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Abstract

To identify a peculiar genetic combination predisposing to differentiated thyroid 
carcinoma (DTC), we selected a set of single nucleotide polymorphisms (SNPs) associated 
with DTC risk, considering polygenic risk score (PRS), Bayesian statistics and a machine 
learning (ML) classifier to describe cases and controls in three different datasets. Dataset 
1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association 
study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 
392 controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC 
in candidate studies were extracted from the GWAS of dataset 1, followed by replication 
of SNPs associated with DTC risk (P < 0.05) in dataset 2. The reliability of the identified 
SNPs was confirmed by PRS and Bayesian statistics after merging the three datasets. 
SNPs were used to describe the case/control state of individuals by ML classifier. 
Starting from 171 SNPs associated with DTC, 15 were positive in both datasets 1 and 
2. Using these markers, PRS revealed that individuals in the fifth quintile had a seven-
fold increased risk of DTC than those in the first. Bayesian inference confirmed that the 
selected 15 SNPs differentiate cases from controls. Results were corroborated by ML, 
finding a maximum AUC of about 0.7. A restricted selection of only 15 DTC-associated 
SNPs is able to describe the inner genetic structure of Italian individuals, and ML 
allows a fair prediction of case or control status based solely on the individual genetic 
background.
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Introduction

Thyroid cancer is the most common endocrine neoplasia 
with a worldwide estimated age-standardized incidence 
rate of 6.7 per 100,000 in 2018 (1). Differentiated thyroid 
carcinoma (DTC) is the most frequent subtype of thyroid 
cancer with increasing incidence in the last 20 years, 
likely because of the increased knowledge of associated 
risk factors and ameliorated diagnostic procedures (2). 
However, most DTC have a favourable prognosis (3), and 
the diagnostic-therapeutic procedures should aim to avoid 
both delayed diagnosis and overmedication.

To date, the management of thyroid nodules suspected 
to be DTC is mainly guided by the sonographic risk pattern 
and the coexistence of other risk factors (3). Genetics could 
play a role in helping the diagnostic process, assuming the 
possibility to stratify patients according to a personalized 
risk profile (4). This stems from the observation that blood 
relatives of patients diagnosed with DTC show a highly 
increased risk for the disease, implying the existence of 
an important genetic component (5, 6). The role of genes 
in the aetiology of DTC has been studied in populations 
and most of the risk alleles have been identified by case/
control and genome-wide association studies (GWAS) (7, 
8, 9, 10, 11, 12, 13, 14, 15). However, it is still difficult to 
predict the individual risk of DTC based on the existing 
data, likely because of a complex interaction among 
multiple co-inherited low/moderate penetrant alleles. 
In fact, one single common variant per se is weakly 
associated with increased DTC risk, which could instead 
emerge as a cumulative effect of several single nucleotide 
polymorphisms (SNPs) with individual low impact. Thus, 
the overall risk could be the result of complex gene–gene 
and gene–environment interactions.

In order to take into account multiple alleles, the 
measure of disease susceptibility could be provided by 
calculating the polygenic risk score (PRS), where each 
variant allele is treated as an individual, independent, risk 
factor, and subjects are stratified according to the number 
of risk alleles, in additive or weighted models. The so 
calculated cancer risk may achieve relatively high odd ratio 
(OR) values (16, 17, 18, 19, 20, 21, 22). For DTC, it has been 
shown that people carrying ≥14 risk alleles have an about 
8-fold increased risk compared to people carrying ≤7 risk 
alleles (23, 24). Therefore, the PRS is a promising method for 
risk prediction. However, gene–gene interactions are likely 
too complex to be explained by simple additive or weighted 
models and alternative methods are under exploration.

Machine learning (ML) is increasingly used for 
predicting individuals’ inherited genomic susceptibility to 

cancer (25). Another interesting approach is represented 
by Bayesian statistics for population genetics, in which 
individuals are assigned to ethnic subgroups or phenotypes 
according to their underlying genetic structure (26, 27). 
Genetic data may serve to run ML diagnostic analyses 
aimed at stratifying individuals into disease risk categories 
(28). However, these methods have not been fully exploited 
for dissecting complex traits, such as the susceptibility to 
cancer, assuming it as phenotype information. To the best 
of our knowledge, ML has never been applied before to the 
study of genetic predisposition to DTC.

In this replication study, we aimed to assess the genetic 
signatures associated with the predisposition to DTC. 
For this purpose, a small number of SNPs descriptive of a 
DTC-related genotype were selected in three independent 
genetic datasets and confirmed by Bayesian statistics. 
The diagnostic performance of the selected markers in 
categorizing the case/control state of subjects was evaluated 
by ML techniques.

Methods

Study design

Briefly, we identified a relatively low number of SNPs highly 
associated with DTC by sequential association analyses in 
three independent case/control series. These SNPs served 
as genetic information to describe the case/control status 
of Italian individuals by ML methods. First, a selection of 
171 candidate DTC-associated SNPs was obtained from 
the literature (see paragraph ‘SNPs selection’). The SNP 
list was further reduced after testing for SNPs association 
with the disease. For this purpose, genetic data from two 
of the available datasets (datasets 1 and 2; Fig. 1A), each 
comprising Italian DTC subjects and healthy controls, were 
used. Briefly, 34 SNPs considered significantly associated 
with DTC in dataset 1 were genotyped ad hoc and checked 
for relevance in the independent dataset 2. SNP selection 
criteria are reported in detail in the section ‘Statistical 
analysis’. Finally, a total of 15 SNPs highly associated 
with DTC in both datasets were obtained and further 
genotyped ad hoc in the independent dataset 3. Their 
potential of describing DTC signature was confirmed by 
a control Bayesian clustering in the merged three datasets 
(see section ‘Bayesian statistics for population genetics’). 
ML methods were run to confirm the case/control state of 
individuals using the selected 15 SNPs as input variables. 
For this purpose, an extended dataset was built by merging 
the two largest datasets (1 and 3) to obtain a pool of 
randomly chosen ‘training’ (80% of the merged dataset) 
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and ‘testing data’ (20%). After finding the most effective 
ML algorithms, a replication analysis was set on the dataset 
2. The whole procedure is summarized in Fig. 1B.

Subjects

Dataset 1 has been previously described in a GWAS on DTC 
(12). It included Italian DTC cases and controls recruited 
consecutively from the Department of Endocrinology, 
University Hospital of Pisa, Italy, in the period January 
2009–August 2011 (12). Overall, the genotypes of 649 DTC 
patients and 431 healthy controls were considered. Dataset 
2 included 234 Italian DTC patients and 101 healthy 
controls recruited at the Unit of Endocrinology, University 
Hospital of Modena, Italy, between 2008 and 2012. These 
individuals were genotyped for 34 DTC-associated SNPs 
(‘SNP selection’ section) after DNA extraction from blood 
samples (Supplementary text, see section on supplementary 
materials given at the end of this article). Dataset 3 
included 404 DTC subjects and 392 controls recruited at 
the Department of Endocrinology, University Hospital of 
Pisa, Italy, between September 2011 and December 2012, 
and subjected to genotyping for 15 DTC-associated SNPs 
(‘SNP selection’ section) after extraction of DNA from 
blood. All the DTC diagnoses have been histologically 
confirmed after thyroidectomy. Controls were recruited 
among healthy volunteers without known thyroid disease 

and/or with negative thyroid ultrasound. In details, 
controls of datasets 1 and 3 comprised healthy individuals 
without known thyroid disease recruited during a routine 
health screening or blood donor volunteers. Controls of 
dataset 2 were volunteers recruited by local advertisement 
as the control group for an ongoing case/control study 
on thyroid cancer; one of the participants had a personal 
history of thyroid disease and they had never undergone 
any thyroid ultrasound scan before; they performed 
thyroid ultrasound and thyroid resulted to be normal for 
size, position and echogenicity, without cystic or nodular 
lesions. All the subjects enrolled in the three independent 
datasets were unrelated.

Information about sex, age at diagnosis of DTC for cases 
and age at recruitment for controls and anthropometric 
measurements (height and weight) were collected. BMI 
was also calculated as the weight (kg)/height (m)2 ratio. 
Individuals underwent peripheral blood withdrawn and 
samples were stored at −20°C until analysis. DNA was 
extracted from EDTA-venous blood samples using standard 
methodologies. In dataset 1, SNPs missing in the GWAS 
were obtained by imputation by exploiting the linkage 
disequilibrium (LD) blocks (29). SNP genotyping in 
datasets 2 and 3 was performed with the iPLEX® assay (Life 
& Brain GmbH, Bonn, Germany) (Supplementary text).

The local Ethics Committees of Modena and Pisa 
(Italy) approved the study (Protocol Nr. 122/08, Nr. 7116/09 

Figure 1
Datasets and project’s pipeline. (A) Summary of 
dataset composition, highlighting the progressive 
refinement of the SNP selection process. Dataset 
1 SNPs were extracted from a GWAS (12), while 
datasets 2 and 3 SNPs were genotyped ad hoc for 
potentially informative SNPs. The 34 SNPs 
significantly associated with DTC in dataset 1 were 
genotyped ad hoc and checked for relevance in 
the independent dataset 2. Then, 15 SNPs highly 
associated with DTC in both datasets 1 and 2 
were further genotyped ad hoc in the 
independent dataset 3. (B) Procedure for 
statistical SNP discovery and subsequent ML 
implementation. After SNPs selection, we tested 
the capability of the 15 selected SNPs to provide a 
DTC genetic signature in the merged datasets 1, 2 
and 3 with Bayesian statistics for population 
genetics. Then, ML methods were run to confirm 
the case/control state of individuals using the 
selected 15 SNPs as input variables. An extended 
dataset was built by merging the two largest 
datasets (1 and 3), to obtain a pool of randomly 
chosen ‘training’ (80% of the merged dataset) and 
‘testing data’ (20%). After finding the most 
effective ML algorithms, a validation analysis was 
set on the dataset 2. Shaded colours highlight 
involved datasets. Yellow = dataset 1; 
green = dataset 2; light-blue = dataset 3.
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and Nr. 2359/14), and all participants signed a written 
informed consent.

SNP selection

We considered all the SNPs associated with DTC on 
the PubMed database using the following keywords 
alone and/or in different combinations: papillary 
thyroid cancer, thyroid cancer, thyroid tumour, DTC, 
papillary thyroid cancer (PTC), GWAS and association. 
A total of 171 SNPs were initially selected from 156 
studies, including both candidate gene studies and 
GWAS, demonstrating an association with DTC 
(P < 0.05) (Supplementary Table 1). These SNPs were 
evaluated for their association with DTC risk in dataset 
1 (Supplementary text and Supplementary Table 2). A 
subset of 34 selected SNPs successfully passed the test 
and they were genotyped in dataset 2. Fifteen SNPs 
were considered positive (Supplementary Table 3) and 
genotyped in dataset 3. These SNPs were used for the 
Bayesian analysis of population genetic structure and 
assessment of genetics disease risk using ML algorithms. 
The selection criteria are shown (Fig. 2) and further 
explained in the ‘Statistical analysis’ section.

Statistical analysis

Each genotype was evaluated by the chi-square 
test for the Hardy–Weinberg equilibrium (HWE) in 
controls, employing the Bonferroni’s correction  
(P threshold = 1.47 × 10−3). The association between 
the health state and genotypes was evaluated with 
multivariate logistic regression analysis (MLRA). The 
model returns the odds ratio adjusted (ORadj) for covariates 
(e.g. sex and age) and their 95% CI with a statistical P value 
of the association. The most likely mode of inheritance 
was evaluated by performing an extended maximum 
of the optimal (MAX) tests (30) based on multiplicity-
adjusted P values for the Cochran–Armitage trend test of 
the dominant, additive and recessive models.

In order to select SNPs robustly associated with the 
DTC risk, among the 171 candidates, we carried out a 
two-stage case/control association study. The first step 
was performed by evaluating the extent of association of 
the candidate SNPs with DTC risk obtained in dataset 1 
(12). For each SNP, the additive, recessive and dominant 
models of inheritance were evaluated and SNPs showing a 
statistically significant association (P < 0.05) were passed to 
the second step, performed on dataset 2.

Figure 2
SNP selection. (A) Criteria used for SNP selection. (B) SNP subsets. Among the 171 SNPs selected from the literature (Supplementary Table 1), only 34 
were associated with DTC in dataset 1 (P < 0.05; Supplementary Table 2) and genotyped in dataset 2. Fifteen SNPs were finally selected from dataset 2 as 
variables for ML analysis and genotyped in dataset 3 (bold). Panels A and B have matched colours and letters.
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The selected SNPs served for PRS and weighted PRS 
(wPRS) calculation, in the three merged datasets. The PRS 
was built by summing the total number of risk alleles for 
each subject (attributing the value of 1 to each risk allele). 
The wPRS was built by assigning to each genotype the 
relative OR obtained in the GWAS. Then, the ORs were 
multiplied. For PRS, we assessed the cumulative effect 
of the independent significant SNPs with an additive 
model. For each SNP, the genotypes were coded as 0, 1 or 
2, indicating the number of risk alleles in the genotype. 
Then, individuals were grouped according to the total 
number of risk alleles into quintiles with the lowest group 
used as the reference. For wPRS, as previously reported (31), 
the number of risk alleles for each genotype was multiplied 
for its relative weight, based on the association of the allele 
with the health state, as: PRS = β1 × 1 + β2 × 2 + [⋯] + βk xk 
+⋯+ βn xn; where βk is the per-allele log OR for the disease 
associated with SNP k, xk is the allele dosage for SNP k and 
n is the total number of SNPs included in the PRS.

Bayesian statistics for population genetics

We tested the capability of the 15 selected SNPs to provide 
a DTC genetic signature in the merged datasets 1, 2 and 3. 
The genetic structure of DTC patients and healthy controls 
was explored according to methods of Bayesian statistics 
for population genetics implemented in the STRUCTURE 
2.3.4 software (27), as previously described (32). The case/
control state of individuals was unknown to the software, 
which inferred genetic structures using only SNP data. 
Bayesian analysis and software settings are detailed in the 
supplementary online material (Supplementary text).

Machine learning-based analysis

In the preliminary phase of ML algorithm selection, 
different approaches were tested, namely k-Nearest 
Neighbours, Naïve Bayes (33), Random Forest, Gradient 
Boosting (34), AdaBoost (35) and Support Vector Machine 
algorithms, as implemented in the SciKit-Learn (36) 
library for Python. The AdaBoost classifier (37) was 
selected as the best overall algorithm (Supplementary 
text and Supplementary Fig. 1). We used the SciKit-Learn 
implementation of the AdaBoost classifier, where the 
base learner is a Decision Tree classifier with a maximum 
depth of 1, sometimes referred to as ‘decision stump’. The 
total number of base estimators was tuned in the range 
1–100 (with a step of 1) to maximize ROC–AUC on the 
test set. The classifier was run on three datasets (Table 1): 
(1) a training set, used for the training of the algorithm, 

composed of a randomly extracted 80% of the merged 
dataset 1 + 3; (2) a test set, for an initial performance 
evaluation and hyperparameter tuning, composed of the 
remaining 20% of the merged 1 + 3 dataset; (3) a validation 
set, corresponding to dataset 2 after pruning missing 
values, which constitutes a third, unseen dataset used for 
external validation.

Results

Population characteristics

The characteristics of subjects enrolled in the study are 
summarized (Table 2).

SNPs associated with DTC

The overall workflow for identification of SNPs associated 
with the risk of DTC (Fig. 2) is extensively descripted, and 
results are provided as online supplementary material 
(Supplementary text). We selected 171 SNPs associated with 
DTC with a P < 0.05 from the online literature database 
(Supplementary Table 1), and SNPs associated with the risk 
of DTC in dataset 1 with a P < 0.05 were considered positive 
(Supplementary Table 2), then were genotyped in dataset 2. 
All SNPs were in HWE in controls. Among these SNPs, four 
were robustly associated with the risk of DTC (rs965513, 
rs3758249, rs7048394 and rs944289) as they accomplished 
the Bonferroni’s threshold of statistical significance in the 
combined datasets 1 and 2 (Supplementary Table 3). Three 
SNPs (rs6759952, rs966423 and rs1203952) were considered 
highly likely DTC risk markers as they were positive in 
both datasets at the nominal P value of 0.05. Eight SNPs 
(rs10238549, rs7800391, rs1799814, rs7617304, rs4808708, 
rs10781500, rs1061758 and rs10877887) were considered 
as possible DTC risk markers as they were statistically 
significant at the level of 0.05 in the combined datasets. 
Thus, we finally selected 15 SNPs strongly associated with 
DTC in datasets 1 and 2 (Table 3). None of them was in LD 
with each other (r2 < 0.8).

Table 1 Summary of training, testing and validation ML 
datasets.

ML dataset
Origin of  
dataseta

No. of 
Individuals

Cases 
(%)

Controls  
(%)

Training 80% Datasets 1 + 3 1086 58.2 41.8
Testing 20% Datasets 1 + 3  272 62.1 37.9
Validation 100% Dataset 2  201 65.7 34.3

a Summary of datasets after removing individuals with missing data in the 
genotype (% cases; % controls): dataset 1 = 949 (59.5; 40.5); dataset 
2 = 201 (65.7; 34.3); dataset 3 = 409 (57.7; 42.3).

https://doi.org/10.1530/ETJ-22-0058
https://etj.bioscientifica.com © 2022 The authors

Published by Bioscientifica Ltd.
This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ETJ-22-0058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


e220058G Brigante et al. 11:5

These 15 SNPs were then genotyped in dataset 3, while 
the remaining 156 SNPs were considered not associated 
with the risk of DTCs in our study populations.

Calculation of polygenic risk scores

The 15 positive SNPs were used for the calculation of PRS 
and wPRS in the merged data of all three datasets. Subjects 
were divided in quintiles based on the number of risk alleles 
and the lowest quintile was used as the reference. The risk 
increased progressively with the increasing number of risk 
alleles, up to the value of ORadj = 6.87 (95% CI = 4.9–9.64) 
for the fifth quintile in the wPRS. All the differences were 
highly statistically significant both in the PRS and the 
wPRS, already from the second and third quintile (Table 4 
and Supplementary Fig. 2).

Exploration of individual’s genetic structures 
according to DTC-related SNPs

The association between the risk of DTC and individual 
genetic profile was explored by the application of Bayesian 
inference. The 15 SNPs used for the PRS were also employed 
as an input for the STRUCTURE software, run on the merged 

datasets 1, 2 and 3. STRUCTURE returned the relative 
weight of each component in the genetic background of 
each subject shown as a bar plot (Fig. 3). Five (k = 5) possible 
genetic structures (components) were found as the most 
representative of the datasets (26) (Supplementary text). 
The pattern, calculated using 15 SNPs, reflects at a glance 
the different DTC-related genetic profile between cases 
(DTC) and controls.

Output data representing the DTC-related genetic 
background were analysed to evaluate the quality of Bayesian 
inference by multiple regression analysis. We identified 
two components strongly associated with the case/control 
state: the component 2 (k2) had an F-ratio of 327.66 and the 
component 3 (k3) had an F-ratio of 106.26 (both P < 10−6). 
Results were confirmed by MLRA using the two components 
as continuous variables. In this case, we found that they 
were strongly associated with DTC risk, with ORs of 143.4 
(95% CI = 52.7–390.2) and 12.2 (95% CI = 5.72–26.1).

ML-based DTC description using SNP information

The AdaBoost algorithm was found to be the most 
effective and well-calibrated in classifying individuals 

Table 2 Characteristics of study population.

Dataset 1 Dataset 2 Dataset 3
Cases (n = 649) Controls (n = 431) Cases (n = 234) Controls (n = 101) Cases (n = 404) Controls (n = 392)

Females (%) 507 (78%) 320 (74%) 167 (71%) 61 (60%) 287 (71%) 243 (62%)
Age (years) 37.8 ± 0.85 46.8 ± 0.97   49.7 ± 14.0    43.7 ± 11.4   44.8 ± 12.7 43.8 ± 9.6
Weight (kg) 71.0 ± 1.31 70.4 ± 1.37   74.5 ± 15.0    71.3 ± 16.1   79.3 ± 17.9   69.2 ± 14.5
BMI (kg/m2) 25.3 ± 0.39 25.2 ± 0.38 26.9 ± 4.9  26.1 ± 5.0 27.5 ± 4.7 23.9 ± 3.7

Values are expressed as number and percentages (%) or average and standard error.

Table 3 List of the 15 SNPs associated with DTC in datasets 1 and 2.

SNP ID Genomic location Gene Description

rs965513 chr9:97793827 PTCSC2/FOXE1 Papillary thyroid carcinoma susceptibility candidate 2/
Forkhead box E1

rs3758249 chr9:97851858 PTCSC2/FOXE1 Papillary thyroid carcinoma susceptibility candidate 2/
Forkhead box E1

rs7048394 chr9:97843151 PTCSC2/FOXE1 Papillary thyroid carcinoma susceptibility candidate 2/
Forkhead box E1

rs944289 chr14:36180040 PTCSC3/LINC00609 Papillary thyroid carcinoma susceptibility candidate 3
rs6759952 chr2:217406996 DIRC3 Disrupted in renal carcinoma 3
rs966423 chr2:217445617 DIRC3 Disrupted in renal carcinoma 3
rs1203952 chr20:22633494 FOXA2 Forkhead box A2
rs10238549 chr7:110540965 IMMP2L Inner mitochondrial membrane peptidase subunit 2
rs7800391 chr7:110568186 IMMP2L Inner mitochondrial membrane peptidase subunit 2
rs1799814 chr15:74720646 CYP1A1 Aryl hydrocarbon hydroxylase
rs7617304 chr3:158745312 RARRES1 Retinoic acid receptor responder 1
rs4808708 chr19:17890877 NIS/SLC5A5 Solute carrier family 5 member 5
rs10781500 chr9:136374886 CARD9/SNAPC4 Caspase recruitment domain-containing protein 9
rs1061758 chr9:34652333 IL11RA Interleukin 11 receptor subunit alpha
rs10877887 chr12:62603400 LINC01465/MIRLET7I Long intergenic non-protein coding RNA 1465/microRNA Let-7i
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(Supplementary text and Supplementary Fig. 3). The 
classifier was further tuned in terms of the number of base 
estimators hyperparameter, in a range of 1–100. We found 
25 to be an optimal number of base estimators, providing 
an optimal balance between computational cost and model 
accuracy (Supplementary text and Supplementary Figs 
4 and 5). Additionally, predicted probability calibration 
was implemented using Platt’s method (38). The detailed 
metrics of the AdaBoost classifier are reported (Table 5), as 
well as ROC curves and AUC of all datasets (Fig. 4A).

Results clearly highlight that there is no significant 
overfitting on the training set (Fig. 4A and Table 5), 
given the reduced differences between the training and 
test set performance in terms of AUC (0.04), accuracy 
(0.6%), sensitivity (0.01) and specificity (0.02). This is also 
confirmed by the 10-fold cross-validation on the train/
test splits, which resulted in an average ROC AUC of 0.65 
± 0.03 (s.d.). In addition, when classifying the samples 
from the external validation set, which again showed 
comparable classification performance, the model’s ability 
to generalize on unseen data noticeably emerges. Analysis 
of the predicted probabilities revealed that they fairly match 
the real distribution of DTC risk both in the test and in the 
validation sets (Supplementary text and Supplementary Fig. 
5). The performance of other classifiers was weaker than that 
of the AdaBoost algorithm (Supplementary Figs 3, 6 and 7).

Finally, the importance of each individual SNP allele 
in the classification by the trained AdaBoost model was 
evaluated with the aim of exploring the weight of each 

individual SNP in the identification of the DTC state (Fig. 
4B). The most important SNPs, with a relative feature 
importance greater than 0.6, were rs966423, rs6759952, 
rs966513, rs7617304, rs3758249, rs10238549, rs4808708 
and rs1799814. Interestingly, the top two SNPs, namely 
rs966423 and rs6759952, were both considered highly 
likely to be predictive in the SNP selection phase (see 
paragraph ‘SNPs associated with DTC’).

It is worth mentioning how some of the SNPs which 
were deemed ‘robustly associated with the risk of DTC’ or 
‘highly likely DTC risk markers’ in the association analysis, 
such as rs7048394, rs944289 and rs1203952, respectively, 
are not among the top-ranking in terms of importance in 
the ML model. This is due to the fact that the prediction 
of the AdaBoost model is based on the given constellation 
of all the selected SNPs rather than on the SNPs taken 
individually. Thus, in this specific classification task, 
the combination of the top-ranking SNPs in Fig. 4 might 
contain enough information, so that some of the SNPs 
which were strongly associated to DTC risk in the initial 
association analysis become progressively less important, 
or even redundant, and do not improve the overall 
predictive performance further.

Discussion

The present study outlined the potential of a minimal 
selection of 15 DTC-associated SNPs to confirm the disease 

Table 4 Odds ratio estimates for the 15 SNPs PRS quintiles. DTC state obtained in the three merged datasets was considered, 
using the bottom quintile (0–20%) as the reference group. The multivariate logistic regression model included the adjustment of 
ORs for age, BMI and gender. wPRS, weighted polygenic risk score; PRS, unweighted polygenic risk score.

Quintile
wPRS PRS

ORadj 95% CI P ORadj 95% CI P

I Reference Reference
II 2.12 1.55–2.91 2.92 × 10−6 1.43 1.04–1.97 0.0282
III 2.52 1.84–3.44 7.02 × 10−9 2.55 1.90–3.40 2.87 × 10−10

IV 3.15 2.30–4.32  9.65 × 10−13 3.04 2.26–4.09 2.02 × 10−13

V 6.87 4.90–9.64  6.12 × 10−29 5.84 4.18–8.15 3.75 × 10−25

Figure 3
DTC-associated genetic structure of cases and 
healthy controls. The bar plot was calculated by 
the STRUCTURE software in the merged datasets 
1, 2 and 3. Each individual is represented by a 
vertical line, in which colours indicate the 
contribution of each of the k = 5 components to 
the individual genetic background. Cases and 
controls were ordered for graphical reasons, 
showing different genetic profiles at a glance, 
although indicating a certain degree of admixture.
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predisposition. We re-evaluated the candidate risk ‘loci’ 
described in the literature as individually associated with 
DTC. Candidates were verified for their association by 
consulting the results obtained in a previous GWAS (12). 
The most strongly associated SNPs were ad hoc genotyped 
in 2 independent datasets, accounting for a total of 1131 
individuals. The 15 best-performing SNPs were used 
for the calculation of PRS and wPRS and employed for 
reconstructing the genetic structure of individuals. Most 
importantly, we used these SNPs to describe the DTC and 
healthy control state of individuals using ML. Interestingly, 
the classification using the AdaBoost algorithm showed 
fair performance in the test set, with accuracies as high as 
64%, as well as in the external validation set, settling at 67% 
(Table 5). Considering that the ROC AUC is a performance 
measurement for the classification (39), we may assume 
to have detected a minimal pool of SNPs consistently 
contributing to the risk of developing DTC in our Italian 
dataset, as an example of polygenic disease. This has been 
further confirmed by the fair confidence of the AdaBoost in 
classifying the disease state, as highlighted by the positive 
predictive value of up to 0.7 on the external validation 
set. Our results provide a substantial improvement in 
understanding the impact of genetics on DTC, which until 
now could be estimated by PRS and could explain only 
11% of the total genetic variability linked to the disease 
(24, 23). Moreover, the 15 selected SNPs describe the inner 
genetic structure of sampled individuals when assessed 
using Bayesian inference from population genetics. We 
evaluated whether this method would decipher differences 
between cases and controls, assigning a phenotype-specific 
genetic footprint to individuals, with a quantitative 
approach. Individuals were distributed among two 
subpopulations with different genetic patterns, following 

the DTC or healthy control state, although a certain degree 
of admixture was found. This analysis confirmed that the 
selected SNPs are representative of the genetic signature 
linked to the disease. When using these SNPs for an 
ML-based analysis of DTC, we obtained a fair classification 
power.

Table 5 Classification metrics of AdaBoost classifier on all 
datasets.

Metric Training set Test set Validation set

NPV 0.65 0.56 0.52
PPV 0.64 0.66 0.70
Sensitivity 0.88 0.87 0.85
Specificity 0.29 0.27 0.32
Accuracy 64% 64% 67%
F1-score 0.74 0.75 0.77
F0.5-score 0.67 0.70 0.73
F2-score 0.82 0.82 0.82

Fβ scores are defined as: F
TP

TP FN FP
b =

b

b b
*

*

* *

1

1

2

2 2

+( )
+( ) + +

.

NPV, negative predictive value = TN/(TN+FN); PPV, positive predictive 
value = TP/(TP+FP).

Figure 4
Results from the ML-based DTC prediction and SNP relative importance. 
(A) ROC curves obtained on all datasets with the AdaBoost model. Dashed 
line represents random choice. (B) Relative feature importance of all 
variables (SNPs) in the AdaBoost model. Data normalized to most 
important feature. Suffix ‘_2’ indicates the second allele. Feature 
importance is calculated as an average over the individual classifiers used 
for probability calibration.
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Overall, we found six SNPs within the FOXE1, PTCSC3-
LINC00609, FOXA2 and DIRC3 genes robustly associated 
with the risk of DTC or categorized as highly likely risk 
factors, confirming they are well-established predisposing 
factors for DTC (8, 11, 12, 13, 14, 40, 41). SNPs in the DIRC3 
(rs966423, rs6759952) and FOXE1 (rs3758249) genes were 
also highly relevant features for DTC risk. Other eight SNPs, 
such as those falling within the CYP1A1, NIS-SLC5A5, 
IL11RA and let-7i/LINC01465 genes (42, 43, 44, 45, 46, 47, 
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60), did not 
replicate formally in the second stage of the study, although 
they maintained or reinforced the statistical significance of 
the GWAS in the combined analysis. One SNP falling within 
the CYP1A1 gene (rs1799814) was also highly relevant for 
DTC predisposition. Interestingly, there is relative lack of 
knowledge on the role of the remaining three genes, i.e. 
IMMP2L, RARRES1 and CARD9-SNAPC4 in thyroid cancer. 
However, since the selected SNPs were associated with 
DTC in the combined analysis, they could be reasonably 
involved in the aetiology of the disease. They have been 
previously involved in the regulation of cell metabolism, 
oestrogen physiology, tumour suppression or progression 
and autoimmune diseases (61, 62, 63, 64, 65, 66). These 
three genes are certainly interesting for future studies in 
connection with DTC in the future. The remaining 137 
SNPs were not confirmed in dataset 1, while the other 19 
SNPs positive in the GWAS were not confirmed in dataset 
2. They could have been detected as the consequence of 
chance findings in underpowered studies published in 
the literature, resulting as false or weakly positive signals. 
An extensive discussion of these gene SNPs is provided as 
supplementary material (Supplementary text).

Considering the 15 most associated SNPs, we also 
calculated PRS and wPRS, confirming that the disease risk 
increases together with the number of risk alleles. An OR 
of 6.9 (95% CI = 5.4–8.8) for the top 10th decile was found 
based on a 10-SNPs model, including SNPs falling within 
PCNX2, DIRC3, LRRC34, EPB41L4A, NRG1, PTCSC2, STN1-
SLK, PTCSC3 LINC00609, MBIP and SMAD3 genes. Our 
results are in agreement with previous studies concluding 
that the genetic predisposition to PTC may be resumed 
by only 10 SNPs, found by wPRS analysis and accounting 
for between 8 and 11% of the total variability (24, 23). In 
particular, that study had only three markers in LD with 
SNPs found herein and lacking the requisites for being 
selected and run on ML analysis (Supplementary text). It is 
correct to specify that previous studies only studied PTC and 
not DTC. However, we believe the comparison is feasible as 
PTC accounts for at least 85% of all thyroid cancers. Similar 
OR values were found in a previous GWAS performed using 

a 11-SNPs signature (13), which shared only the DIRC3 
gene region with our proposed signature. Taken together, 
these data indicate that unknown, low-penetrance SNPs 
contributing to genetic predisposition to DTC may be 
discovered using different approaches. A recent study on 
the Korean population found lower ORs (1.46 and 1.56 for 
unweighted PRS and ywPRS, respectively), but considering 
only six SNPs associated with thyroid cancer (67).

Obviously, our study is limited by the fact of not 
having considered all the possible SNPs associated with 
DTC in the literature but only those associated with 
the DTC risk in the GWAS enrolling subjects of dataset 
1. Therefore, classification algorithms relied on the 
genetic information alone. Data about the exposure to 
important risk factors, such as ionizing radiation and 
family history of DTC, were only available for a subset of 
the study population (not shown). Therefore, they could 
not be considered in the statistical analyses and for the 
construction of ML models. Another issue may consist 
in the ethnicity of datasets used herein, which consists 
of Italian individuals. The association between these 
SNPs and the disease would be explored in individuals 
of different ethnicity. Finally, in case/control studies, 
proper sample selection is crucial to attain robust disease 
prediction: individuals recorded as healthy controls might 
develop DTC even in older age, even if subjects had no 
thyroid abnormalities at the time of ultrasound analysis. 
Such individuals should be considered as ‘spurious 
negatives’. Similarly, young DTC individuals might have 
seen the development of the disease following causes 
beyond the genetic predisposition, such as exposure to 
ionizing radiation and might thus represent ‘spurious 
positives’. These aspects represent confounding factors 
when attempting to extrapolate the genetic footprint of 
the disease used to build ML models. For the reasons listed 
earlier, the direct clinical impact of our result is limited. It 
has yet to be clarified which other genetic markers cover 
the remaining slice of heritability or predisposition. Then, 
it is necessary to analyse genetics together with other 
environmental risk factors, some of which are difficult to 
measure, such as exposure to radiation or pollutants.

In conclusion, we described a procedure based on 
a combined PRS and ML approach that allows a fair 
description of the case or control state based solely on the 
individual genetic background. This analysis provided 
evidence for a new, restricted selection of 15 SNPs associated 
with the risk of DTC, extending the series previously found 
using different approaches (24) and further delineating 
the genetic signature of the disease in our Italian dataset. 
Further developments might aim to implement and refine 
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the reported methodology with more covariates and might 
improve the overall accuracy.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
ETJ-22-0058.
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