacetic acid
(Ni-NTA) beads bound efficiently to a single NPI for detection in a cell without purification. Our
labeling approach satisfied the necessary conditions for measuring fluorescently labeled NPI using
universal carboxyl fluorescent dyes. This approach is expected to be useful for resolving complex
biological/ecological issues and robust single-molecule analyses of dynamic processes, in addition to
applications in ultra-sensitive NPIs detection using nanotechnology.

Keywords: carboxyl fluorescent dye; single native proteins of interest; highly efficient fluorescence
labeling; cell-permeable fluorescent dye; bioorthogonal reactions; nickel-nitrilotriacetic acid bead assay

1. Introduction

Fluorescence-based methods are widely used to investigate interactions of native
proteins of interest (NPIs) and intracellular molecules [1]. The modulation of NPI activity
in vitro and in vivo as well as the identification of mechanisms of action are important
for the development of treatments [2,3]. As precise fluorescent tool for analyses of biolog-
ical/ecological systems, organic dyes are well-characterized small-molecule fluorescent
labeling agents (<1 kDa) [4–7]. Historically, fluorescent proteins (FPs) have been used as
genetically encoded labels [8–10]. The maturation efficiency tends to be high in proteins,
such as green fluorescent protein (EGFP), which are selectively tagged in the complex envi-
ronment of living cells such that fluorescence can be observed only after the polypeptide
chain is folded [10,11]. Therefore, although the labeling efficiency is close to 100%, the
fluorescence intensity depends on the molecular brightness and number of FPs in a limited
functional modality [12]. Typical methods for the identification of expressed proteins are
limited for the detection of purity, molecular weight, and structure within a picogram
concentration range, owing to the purification processes.

Selective tagging of cell surface proteins is one approach to label cellular structures [13,14]
and viral components in live cells [15,16]. However, improvements are required for fluorescent
tagging [17] and labeling of specific terminal regions of NPIs [18].

Previous studies confirmed that a simple bead-based assay for sensitively quantifying
the amount of native state green fluorescent protein using Ni-NTA (nickel-nitrilotriacetic
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acid)-modified microbead particles [19]. The nickel-nitrilotriacetic acid (Ni-NTA) bead
analysis can detect these NPIs on the basis of the interaction between hexahistidine (6×His)-
tag residues of considerably low concentration NPIs in their native structure state [20,21].
Moreover, a Ni-NTA bead analysis can be verified that a target protein can be quickly
identified in its native state with high sensitivity [19]. Protein labeling is facilitated by a
bioconjugation reaction of specific terminal amino acid residues of NPIs that form covalent
bonds with various carboxyl group dyes. In particular, biotin ligase (BirA) derived from
Escherichia coli was used to catalyze the activation of the free carboxyl group on the lysine side
chain to an adenylated ester within the 15-amino acid “Acceptor Peptide (AP or AVI-Tag)”
peptide sequence commonly found in living cells [22,23]. Escherichia coli biotin ligase (BirA)
is utilized in numerous biotechnological applications, including protein labelling [24–26].

The natural substrate of BirA is the biotin carboxyl carrier protein (BCCP). Before
smaller tags were discovered, a protein needed to be fused to the entire BCCP to be
targeted [27]. A protein fused by BCCP can be recognized by biotin molecules in vivo and
attach to it [28]. A few other small tags have been used before AVI-Tag, but AVI-Tag is the
most efficient so far [29]. We have focused on expanding the biotin analogues specificity
of BirA to incorporate fluorescent dyes containing free carboxyl groups (ATTO 565-biotin,
5(6)-carboxyfluorescein [FAM 56], sulfo-Cyanine3 [Cy3-COOH]). However, despite their
excellent photophysical properties, organic dyes [30] and nanoparticles [31,32] usually
cannot be utilized for site-specific labeling in live cells.

Furthermore, examples of enzyme-mediated site-specific protein labeling in vivo
have been reported for endogenous mammalian proteins, such as O6-alkylguanine-DNA
alkyltransferase (AGT) and dihydrofolate reductase (DHFR) [33]. These tags are used
for background labeling of endogenous counterparts in mammalian cells and the non-
covalent interactions that rely on labeling DHFR and FK506-binding protein (FKBP) in vivo,
resulting in rapid dissociation and consequent signal degradation [34].

Over the past few decades, nanotechnology innovations have led to the development
of various single-molecule technologies [35,36]. The high-sensitivity detection of fluorescent
molecules has provided kinetic and thermodynamic information about the molecular
activity to establish structure–function relationships at the single molecule level [37,38].
Single-molecule detection requires [39]: (1) high sensitivity, enabling the detection of weak
signals from individual molecules without purification, and (2) a high signal-to-noise ratio
and image quality. Additionally, in our study, BirA-based labeling was complemented
by single-molecule-level imaging [26], and this approach can be applied to any protein
of interests.

Biotinylation and biotin/streptavidin affinity techniques are essential biosensing
tools [40,41] in proteomics [40,42]. Proximity-dependent biotin identification (BioID) is
a powerful tool to identify novel protein–protein and proximity-based interactions in
living cells [43,44]. In this technique, the biotin ligase is fused to an NPI and expressed
in vitro in the desired cells, where it biotinylates proximal endogenous proteins. Despite
its advantages for biological studies, BioID has limited capacity for selective site-specific
labeling in living cells [45,46]. ATTO 565-Biotin, used in this study, enables efficient labeling
in living cells by combining site-specific proteomics and efficient immobilization by inter
actions between biotin/streptavidin and native proteins [47,48].

Here, we investigated an ultra-sensitive fluorescent labeling protein that exhibits
high specificity to NPI within the cell via genetic fusion of a cell-permeable carboxyl
group dye with an AVI-Tag sequence. In this study, a high-efficiency (100%) fluorescence
labeling was developed for proteins, wherein the binding of a dye/molecule containing a
carboxyl group to the terminal site of an NPI in living cells was investigated using Ni-NTA
bead assay.
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2. Results
2.1. Free Carboxyl Group-Containing Fluorescent Dye Ligates the Lysine (K) Residue of the
AVI-Tag in Living Cells

In addition to the technological advances related to fluorescent-labeled proteins, this
study provides a conceptual design for tagging using dyes attached to the C-terminus of
the protein. On the basis of the intracellular labeling requirements for the co-translational
integration of the carboxyl group of a fluorescent molecule in relation to our strategy,
the structure of a cell-membrane-permeable free carboxyl fluorescent dye used for the
expression of a fluorescent-labeled NPI (e.g., the HIV-1 Tat protein) is provided in Figure 1.
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Figure 1. Structure of ATTO 565-biotin, 5(6)-carboxyfluorescein (FAM 56), and sulfo-Cyanine3
carboxylic acid (sulfo-Cy3-COOH) used in this study. Scheme showing selective labeling in cells of
single native state proteins using a fluorescent dye containing at least one free carboxyl group (green
star) bound to biotin co-expressed biotin ligase (BirA). Using an engineered fluorescent acceptor
peptide (AP or AVI-Tag) for the N- or C-terminal, site-specific labeling of proteins with FAM 56 and
sulfo-Cy3-COOH were obtained. First, the fluorescently labeled AVI-Tag consisting of 15 amino acids
serves as a substrate for bacterial BirA. Second, the AVI-Tag, containing a central lysine, specifically
reacts with the fluorescent probes via its amino group (methionine (green circle), amino acid chain
(yellow circle) with the assistance of BirA. Finally, the protein of interest can be fluorescently labeled
at the N- or C-terminal using the fluorescent AVI-Tag that serves as a substrate for BirA in living cells.
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First, a carboxyl group was attached to a free lysine residue of AP (or AVI-Tag; GLN
DIFEAQKIEWHE) comprising 15 amino acids. The NPI was fluorescently labeled by the
reaction between the free carboxyl group of the dye and an amine-reactive group in the
peptide. Next, amide binding by a cell-membrane-permeable free carboxyl fluorescent
dye was achieved by cell permeabilization for the integrated fluorescence of NPIs in
mammalian cells. In this study, we focused on the integration of various fluorescent dyes
(ATTO 565-biotin red (FLD Ex: 565 nm, Em: 590 nm), FAM 56; green (FLD Ex: 492 nm, Em:
517 nm), and sulfo-Cy3-COOH; red (FLD Ex: 548 nm, Em: 563 nm)) into NPIs that can be
directly derived by efficient fluorescent tagging through selective reactions in cells. E. coli
BirA could serve as a catalyst for the N- or C-terminal labeling of an NPI bound to a free
carboxylic acid handle within the AVI-Tag sequence (Figure S1).

To identify the effects of a high signal-to-noise ratio on the binding of various structural
analogs of specific free carboxyl groups to the AP or AVI-Tag, the effects of R-phycoerythrin
(PE)-labeled streptavidin alone (Figure S2) and BirA alone (Figure S3) were evaluated via
size exclusion chromatography–high-performance liquid chromatography (SEC-HPLC). In
the analysis of PE-labeled streptavidin, peaks at 6.547 min (fluorescence detection (FLD)
with excitation–emission (Ex/Em) wavelengths of 488/575 nm (blue line)) and 5.576 min
(UV at 280 nm (black line)) correspond to the fluorescent tag and target protein (280 nm).
The two peaks for BirA alone did not correspond to the fluorescent tag or target protein.

2.2. Analysis of the Free Carboxylic Acid Dye Uptake Subcellular Localization and Its
Fluorescent Labeling

First of all, we investigated the capability of the cell-permeable free carboxyl fluo-
rescent molecules to penetrate into osteosarcoma cells. To examine their mitochondria-
targeting ability, osteosarcoma cells were incubated with MitoTracker as a control group and
ATOO565Biotin, 5(6) carboxyfluorescein, and sulfo-cyanine 3 carboxylic acid (Figure 2A)
as the experiment group, followed by confocal imaging. MitoTracker is a commercially
available fluorescent dye (Invitrogen/Molecular Probes) that, like the aforementioned dyes,
labels mitochondria within live cells utilizing the mitochondrial membrane potential. How-
ever, MitoTracker is chemically reactive, linking to thiol groups in the mitochondria. The
dye becomes permanently bound to the mitochondria and thus remains after the cell dies
or is fixed. Thus, it can be used in these experiments in which multiple labeling localizes
cellular targeting.

Representative images of fluorescent dyes whose free carboxyl fluorescent dyes pen-
etrated the cytosol are shown in Figure 2A. The three aforementioned fluorescent dyes
freely penetrated the cell membrane, and their permeabilization into the cytosol was de-
tected by the green fluorescence signal ((green), FLD Ex: 480 nm, Em: 540 nm, red signal
(red), FLD Ex: 540 nm, Em: 590 nm) and DIC (optical; bright light) images, as shown in
Figure 2A. Figure 2B provides a schematic illustration of a fluorescent-labeled HIV Tat
protein containing a free carboxyl group. Its strategy shows how the free carboxyl group of
the fluorescent dye allows the NPI to be selectively AVI-Tagged in living cells by genetic
encoding in vivo/in vitro.

Next, we detected the Tat labeling efficiency of sulfo-Cy3-COOH, which was analyzed
and determined using UPLC resolution under optimized pH 8.0-dependent Cy3-labeling
conditions (Figure 2C). The high-intensity peak observed for the negative control group
containing sulfo-Cy3-COOH dye alone suggests that Tat was not separated via UPLC,
unlike the high-intensity peak for the group labeled with the sulfo-Cy3-COOH dye in
5 min, where Tat could be detected.

As shown in Figure 2C, E. coli BirA was utilized to label the free carboxyl group of the
fluorescent derivative. The conjugation reaction of FAM 56 at the N- or C-terminus was
unambiguously identified using BirA-dependent high-level fluorescein (FAM 56) labeling,
for which the peak obtained via UPLC (1 min, blue line) was well separated.
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Figure 2. Intracellular distributions of ATTO 565-biotin, 5(6)-carboxyfluorescein (FAM 56), and sulfo-
cyanine3 carboxylic acid (sulfo-Cy3-COOH) in the Saos-2 osteosarcoma cell line (Saos-2) observed
by fluorescence imaging, bright-field microscopy, dark-field microscopy, and fluorescence imaging
of samples stained with MitoTracker™. (A) The excitation wavelengths for ATTO 565-biotin, FAM
56, and sulfo-Cy3-COOH were 565, 492, and 550 nm, respectively. The free carboxyl groups of fluo-
rescent dyes used for single-fluorescence imaging analysis (MitoTracker™ (green), FLD Ex: 490 nm,
Em: 516 nm). Scale bar = 20 µm. (B) HPLC traces (the highest peak corresponding to the retention
time of 7.21 min as see in Figure 4) showing BirA- and ATP-dependent ligation of free carboxyl
fluorescent dyes to a synthetic acceptor peptide (GLNDIFEAQKIEWH; the acceptor lysine (Lys,
K) is green). (C) Analysis of various pH conditions for fluorescently labeled Tat via UPLC. The
distinct peak of Cy3-labeled Tat at pH 8.5 (red) at 0.25 min reflects its apparent separation that was
obtained at pH 5.8 (blue) and using Cy3 carboxylic dye only (green); FLD, Ex: 548 nm/Em: 563 nm.
Overlay of UPLC profiles obtained by FAM 56-labeled Tat at pH 8.0 (red) at 0.5 min reflects its
apparent separation that was obtained at pH 8.5 (blue) and using FAM 56 dye only (green); FLD,
Ex: 492 nm/Em: 517 nm.

As shown in Figure 2C, the peak separation results for fluorescein in the negative con-
trol group distinctly indicate a peak representing the free carboxyl group fluorescent deriva-
tive alone (0.5 min, green line) and another UPLC-separated peak for BirA-independent
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fluorescein (FAM 56) labeling (5 min, red line), suggesting efficient expression of the
target-specific label of the carboxyl group-containing dye in the experimental group.

Furthermore, the biotin-binding peak was distinctly identified by in vitro labeling with
PE-streptavidin alone, which followed the same procedure as that for the ATTO 565-biotin
dye, after treating the designated biotin-binding PE-streptavidin alone in the control group
(Figure S2). On the basis of the strategy described in Figure S4, we identified the peak
for the BirA protein. The biotin/streptavidin binding reaction was used to deter mine the
specificity of AVI-Tag residue labeling. The HPLC-separated peak (7.5 min, blue line) for
the BirA-dependent labeling of the FAM 56 dye and biotin and the HPLC-separated peak
(4.5 min, red line) for PE-streptavidin labeling differed from the peaks for sulfo-Cy3-COOH
(Figure S4).

2.3. Detection of the Fluorescently Labeled NPI

To verify the high sensitivity of ATTO 565 biotin labeling, we captured the FP in its
native state through the interaction between Ni-NTA and the 6× His residue of a target
protein using Ni-NTA-modified microbead single particles that did not require purification
to remove the cell lysate. The ATTO 565-biotin-labeled Tat-binding fluorescence images of
these beads were analyzed via fluorescence microscopy (Figure 3). Bead-based detection of
fluorescently labeled NPI was applied to the target protein in its native state at very low
concentrations [19]. Fluorescence images of beads were obtained using BirA to detect ATTO
565-biotin-labeled Tat-(EGFP) bound to the free carboxylic acid handle within the AVI-Tag
sequence. The in vitro Ni-NTA agarose assay involved a simple quantitation method using
agarose bead particles (diameter: 45–165 µm) modified with NPI-sensitive Ni-NTA for
quantitative detection. This NPI-sensitive quantitative detection method was comparable
to Ni-NTA-modified agarose beads that immediately bound to the NPI through a reaction
between Ni-NTA and 6× His-tag fused to EGFP (compared with the corresponding control;
6× His-tagged EGFP) as a control group.

This strategy ensured that the protein was not denatured upon being attached to
the surface of the bead particle [19]. Additionally, the intensity of the fluorescence signal
from the 6× His tag fused to EGFP on the bead was closely related to the amount of
ATTO 565-biotin-labeled Tat in its NPI status. In Figure 3, green-filter fluorescence signals
(green; FLD Ex: 480 nm, Em: 540 nm) are shown for Ni-NTA beads alone and the ATTO
565-biotin-unlabeled Tat-EGFP control group, in addition to the red-filter fluorescence
signals (red; FLD Ex: 540 nm, Em: 590 nm) for ATTO 565-biotin-labeled Tat-EGFP. Notably,
the interaction between the intracellular lysate and the 6× His residue of the target protein
on the surface of the Ni-NTA bead facilitated the capture and detection of the FP in its
native state with high sensitivity. Our selective 6× His-tag method was capable of labeling
NPIs utilizing a known enzyme dependence in mammalian cells while retaining cell surface
protein activity and specificity. Our selective 6× His-tag method is capable of labeling NPIs
utilizing a Bir A ligase dependence in mammalian cells while retaining cellular protein
activity and specificity. Likewise, in vitro enzyme-based, site-specific protein labeling and
BioID strategies are examples of selective protein labeling through genetic targeting [43,45].
In this method, labeling by highly specific gene targeting can be spatially controlled. As
proposed previously [19], our bead assay can overcome the limited efficiency of broad-
targeted NPI labeling without compromising function and can address the limitations of
conventional denatured protein detection methods and quantitative image analysis.
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Figure 3. Binding between Ni-NTA beads and the free carboxyl group of the fluorescent (ATTO
565-biotin, red star or cell-permeable fluorescent dye with carboxylic acid, green star)-labeled Tat-
EGFP protein, as observed under a fluorescence microscope. Binding between single NTA (nickel-
nitrilotriacetic acid) agarose beads (nanoparticles, purple circle) and ATTO 565-biotin-labeled Tat-
EGFP was detected. Fluorescence images of beads were obtained after incubating with ATTO
565-biotin-labeled Tat-EGFP, followed by detection through the free carboxyl acid handle using biotin
ligase (BirA). Fluorescence images of the green fluorescence signal (green laser; FLD, Ex: 480 nm,
Em: 540 nm), red signal (red laser; Ex: 540 nm/Em: 590 nm), and DIC (optical; bright light) were
obtained using a fluorescence microscope; comparisons are only made among beads under the same
fluorescence exposure time with a single NTA. The purified Tat-EGFP protein concentration was
confirmed by analyzing the fluorescence signal from the combination of conditions with the same
fluorescence exposure time to a single NTA agarose bead (purple circle). A single Tat-EGFP-binding
microbead can be detected with any instrument or filter set compatible with Tat-EGFP detection:
FLD, Ex: 480 nm/Em: 540 nm.
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2.4. Identification of Fluorescence-Labeled NPIs Separated by SEC-HPLC According to
LC–MS Spectra

As shown in Figure 4, LC–MS was performed to identify and analyze the target
molecule, Tat, labeled with the cell-permeable carboxyl group-conjugated dye. The labeling
efficiency of the carboxyl group dye for the NPI was evaluated through a comparative
analysis of the FAM 56 dye alone, BirA-independent experimental groups, and FAM
56-labeled Tat (Figure 2C).
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Figure 4. UPLC and LC–MS analysis of 5(6)-carboxyfluorescein (FAM 56)-labeled Tat protein iden-
tification. HeLa cells treated with free carboxyl fluorescent dyes were analyzed for free carboxyl
fluorescent (Sulfo-Cyanine3 (Csulfo-Cy3), FAM 56) Tat by HPLC, and fluorescent Tat proteins were
identified by LC–MS. (A) HPLC traces (highest peak corresponding to the retention time of 7.21 min)
showing BirA- and ATP-dependent ligation of free carboxyl fluorescent dyes to a synthetic acceptor
peptide. The 7.21 min peak showed clear fluorescence detection (FLD, Ex: 492 nm/Em: 517 nm,
blue line) and UV detection (280 nm, black line), and the separated peak at 7.21 min showed a band
consistent with the FAM 56-labeled Tat peptide as determined by Western blotting. (B) LC–MS
spectrum showing the mass of purified AP-free carboxyl-acid-conjugated Tat fluorescent (FAM) Tat
protein containing a C-terminal AVI-Tag that was recovered from HeLa extracts using Ni-affinity
spin columns. Identification of Tat proteins using LC–MS data relies on the peptide map from a Tat
sequence matched to a target sequence database. The following peptide sequences in the Tat protein
matched with the spectrum measurement (AHQNSQTHQASLSK). Each data point represents the
average of three experiments.
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The UPLC peak area for FAM 56-labeled Tat was larger than those for other groups,
suggesting that direct use of FAM 56 within the cell improves the labeling efficiency. SEC-
HPLC revealed a unique peak for FAM 56-labeled Tat at 7.201 min (indicative of mediated
labeling) (Figure 4). The separated and purified carboxyl group fluorescent-labeled Tat
protein was subjected to MS/MS, followed by nanoelectrospray ionization (nESI) on an
LTQ Orbitrap Velos (Thermo Scientific, Inc., San Jose, CA, USA) coupled inline to HPLC.

This peak at 7.201 min was successfully separated and purified using LC–MS and
positively confirmed to be the Tat protein by Western blotting (Figures 4A and S5). The
AHQNSQTHQASLSK sequence consistent with the intact Tat peptide was detected in the
Orbitrap at a resolution of 60,000 (Figures 4B and S6). These results verified the target
specificity of carboxyl dyes detected by LC–MS, utilizing the peptide map obtained from
a matching database that targets the highly purified, 6× His-tagged FAM 56-labeled Tat
sequence, tracked using chromatography.

2.5. The Universal Carboxy Group Fluorescent Dye Mediated the Expression of
Fluorescence-Labeled NPIs at the Single-Molecule Level

To further evaluate the single fluorescently labeled NPI, the double-tagged single
Tat protein was extracted from HeLa cells to confirm single fluorescent Tat expression
(Figure 5).
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were performed in T50 buffer. We used 50 buffer (pH 8.0) for all non-specific binding tests, unless
otherwise specified. Compared with spots expressing (red O and red X) the streptavidin-specific
biotinylated fluorescent Tat protein on the surface, relatively few spots indicating non-specific binding
were observed in the T50 buffer (positive control, upper). Detection of the 5(6)-carboxyl fluorescein
(FAM 56) counterpart (sample, lower) immobilized on quartz slides coated with streptavidin was
performed. The FAM 56-labeled Tat (sample, lower, FLD, Ex: 492 nm/Em: 517 nm) was immobilized
on quartz slides. Blue laser (FAM 56 spots; blue circles) is shown as a TIRF image of immobilized
FAM 56-labeled Tat proteins on the surface. Red laser (Cy5 spots; no circles, FLD, Ex: 620 nm/Em:
670 nm) is shown as a TIRF image of immobilized FAM 56-labeled Tat proteins on the surface. Scale
bar = 5 µm. All experiments were performed at room temperature (22 ± 1 ◦C). Traces of single FAM
56 dye bleaching (red and black line, twice times) observed more than once for the FAM 56 labeled
Tat proteins in the time-fluorescent intensity TIRF image.

Currently, single-molecule detection is crucially involved in a wide range of applica-
tions. In previous studies [49], this approach has been efficiently utilized for the structural
analysis of target proteins at the single-molecule level, along with a dual-label control
containing a C-terminal AVI-Tag for N-terminal fluorescent probe activity.

To confirm the translation efficiency of the FAM 56-labeled protein, we prepared a
single-fluorescent FAM 56 dye with an optimized N-terminal recognition motif and a
C-terminal interaction partner fused to an AVI-Tag. Single-molecule imaging was per
formed using biotin double-labeled Tat on polyethylene-glycol-coated quartz slides. Single-
molecule fluorescence images were acquired continuously using a total internal reflection
fluorescence (TIRF) microscope [49]. The single molecule was immobilized on a quartz
slide for all non-specific binding experiments unless otherwise designated. Figure 5 shows
a representative fluorescent single-molecule image processed with the IDL script to identify
5-FAM spots and to extract the 5-FAM intensity of individual spots (red circles). The single
dye bleaching event was also observed for the FAM 56-Tat protein in TIRF image (Figure 5),
confirming that each fluorescent spot corresponded to a labeled Tat protein.

We determined the conditions required to measure fluorescently labeled synthesized
proteins using a universal carboxy group fluorescent dye at the single-molecule level, which
are useful for both in vitro and in vivo studies. We demonstrated a highly efficient strategy
for fluorescently labeling NPIs without compromising their function by introducing various
carboxyl dyes/biotin for NPI detection in its native states.

3. Discussion

We demonstrated that co-translation is possible in living cells using a fluorescent dye
with a free carboxyl group to enhance the fluorescent labeling efficiency of NPIs.

Analysis of the fluorescence labeling efficiency of NPIs was performed in a previous
study using a simple bead assay to sensitively quantify the amount of green fluorescent
protein in its native state using microbead particles modified with Ni-NTA. This assay
successfully demonstrated high-efficiency labeling of NPIs without functional sacrifice.

In our study, BirA-based free carboxyl dye labeling successfully established a fluores-
cent label for low-concentration NPIs with high-sensitivity molecular detection and high
labeling efficiency. Fluorescent imaging also confirmed the potential of fluorescent NPIs at
the single-molecule level.

In previous reports, BirA-dependent label-based NPIs were combined with AVI-Tag
specific sequences for NPI identification, limiting the method to in vitro purified proteins
and intracellular cell surface proteins [13,45,50]. In addition, Bir A-based biotinylation
techniques using known biotin analogue techniques are not suitable for NPI detection or
single-molecule imaging. In a previous study, a labeling reaction for sulfonated Cy5 can
be used in the labeling reaction to label proteins dye-to-protein (D/P) ratio over a broad
concentration range of over 100-fold was reported [17,51]. In addition, it is known to use
a high concentration of organic dye for the D/P ratio in a conjugation reaction using a
purified protein [51,52]. High-purity fluorescently labeled natural proteins in eukaryotes
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are conventional in vitro targets that require complex purification processes. The efficiency
of protein conjugation to organic dyes is very low, resulting in low fluorescence. Site-specific
labeling of live cells with organic dyes and nanoparticle-bound molecules is not possible.
However, in our study, NPI labeling with free carboxylic acid group dyes was based on
enzyme binding (e.g., BirA ligase) [53], which can be obtained with higher efficiency than
conventional protein conjugation (e.g.,−NH2 (amine) group of a lysine or the free −SH
(sulfhydryl) group of cysteine) [54,55].

Regarding the localization of distinct patterns, the ratio of fluorescence of the back
ground region to the intracellular region is important because it can interfere with specificity
for NPIs, thereby reducing fluorescence efficiency. Therefore, we used a locally labeled
Mitotracker as a control permanently bound to mitochondria to label mitochondria in
living cells using commercially available fluorescent dyes (Invitrogen/Molecular Probes).
Mitochondrial markers were identified using cellular NPI of an intracellular penetrating
fluorescent dye with a genetically encoded AVI-Tag region to identify matching locations.
Our results demonstrate that high signal-to-noise ratios can be obtained after conjugation of
free carboxyl groups, demonstrating high fluorescence labeling efficiency and independent
targeting of terminal molecules of fluorescent dyes. Therefore, we used a fluorescent
dye with a free carboxyl group to improve the fluorescent labeling efficiency of NPI for
co-translation in living cells. However, controlling transmission of a fluorescent dye into
the cell membrane with a free carboxyl group alone remains challenging. Our method
has unlimited potential for versatility because it utilizes a universal carboxyl group that
allows for the introduction of optical nanoparticle materials other than fluorescent dyes.
It provides new insights into the potential to facilitate biological/ecological analyzes of
living organisms.

4. Materials and Methods
4.1. Materials

FAM 56 dye and ATTO 565-biotin dye were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA). Vivaspin 500 (pore size 0.2 µm) was purchased from Sartorius,
Inc. (Göttingen, Germany). Sulfo-Cy3-COOH was purchased from Lumiprobe Corpo-
ration (Hallandale Beach, FL, USA). MitoTracker™ Green FM ((green), FLD Ex: 490 nm,
Em: 516 nm) and Ni-NTA-agarose beads (pore size 50–150 µm) were obtained from Thermo
Fisher Scientific (San Jose, CA, USA). PE-streptavidin, as the positive control for ATTO
565-biotin tagging, was purchased from BD Biosciences (San Jose, CA, USA). Human
osteosarcoma (Saos-2) and HeLa cells, obtained from the American Tissue Type Collection
(ATCC, Manassas, VA, USA), were grown in Eagle’s minimal essential medium (MEM)
(Gibco, Grand Island, NY, USA).

4.2. Fluorescence Imaging of the Free Carboxyl Fluorescent Dyes in Living Cells

For expression of FAM 56, ATTO 565-biotin, and sulfo-Cy3-COOH, the medium was
replaced with MEM without phenol red and 1% penicillin/streptomycin (WelGENE, Inc.,
Daegu, Korea) in a 5% CO2 atmosphere at 37 ◦C. Saos-2 cells were grown to 60–90%
confluence and then washed once with growth medium (MEM without phenol red), twice
with 1× PBS at pH 7.4, and once more with 1× PBS (pH 7.4) alone. The washed cells were
incubated for about 3–6 h and then treated with free carboxyl fluorescent dyes (1 M) FAM
56, ATTO 565-biotin, and sulfo-Cy3-COOH (10 µL per 6× 106 cells in 12 mL of 6 × 106 cells;
1% penicillin/streptomycin-free media) by incubation at 37 ◦C for 24 h.

4.3. Construction of Expression Plasmids

EGFP and the HIV-1 transcription activator protein Tat containing AVI-Tag and
6× His-tag were used as model proteins for evaluation of the free carboxyl fluorescent
labeling method. The EGFP expression plasmid was constructed by conventional PCR
sub-cloning of the EGFP gene of pEGFP-N1 (Clontech, Mountain View, CA, USA) into
pcDNA3.1(+) (Invitrogen, Carlsbad, CA, USA). The HIV Tat plasmid was constructed as
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follows: the HIV-1 Tat gene was selected from the HIV-1 complete genome (GenBank ID:
NC_001802), chemically synthesized (Genscript, Leiden, The Netherlands), and used as a
template for PCR amplification. The forward primer was 5′-GGA TCC ATG GAG CCA
GTA GAT CCT AGA CTA GAG-3′, and the reverse primer was 5′-GAA TTC TTA TTC GTG
CCA TTC GAT TTT CTG AGC CTC GAA GAT GTC GTT CAG ACC CGC GG-3′. BamHI
and EcoRI restriction sites were generated using standard restriction cloning methods, and
the fragment was inserted into pcDNA3.1+ (Invitrogen). The open reading frame of the
E. coli BirA gene was amplified from E. coli genomic DNA using PCR and introduced into
the pcDNA3 vector [56].

4.4. Labeling of Living Cells for Co-Translational Tagging of Target Proteins and Free Carboxyl
Fluorescent Dyes

For co-translational fluorescent labeling of target proteins, co-transfection of the target
plasmid and BirA plasmid was performed. The cell medium was replaced with MEM
without phenol red and 1% penicillin/streptomycin (WelGENE, Inc., Daegu, Republic of
Korea) in a 5% CO2 atmosphere at 37 ◦C. HeLa cells were grown to 60–90% confluence and
then washed once with growth medium (MEM without phenol red), twice with 1× PBS
at pH 7.4, and once with 1× PBS (pH 7.4) alone. The washed cells were incubated in free
carboxyl fluorescent dyes (Sigma-Aldrich, St. Louis, MO, USA; 10 µL per 6 × 106 cells in
12 mL of 6 × 106 cells; using penicillin/streptomycin-free media) for about 3–6 h, and then
transfected with each target protein expression plasmid and the BirA plasmid (500 ng per
2 × 106 cells) using Lipofectamine 2000 (5 µL; Invitrogen) and incubated at 37 ◦C for 24 h.

4.5. Single Agarose Bead Assay for ATTO 565-Biotin-Labeled Tat-EGFP Protein Detection with
Fluorescence Microscopy

For C-terminal ATTO 565-biotin-labeled protein expression, HeLa cells were plated
on 6 cm dishes (2 × 104 per dish; Nunc, Denmark) and lysed with freeze–thaw lysis
buffer (600 mM KCl, 20 mM Tris-Cl; pH 7.8, and 20% glycerol) according to the Tansey
Lab’s ultimate freeze-thaw lysis for mammalian cell protocol [57]. The lysate was cen-
trifuged (15,000 rpm at 4 ◦C for 15 min), and the clarified supernatant was loaded with
binding buffer (200 µL, 50 mM PBS, pH 7.4) and a constant diluted volume (10 µL) of
suspended Ni-NTA-agarose beads (pore size 50–150 µm; Thermo Scientific Waltham, MA,
USA). After shaking during incubation at 4 ◦C for 10–30 min under constant bead popula-
tion, the Ni-NTA agarose bead solutions were with the binding buffer without washing.
The amount of 6× His-tagged ATTO 565-biotin-labeled Tat-EGFP precipitated with the
6× His-tagged ATTO 565-biotin-labeled Tat-EGFP-bound beads was assessed by fluores-
cence microscopy [19].

4.6. Liquid Chromatography Analysis of Fluorescent Dyes Labeling of Target Proteins

The HeLa lysate was centrifuged (15,000 rpm at 4 ◦C for 15 min), and the clarified
supernatant was loaded onto HisPur™ Ni-NTA Spin Columns (Pierce Biotechnology, Rock-
ford, IL, USA), followed by the addition of the binding and elution buffers (50 mM sodium
phosphate and 300 mM sodium chloride (PBS) without 10 mM imidazole at pH 7.2 and
5.8, respectively). The purified protein was then analyzed by UPLC and SEC on an HPLC
system (Agilent Technologies, Inc., Santa Clara, CA, USA) using a Yarra SEC-2000 column
(300 × 7.8 mm; Phenomenex, Torrance, CA, USA). For chromatographic separation, solvent
A (150 mM NaCl and 50 mM sodium in 50 mM sodium phosphate; pH 6.5) was equilibrated
with a linear gradient of solvent B (water with 0.1% TFA, 99.5% purity; Sigma-Aldrich,
St. Louis, MO, USA) over 70 min at a flow rate of 1 mL min−1. The purity (>95.0%) of the
N-terminally labeled protein was confirmed by analytical SEC-HPLC (Agilent Technologies,
Inc., Santa Clara, CA, USA). Western blotting was per formed using a Simple Western™
system (WES, ProteinSimple, San Jose, CA, USA) and an anti-penta-His antibody (1:1000 in
TBST; Qiagen, Hilden, Germany) for detection (data not shown).
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4.7. LC–MS Analysis of Labeled Protein

The C-terminal ATTO 565-biotin-labeled Tat was separated by SDS-PAGE, identified
by staining with Coomassie Blue, and in-gel digested. For multistage MS/MS experiments,
the LC–MS analysis was performed using an LTQ Orbitrap Velos mass spectrometer
(Thermo Finnigan, San Jose, CA, USA) equipped with an nESI source to allow simultaneous
recording of full-scan mass and collision-induced dissociation (CID) spectra. Data were
acquired in data-dependent mode. For peptide mapping of the Tat protein, the CID
spectra were compared to the sequence of HIV-1 Tat using Sequest (Bioworks; Thermo
Electron Corp., Waltham, MA, USA). PE (control group) is an accessory photosynthetic
pigment found in red algae. It exists in vitro as a 240 kDa protein with 23 phycoerythrobilin
chromophores per molecule (554061 BD Biosciences).

4.8. Detection of Fluorescence and Biotin-Fused Tat

A universal carboxyl fluorescent dye was introduced into living cells to visualize
single Tat protein translation. For the freeze–thaw lysis of mammalian cells, Tansey Lab’s
ultimate freeze–thaw lysis for mammalian cell protocol [57] was followed, as described
above. After protein purification (as described above in “Liquid Chromatography Analysis
of Fluorescent Dyes Labeling of Target Proteins”), single-molecule fluorescence images were
obtained using a prism and electron-multiplying charge-coupled device (EM-CCD) camera
(iXon DV887ECS-BV; Andor Technology, South Windsor, CT, USA) by TIRF microscopy [49].
The light sources were the blue laser (FAM 56; Excelsior-473-5c, Spectra-Physics, Santa
Clara, CA, USA) and the red laser (Cy5; Excelsior-635-5c, Spectra-Physics, Tokyo, Japan),
and data were analyzed using Visual C++ (Microsoft Corporation, Seattle, WA, USA).
FAM 56-labeled Tat protein experiments were performed at 37 ◦C in imaging buffer [58]
(20 mM Tris-HCl, pH 8.0), with Tris-HCl (10 mM, pH 7.5), NaCl (50 mM), and an oxygen
scavenger system (1 mM Trolox, 1 mg mL−1 glucose oxidase, 0.04 mg mL−1 catalase,
and 0.4% w/v glucose) (Sigma-Aldrich, St. Louis, MO, USA). Single-molecule data were
analyzed using MATLAB and IDL with EM-CCD exposure times of 300 or 1000 ms to
obtain single-molecule time traces or dwell times. The purified 6× His-tagged Tat pro tein
was incubated in HeLa cells in a buffer containing bicine (50 mM, pH 8.3), ATP (10 mM),
Mg(OAc)2 (10 mM), d-biotin, and BirA ligase (0.5 U) (AVI-Tag, Avidity Biosciences, La Jolla,
CA, USA) overnight at 4 ◦C for biotinylation.

4.9. Statistical Analysis

All values are expressed as means. Error bars indicate the standard deviation. Graph
Adobe CS7 software was used for graphing and statistical analysis.

5. Conclusions

We successfully developed a highly efficient strategy to fluorescently label an NPI with-
out compromising its function, using an approach involving various carboxyl dyes/carboxyl
biotin. As nickel-nitrilotriacetic acid (Ni-NTA) beads were efficiently bound to a single
NPI for detection in living cells, our labeling approach demonstrated high-efficiency flu-
orescent NPIs using a free carboxyl fluorescent dye. These permeable carboxyl group
fluorescent dyes introduced into living ecological systems demonstrate the functional-
ity of ultra-sensitive single-molecule fluorescent technology and may be useful for NPI
nanotechnology applications and precision molecular diagnostics.

6. Patents

A patent connecting to the protection of this manuscript was registered (KR 10-
1957979). Baik Lin Seong and Jung Min Kim are listed as inventors.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms23105841/s1.
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