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The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR)
signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling
molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has
been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis.
However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of
over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and
WASP while reconfirming previously established regulation of Itk, PLCy, and Erk phosphorylation by SLP-76. The absence of
SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of
SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative
feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.
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Introduction

TCR signaling plays an essential role in the regulation of the
adaptive immune response, and it has been intensively investigated
and described (Figure 1). TCR engagement results in the
activation of Src family kinases Lck and Fyn. Active Lck
phosphorylates the CD3 and {-chain immunoreceptor tyrosine-
based acivation motifs ITAMs) [1], resulting in the recruitment of
the Syk-family tyrosine kinase (-chain associated protein of
70 kDa (ZAP70) [2]. Lck-activated ZAP70 then phosphorylates
a number of downstream proteins, including the key adapter
proteins linker for activation of T cells (LAT) and SLP-76,
resulting in the assembly of a “signalsome” complex [3].

SLP-76 consists of three domains capable of mediating
intermolecular interactions: an N-terminal acidic region contain-
ing three tyrosine phosphorylation sites, a central proline-rich
region, and a C-terminal SH2 domain [4]. The indispensable role
of SLP-76 for T cell development and activation has been
demonstrated by various studies in T' cell lines and in vivo [5-9].
In SLP-76 deficient Jurkat T cells, phosphorylation and activation
of phospholipase C-y1 (PLCy1) is severely impaired, resulting in
defective calcium mobilization, Erk activation, and cytokine gene
transcription following TCR  ligation [6]. In wvivo, SLP-76
deficiency results in a complete block in thymocyte development
at the CD4 CD8  double-negative stage and the lack of
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peripheral T cells [7-9]. Upon TCR activation, Grb2-related
adaptor downstream of Shc (GADS) binds and recruits SLP-76 to
the LAT signaling complex [10], where SLP-76 nucleates the
interaction of signaling proteins, including PLCy1, IL-2-inducible
T cell kinase (Itk), VAV, NCK, adhesion and degranulation
promoting adaptor protein (ADAP) [11], leading to more distal
signaling events. PLCyl is recruited to the SLP-76 signaling
complex by binding to both LAT and SLP-76 [12,13]. The SH2
and SH3 domains of the Tec-family protein tyrosine kinase Itk
binds selectively to N-terminal phosphotyrosyl residue Tyr'*> and
short motifs within the proline-rich domain of SLP-76 [14,15],
allowing the maintenance of Itk in an active conformation [4].
The interaction between SLP-76 and Itk juxtaposes PLCy1l with
the active Itk, resulting in the full activation of PLCy1 and the
subsequent generation of the second messengers inositol 1,4,5-
trisphosphate (IP3) and diacylglcycerol (DAG) [16]. SLP-76 also
acts as a scaffold to coordinate the assembly of a tri-molecular
signaling complex with VAV and Nck that regulates cytoskeletion
rearrangement [17]. Tyrosine phosphorylation of VAV activates
its guanine nucleotide exchange factor (GEF) activity and leads to
the activation of Rac and Cdc42 [18]. Activated Rac and Cdc42
then bind and activate the adaptor protein Nck-associated
proteins, including p2l-activated kinase 1 (Pakl) and Wiskott-
Aaldrich syndrome protein (WASP), resulting in the regulation of
actin polymerization and IL-2 gene transcription [17,19,20].
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Figure 1. Canonical TCR signaling pathway. Established signaling cascades in activated T cells. Proteins identified in our quantitative
phosphoproteomic analysis are highlighted in red and the detailed data regarding these proteins, their phosphorylation kinetics in both SLP-76
reconstituted and deficient Jurkat T cells upon TCR stimulation, were presented later in Figure 3 and Figure S3.

doi:10.1371/journal.pone.0046725.g001

Additionally, SLP-76 regulates integrin activation through its
interaction with the tyrosine-phosphorylated adaptor protein
ADAP (previously termed SLAP-130/Fyb) [21].

T cells must discriminate foreign peptide-MHC agonists from a
large variety of self peptide-MHC antagonists to appropriately
trigger the TCR activation pathway only in the proper context
[22]. Biochemically, this discrimination is accomplished through
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the half-life of the interaction between peptide-MHC and the
TCR [23]. To discriminate foreign from self peptides, the T cell
signaling pathway utilizes both positive and negative feedback
pathways to establish an ultrasensitive, bistable switch [23]. These
feedback activation and inhibition pathways are critically impor-
tant in tuning the sensitivity of TCR activation to self and foreign
ligands [23]. While some of the important regulatory proteins
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involved in positive and negative feedback are beginning to be
defined, the pathways leading to the regulation of these molecules
are much more obscure. For example, the dynamic equilibrium
between Lck mediated CD3 I'TAM phosphorylation and phos-
phatase mediated dephosphorylation of these ITAMs and Lck is
only beginning to be understood [23]. Csk, CD45, c-Cbl, and
SHP-1 are proteins known to function in negative feedback
mechanisms in TCR signaling [24-28]. Positive feedback mech-
anisms have also been proposed in T cells such as ERK
phosphorylation of Lck [28-30]. In this study, new SLP-76
dependent phosphorylation sites are revealed on a variety of
signaling proteins, providing an unprecedented detailed view of
the central role of this signaling protein.

Materials and Methods

Cell culture, SILAC labeling and T cell stimulation

The SLP-76 deficient Jurkat-derived cell line J14 and its wild-
type (WT) SLP-76 reconstituted derivative J14-76-11 [6] were
provided by Deborah Yablonski at Technion-Israel Institute of
Technology. All cells were initially maintained in RPMI 1640
medium (Sigma, St. Louis, MO) supplemented with 10% fetal
bovine serum (Hyclone, Logan, UT), 2 mM L-glutamine, 100 U/
ml penicillin G, and 100 pg/ml streptomycin (Invitrogen,
Clarlsbad, CA) in a humidified incubator with 5% CO, at 37°C.
In addition, growth media for J14-76-11, the stable transfectant of
J14, was supplemented with 2 mg/ml G418, which was washed
out 2 days prior to SILAC labeling of the cells. For SILAC
labeling, all cell lines were washed twice with RPMI 1640 medium
without Arginine, Lysine, and Leucine (Sigma), and reconstituted
in RPMI 1640 medium containing either 1206, HN4 L-Arginine,
and "*Cg, "Ny L-Lysine (Sigma) or '*Cg, '’N, L-Arginine, '*C,
N, L-Lysine (Cambridge Isotope Laboratories, Andover, MA),
supplemented with 10% dialyzed fetal bovine serum (Sigma),
0.381 mM L-leucine (Sigma), glutamine, penicillin, and strepto-
mycin for 7 cell doublings. The concentration of L-Arginine and
L-Lysine chosen for SILAC labeling of Jurkat cells in experiments
described here was 0.383 mM and 0.219 mM, respectively
(Method S1).

Anti-CD3  and anti-CD4 (clones OKT3 and OKT4;
eBioscience, San Diego, CA) stimulation was performed as
described [31]. Briefly, cells were washed once with 4°C
phosphate buffer saline (PBS), and reconstituted at a concentration
of 1x10® cells/ml in PBS. For cach timepoint, 1x10% cells were
treated with OKT3 and OKT4 primary antibodies, at a
concentration of 2.5 pg/ml of each antibody, for 10 min at 4°C.
Cells were then crosslinked with 22 pg/ml of goat anti-mouse IgG
(Jackson ImmunoResearch, West Grove, PA) at 37°C for 0, 1, 1.5,
2, 3, 5, or 10 minutes.

Cell lysis, protein reduction, alkylation, digestion, and
peptide immunoprecipitation

To stop the stimulation, cells were lysed with lysis buffer (8 M
urea, 1 mM sodium orthovanadate, and 100 mM ammonium
bicarbonate, pH 8.0) and incubated for 20 min at 4°C. Lysates
were then cleared at 14,000 xg for 15 min at 4°C, and protein
concentration was measured by the DC Protein Assay (Bio-Rad,
Hercules, CA). Cell lysates from J14 and J14-76-11 were
combined at a 1:1 protein concentration ratio and reduced with
10 mM DTT for 1 hr at 56°C, followed by alkylation with 55 mM
iodoacetamide for 1 hr at room temperature in the dark. Cell
lysates were then diluted 5 fold with 100 mM ammonium
bicarbonate, pH 8.9 and digested with sequencing grade modified
trypsin (Promega, Madison, WI) at 1:100 (w/w) trypsin:protein
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ratio overnight at room temperature. Tryptic peptides were
desalted using C18 Sep-Pak plus cartridges (Waters, Milford, MA),
as described [32], and lyophilized in a Speed Vac plus (Thermo
Fisher Scientific, Waltham, MA). Dry peptides from each time-
point were reconstituted and immunoprecipitated as previously
described [33] except 20 ul of anti-phosphotyrosine resin was used
per 1x10% cells and eluted peptides were filtered through a
0.22 uM filter (Millipore, Billerica, MA). 10 pmol synthetic
phosphopeptide LIEDAEpYTAK was added to each timepoint
prior to peptide immunoprecipitation as a control for label-free
quantitation. Results presented in this manuscript represent the
average of three total replicate analyses.

Western blotting for SLP-76 and phospho-PLC-y1

Total cellular protein from 8 M urea cell lysates was diluted 1:1
with gel loading buffer containing 4% SDS, 125 mM Tris-HCI
(pH 6.8), 20% v/v glycerol, 5% 2-mercaptoethanol, 0.01%
bromophenol blue, pH 6.8 from each proteomic sample. Equal
amounts of protein (as measured by Lowry DC assay, Bio-Rad)
were separated by 4-20% gradient SDS-polyacrylamide gel
electrophoresis (Thermo Fisher Scientific), and electroblotted onto
an Immobilon transfer membrane (Millipore). SLP-76 expressions
in J14-76-11 and J14 Jurkat T cells were probed using rabbit anti-
SLP-76 pAb and rabbit anti-B-Actin mAb (Cell signaling
Technology, Danvers, MA). Phosphorylation of PLCy1 (Tyr’®?
and PLCy1 expression were detected by western blotting analysis
using Odyssey Infrared Imaging System (LI-COR Biosciences,
Lincoln, NE). Generally, membranes were blocked in Odyssey
Blocking Buffer (LI-COR Biosciences) for 1 hour and then
incubated overnight at 4°Ci with rabbit anti-phospho-PLCy1
(Tyr’®) pAb and rabbit anti-PLCyl pAb (Cell Signaling
Technology) respectively in Odyssey Blocking Buffer. After
rinsing, membranes were incubated with IRDye 800CW Donkey
Anti-Rabbit IgG (H+L) (LI-COR Biosciences) in Odyssey
Blocking Buffer for 45 minute in the dark at room temperature.
Membranes were then extensively rinsed and bands were
visualized using Odyssey infrared imaging system.

Automated desalt-IMAC/nano-LC/ESI-MS

Tryptic peptides were analyzed by a fully automated phospho-
proteomic technology platform incorporating peptide desalting via
reversed-phase chromatography, and Fe** IMAC enrichment of
phosphopeptides as previously described [33]. IMAC enriched
phosphopeptides were eluted into the mass spectrometer (LTQ-
FT; Thermo Fisher Scientific) through an analytical column
(360 um OD %75 um ID fused silica with 12 cm of 5 pm Monitor
C18 particles with an integrated ~4 pm ESI emitter tip fritted
with 3 um silica; Bangs Laboratories) with a reversed-phase
gradient (0-70% solvent B in 30 min). Static peak parking was
performed via flow rate reduction from 200 nl/min to ~20 nl/
min when peptides began to elute as judged from a BSA peptide
scouting run, as described previously [34]. An electrospray voltage
of 1.8 kV was applied in a split flow configuration, as described
[34]. Spectra were collected in positive ion mode and in cycles of
one full MS scan in the FT (m/z: 400-1800), followed by data-
dependent MS/MS scans in the LTQ (~0.3 s each) sequentially of
the five most abundant ions in each MS scan with charge state
screening for +1, +2, +3 ions and dynamic exclusion time of 30 s.
The automatic gain control was 1,000,000 for the FTMS scan and
10,000 for the ion trap MS (ITMS) scan. The maximum ion time
was 100 ms for the ITMS scan and 500 ms for the IFI'MS full
scan. FTMS resolution was set at 100,000.
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Database analysis

MS/MS spectra were searched against the human National
Center for Biotechnology Information non-redundant protein
database using both the SEQUEST algorithm provided with
Bioworks 3.2 (SEQUEST v.27 revl2) [35] and the Mascot
algorithm v.2.2.1 provided by Matrix science [36]. Peak lists were
generated using extract_msn.exe 07/12/07 using a mass range of
600-4500, precursor ion tolerance (for grouping) of 0.005 AMU,
minimum ion count of 3, group scan of 0, minimum group count
of 1. The NCBI human database contained 438,778 protein
sequence entries (50% forward, 50% reversed). SEQUEST and
Mascot were performed with the following parameters: trypsin
enzyme specificity, 2 possible missed cleavages, 0.2 Da mass
tolerance for precursor ions, 0.5 Da mass tolerance for fragment
ions. Search parameters specified a differential modification of
phosphorylation (+79.9663 Da) on serine, threonine, and tyrosine
residues and a static modification of carbamidomethylation
(+57.0215 Da) on cysteine. Search parameters also included a
differential modification for arginine (+10.00827 Da) and lysine
(+8.01420 Da) amino acids. To provide high confidence phos-
phopeptide sequence assignments, data was filtered for Xcorr (+1
>1.5; +2 >2.0; +3 >2.5) for SEQUEST results, Mowse score
(>10) for Mascot results, and precursor mass error (<20 ppm). In
addition, a logistic regression statistical analysis was performed on
the non-redundant list of tyrosine phosphopeptides using a newly
developed spectral score [37] to achieve a final estimated false
discovery rate of 0.5%. After filtering by logistic score to 0.5%
FDR, SEQUEST and Mascot results were combined together to
generate the whole peptide list. For quantitative measurements, a
minimum peak area threshold of 500 for both the SILAC and
label free quantitation were required. Additionally, repeat
observations of MS/MS spectra of each tyrosine-phosphorylated
peptide in minimally 4 of 8 total timepoints were required. False
discovery rate (FDR) was estimated with the decoy database
approach after final assembly of nonredundant data into heatmaps
[38]. To validate the position of the phosphorylation site, the
Ascore algorithm [39] was applied to all data and the reported
phosphorylation site position reflects the top Ascore prediction.
Ascore probabilities are reported in the full data table (Dataset S1).
Assigned MS/MS spectra for all reported phosphopeptides in this
analysis are also available (Dataset S2).

Quantitation of relative phosphopeptide abundance
Relative quantification of peptide abundance was performed via
calculation of selected ion chromatogram (SIC) peak areas of
heavy and light SILAC labeled phosphopeptides. For label free
comparison of phosphopeptide abundance in the SLP-76 recon-
stituted Jurkat cells between different timepoints of TCR
stimulation, individual SIC peak areas were normalized to the
SIC peak area of the copurified synthetic peptide LIEDAEpY-
TAK in the same timepoint. The exogenous peptide LIEDAE-
pYTAK was added to each timepoint at 10 pmol. This exogenous
peptide accompanied cellular phosphopeptides through the
peptide immunoprecipitation, desalt, IMAC, and reversed-phase
elution into the mass spectrometer. Peak areas were calculated by
mspection of SICs using recently developed software programmed
in Microsoft Visual Basic 6.0 based on Xcalibur Development Kit
2.0 SR2 (Thermo Fisher Scientific). Quantitative data was
calculated automatically for every assigned peptide using the ICIS
algorithm available in the Xcalibur XDK with the following
parameters: multiple resolution of 8, noise tolerance of 0.1, noise
window of 40, scans in baseline of 5, include of RefExc peaks
False. A minimum SIC peak area equivalent to the typical spectral
noise level of 500 was required of all data reported for label free
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and SILAC quantitation. SIC peak areas for all reported
phosphopeptides were then manually validated.

Temporal changes in phosphorylation abundance are repre-
sented as heatmaps from 3 replicate experiments. A label free
heatmap that represents the change of abundance of phosphopep-
tides in J14-76-11 across 10 minutes of TCR stimulation and a
SILAC heatmap that represents the ratios of abundance of
phosphopeptides between J14 and J14-76-11 at each of the TCR
stimulation timepoints were generated as previously described
[40]. In the label free heatmap representation, the magnitude of
change of the heatmap color was calculated through the log of the
ratio of peak area of each peptide compared with the geometric
mean of peak areas for that peptide across 8 timepoints. Any
changes (either an increase or decrease of peptide abundance
above the average) greater than 100 fold were displayed as the
same color as the 100-fold change. Black represents average
abundance of a given phosphopeptide across all timepoints, while
yellow (blue) represents levels of phosphorylation above (below) the
average. In the SILAC heatmap representation, the magnitude of
change of the heatmap color was calculated through the log of the
ratio of peak area of each peptide in J14 compared with J14-76-11
at each of the TCR stimulation timepoints. Any changes greater
than 50 fold was displayed as the same color as the 50-fold change.
Black represents no change in abundance of a given phosphopep-
tide in response to SLP-76 removal, while green (red) represents
elevated (reduced) phosphorylation.

In both label free and SILAC heatmaps, blanks indicate
timepoints without a clearly defined SIC peak in any of the
replicate analyses. The coefficient of variation (CV) for each
heapmap square amongst the three replicate observations was
calculated (Dataset S1) and represented as a color bar on the
bottom of that heatmap. According to the CV color key, black
represents 0% CV and more orange represents larger CV. Note
that, according to Human Protein Reference Database (hprd)
Release 7, phosphorylation sites discussed in the literature
previously are marked with *' if identified using phosphoproteo-
mic method alone or * if identified using traditional approaches
such as site-directed mutagenesis. For label free heatmap
representation, P-values were calculated for each timepoint
compared to the timepoint with the minimal average peak area
for that phosphopeptide using unpaired, 2- sided student t-test. Q)
value has been defined as the measure of the minimum positive
false discovery rate (pFDR) at which the test can be called
significant [41]. pFDR was calculated for each test based on the
determined p-values using the R package QVALUE as previously
described [42] (Dataset S1). White dots on label free heapmaps
represent timepoints with false discovery rate less than 2% for
significant changes in phosphorylation abundance compared to
the timepoint with minimal average abundance. For SILAC
heatmap representation, P-values were calculated between the
SLP-76 deficient and SLP-76 reconstituted replicate measure-
ments for each phosphopeptide and timepoint using paired, 2
sided student t-test. pFDR was calculated for each test based on
the determined p-values using the R package QVALUE as
described above (Dataset S1). White dots on SILAC heapmaps
represent timepoints with false discovery rate less than 2% for
significant changes in phosphorylation abundance between J14

and J14-76-11.

Results

A quantitative phosphoproteomic analysis of TCR signaling
comparing SLP-76 deficient Jurkat T cell line J14 and SLP-76
reconstituted Jurkat T cell line J14-76-11 was performed (Figure 2).
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A receptor stimulation time course experiment of 8 total
timepoints, 3 replicates for each cell line was performed to present
a wide-scale view of the temporal changes of tyrosine phosphor-
ylation events following TCR stimulation and SLP-76 perturba-
tion. High-quality sequence assignments were determined using
stringent criteria as described above in methods. A total of 260
non-redundant phosphopeptides assigned at a 0.5% false discovery
rate for phosphopeptide sequence confidence were identified after
all filtering and assembly.

Relative quantification of peptide abundance via calculation of
SIC peak areas was performed for each light or heavy SILAC
labeled phosphopeptide in each timepoint. SILAC ratios were
calculated by comparison of the SIC peak areas of phosphopep-
tides from SLP-76 deficient cells to their SLP-76 reconstituted
counterparts. Label free fold changes were also calculated by
comparison of the SIC peak areas of phosphopeptides in SLP-76
reconstituted cells between different timepoints of TCR stimula-
tion. A total of 3 replicate experiments were performed and SIC
peak areas were generated from the average values. The complete
list of quantitative replicate data, calculated CV, p-values and g-
values are available (Dataset S1). SIC peak areas for each
identified phosphopeptide from both SLP-76 deficient and SLP-76
reconstituted Jurkat T cells were plotted for direct view of the
dynamic phosphorylation changes (Dataset S3).

The reproducibility of SILAC analysis among 3 replicate
experiments was assessed by comparisons of three SILAC ratios
Ry, Ry, R3) at 2 min after TCR stimulation (Figure SI).
Difference between SILAC ratios were represented using a scatter
plot of observed phosphopeptides (Figure STA-C) and a histogram
(Figure SID-F) of Logs (Ro/R}), Logs (R3/R}), and Logy (R3/Ry)
for each identified phosphopeptide. In good agreement of the
expected value of 0, the measured average value of Logs (Ro/R}),
Logs (R3/R}), and Logs (R3/Ry) was 0.08%0.27, 0.01%0.18, and
0.01£0.46, respectively. Additionally, histogram plots showed that
85.2% (Figure S1D), 82.2% (Figure S1E), and 86.8% (Figure S1F)
of identified phosphopeptides displayed Logs (R9/R;), Logs (R3/
R)), and Logs (R3/Ry) values respectively in the range of —0.6 to
0.6.

Representation of Label Free and SILAC Quantitation

Two different visual representations of quantitative data were
generated for each sequenced phosphopeptide, either as SILAC
heatmaps to reflect the SILAC ratios between J14 and J14-76-11,
or as label free heatmaps to reflect the abundance of phosphor-
ylation in J14-76-11 across the timecourse of TCR stimulation,
providing information that indicates changes of phosphorylation
for each identified phosphopeptide in response to the removal of
SLP-76 or TCR stimulation of J14-76-11. Data from 3 replicate
experiments are represented in the form of SILAC or label free
heatmaps (Figure 3, 4, 5) accordingly as described above in
method section.

Phosphoproteomic profiling of phosphorylation sites
identified on canonical T cell signaling proteins

From this analysis, we observed 270 unique tyrosine phosphor-
ylation sites residing on 159 proteins in the SLP-76 reconstituted T
cells across 8 timepoints of receptor stimulation (Figure 3, 4, 5).
Among the 159 proteins identified, 21% of them (35 proteins with
74 phosphorylation sites) were previously functionally character-
ized in TCR signaling (Figure 1 and Figure 3) and 79% of them
(124 proteins with 196 phosphorylation sites) were not previously
known to be involved in TCR signaling (Figure 4 and Figure 5).
Established TCR signaling proteins that were identified in our
quantitative phosphoproteomic analysis were also represented in

PLOS ONE | www.plosone.org

SLP-76 Dependent Regulation of PAG and SFKs

the canonical TCR signaling pathway with SILAC heatmaps
beside individual proteins to reflect their quantitative SILAC ratios
(SLP-76 deficient in relative to SLP-76 reconstituted) (Figure S3).
Phosphorylation events were observed on the proximal protein
tyrosine kinases and T cell receptor ITAMs (Lck, ZAP70, TCR-
CD3 subunits 6¢(), SLP-76 related signaling proteins (Itk, PLCy1,
Erk1/2, ADAP, SKAP55, and WASP), TCR signaling negative
regulators (CD31, CD5, PZR, PAG, SIT, and two newly
described T cell signaling negative regulators linker for activation
of X cells LAX [43] and suppressor of T-cell receptor signaling 1
STS-1 [44]), PI3K regulatory subunits, and many other Lck and/
or Fyn-regulated signaling proteins (Figure 1 and Figure 3).

The data revealed changes in phosphorylation abundance when
comparing cells with or without SLP-76 expression through a
timecourse of TCR-induced tyrosine phosphorylation on hun-
dreds of proteins. Coonsistent with previous studies in J14 (SLP-76
deficient) Jurkat T' cells, significantly reduced phosphorylation of
Itk, PLCy, Erk was observed (Figure 6). As expected, phosphor-
ylation of Itk at its activation site Tyr”'? reached its peak at 3 min
of TCR stimulation and it was significantly reduced in SLP-76
deficient cells compared to reconstituted cells (Figure 6A).
Reduced phosphorylation of PLCy1 at one of its defined SH2-
SH3 linker regulatory sites Tyr’® in SLP-76 deficient cells was
also validated by western blot (Figure S2) [6,13]. Additionally, our
data for the first time revealed that the removal of SLP-76 directly
led to significantly reduced phosphorylation of PAG, PI3K, and
WASP (Figure 7), suggesting the possible role of SLP-76 in
regulating the phosphorylation of these signaling molecules.
Phosphorylation of PAG at Tyr®*’, Tyr*'’, Tyr®?, Tyr**!, and
a previously identified Fyn SH2 domain-interacting tyrosine
residue Tyr'®!' (Figure 7A), PI3K at two regulatory subunit
tyrosine residues (p85 alpha at Tyr*™, p85 beta at
Tyr™?)(Figure 7B), and WASP at a Fyn regulated site Tyr™"
(Figure 7C) [45], were significantly decreased in SLP-76 deficient
cells compared to reconstituted cells. Although phosphorylation of
the TCR proximal signaling proteins upstream of SLP-76 would
be expected to be unaffected by SLP-76 removal, our data
revealed that SLP-76 regulates the phosphorylation of Lck, as well
as a large number of known Lck regulated signaling molecules.
Phosphorylation of Lck at its activation tyrosine residue Tyr®*,
CD3 9§, ¢,  at their respective ITAMs, ZAP70 at the activating site
Tyr*®* [46] as well as several other tyrosine residues, was
significantly elevated at the early timepoints and significantly
reduced phosphorylation at later timepoints in the SLP-76
deficient Jurkat T cells (Figure 8). Unfortunately, due to the fact
that the sequence of the identified Fyn phosphopeptide at the
activation site Tyr*?® is identical to other Src family kinases
(LIEDNEpYTAR), Fyn phosphorylation could not be quantified.

Discussion

Phosphorylation of proteins previously established to be
downstream of SLP-76

Tyrosine phosphorylation of signaling proteins that are known
to be downstream of SLP-76, including Itk, PLCy, and Erk, were
significantly reduced in the SLP-76 deficient Jurkat T cells.
Previous studies in Jurkat T cells have demonstrated that SLP-76 is
required for TCR-induced tyrosine phosphorylation and activa-
tion of Itk and PLCy1 [4,6]. Itk is recruited to the cell membrane
through the interaction of its PH domain with membrane
phophatidylinositol 3,4,5-trisphosphate (PIPs), where it is phos-
phorylated by Lck [47]. Lek then phosphorylates Tyr'? in the
activation loop of the Itk kinase domain, activating Itk kinase
activity [48]. The subsequent interaction between SH2 and SH3
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Figure 2. Experimental procedure. Two cell populations of human Jurkat T cell clones (J14-76-11 and J14) were incubated with RPMI 1640
medium containing normal or heavy isotope labeled arginine and lysine amino acids, physically differentiating the two proteomes by a shift in
molecular weights. Each cell population was then pre-incubated with OKT3 and OKT4 antibodies for 10 minutes at 4°C and then crosslinked with
anti-lgG at 37°C for the times indicated. After cell lysis, light and heavy cell lysates were combined at an equal protein concentration ratio for each
timepoint. Proteins were then reduced, alkylated, and trypsin-digested into peptides. Peptides were desalted by Sep-Pak cartridges, enriched by
phosphotyrosine peptide immunoprecipitation and Fe** IMAC, and then subjected to reversed-phase LC-MS/MS analysis. MS shifts introduced by
heavy isotope labeling allow for differentiation between light and heavy peptide counterparts in MS spectra. Selected ion chromatogram (SIC) peak
areas of light and heavy isotope labeled phosphopeptides were calculated for relative quantification of peptide abundance. Individual SIC peak areas
were normalized to the SIC peak area of the copurified synthetic peptide LIEDAEpYTAK in the same timepoint. A label-free heatmap was generated
based on peptide abundance for a certain peptide in SLP-76 reconstituted Jurkat cells through a time course of receptor stimulation and SILAC ratio
heatmaps were generated based on the ratio of abundance between light (SLP-76 reconstituted) and heavy (SLP-76 deficient) peptide counterparts
for each timepoint (SLP-76 deficient in relative to SLP-76 reconstituted).

doi:10.1371/journal.pone.0046725.9g002
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Figure 3. Quantitative phosphoproteomic analysis of known TCR signaling proteins. Listed above is a portion of the data collected,
representing proteins previously established to be involved in TCR signaling. Temporal changes in phosphorylation abundance are represented as
heatmaps from 3 replicate experiments as described in methods. The label free heatmap represents the change of abundance of phosphopeptides in
SLP-76 reconstituted cells across 10 minutes of TCR stimulation while the SILAC heatmap represents the ratios of abundance of phosphopeptides in
SLP-76 deficient cells relative to SLP-76 reconstituted cells at each of the TCR stimulation timepoints. In label free heatmaps, black represents average
abundance for a certain peptide across all timepoints, while yellow (blue) represents levels of phosphorylation above (below) the average. White dots
on heapmaps represent timepoints with false discovery rate less than 2% for significant changes in phosphorylation abundance compared to the
timepoint with minimal average abundance. In SILAC heatmaps, black represents no change in phosphorylation abundance in response to SLP-76
removal, while green (red) represents elevated (reduced) phosphorylation. White dots on heapmaps represent timepoints with false discovery rate
less than 2% for significant changes in phosphorylation abundance between SLP-76-reconstituted and deficient cells. For all heatmaps, blanks
indicate timepoints without a clearly defined SIC peak for that peptide. The coefficient of variation (CV) for each heapmap square amongst the three
replicate experiments was calculated and represented as a color bar on the bottom of that heatmap. According to the CV color key, black represents
0% CV and more orange represents larger CV. Note that, according to Human Protein Reference Database (hprd) Release 7, phosphorylation sites
discussed in the literature previously are marked with ** if identified using phosphoproteomic method alone or * if identified using traditional
approaches such as site-directed mutagenesis.

doi:10.1371/journal.pone.0046725.9003
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Figure 4. Quantitative phosphoproteomic analysis of proteins not previously known to be associated with TCR signaling. Listed
above is a portion of the data collected, representing proteins not previously established to be involved in TCR signaling. Temporal changes in
phosphorylation abundance are represented as heatmaps from 3 replicate experiments as described in methods. The label free heatmap represents
the change of abundance of phosphopeptides in SLP-76 reconstituted cells across 10 minutes of TCR stimulation while the SILAC heatmap
represents the ratios of abundance of phosphopeptides in SLP-76 deficient cells relative to SLP-76 reconstituted cells at each of the TCR stimulation
timepoints. The label free and SILAC heatmaps are described in detail as in Figure 3.

doi:10.1371/journal.pone.0046725.g004

domains of Itk with SLP-76 maintains Itk in an active
conformation [16]. As a result, TCR-induced activation of Itk is
severely reduced in the absence of SLP-76 [4]. The Itk activation
site Tyr’'? was observed with comparable phosphorylation at the
early timepoints and significantly decreased phosphorylation at the
later timepoints in SLP-76 deficient cells compared to reconsti-

PLOS ONE | www.plosone.org

tuted cells (Figure 6A). Upon TCR stimulation, the recruitment of
PLCy1 to TCR signaling complex in lipid rafts requires LAT and
the Gads-binding domain of SLP-76 [49]. Also, SLP-76 has been
shown to be required for Itk-mediated phosphorylation of PLCy1
at Tyr’”? and Tyr’®, the defined SH2-SH3 linker regulatory sites,
leading to the activation of the PLCyl signaling pathway [4].
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Figure 5. Quantitative phosphoproteomic analysis of proteins not previously known to be associated with TCR signaling (con’t).
Listed above is a portion of the data collected, representing proteins not previously established to be involved in TCR signaling. Temporal changes in
phosphorylation abundance are represented as heatmaps from 3 replicate experiments as described in methods. The label free heatmap represents
the change of abundance of phosphopeptides in SLP-76 reconstituted cells across 10 minutes of TCR stimulation while the SILAC heatmap
represents the ratios of abundance of phosphopeptides in SLP-76 deficient cells relative to SLP-76 reconstituted cells at each of the TCR stimulation
timepoints. The label free and SILAC heatmaps are described in detail as in Figure 3.

doi:10.1371/journal.pone.0046725.9005

Therefore we expected phosphorylation of PLCy1 at Tyr’”> and
Tyr"® (o be significantly reduced in the absence of SLP-76.
Unfortunately, phosphorylation of PLCyl at Tyr’’> and Tyr’®?
were not observed in our analysis. In contrast, Tyr771 of PLCy1,
another tyrosine residue known to be phosphorylated after TCR
engagement, showed an increased and sustained phosphorylation
in SLP-76 deficient cells compared to reconstituted cells,
indicating a different regulatory mechanism underlying its

PLOS ONE | www.plosone.org

phosphorylation (Figure 6B). Interestingly, phosphorylation of
the PLCY2 at Tyr”>* was increased with 18 fold maximal change
in the SLP-76 reconstituted cells upon TCR engagement, and it
was significantly reduced in the SLP-76 deficient cells (Figure 6C).
PLCv2 plays a crucial role in BCR-dependent calcium mobiliza-
tion [50] and Tec family kinases were demonstrated to phosphor-
ylate PLCY2 at Tyr’”* and Tyr’*® within the SH2-SH3 linker

region, leading to the activation of PLCy2 phospholipase activity
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Figure 6. Phosphorylation kinetics of Itk, PLCy1, and PLCy2 in
SLP-76 reconstituted and deficient cells. Phosphorylation kinetics
of A) Itk Y512, B) PLCy1 Y771, and C) PLCy2 Y753 in the presence (WT)
and absence of SLP-76 (ASLP76) are represented for 8 timepoints.
Results represent the means of three replicate experiments (error bars
indicate SD). “*” represents timepoints with significant changes (less
than 2% false discovery rate) in phosphorylation abundance between
WT and ASLP76 cells.

doi:10.1371/journal.pone.0046725.9g006

and PLCy2-mediated calcium signaling [50]. Our observation
suggests that PLCy2 could also be regulated by Itk and may
complement the role of PLCy1 in regulating calcium mobilization
in response to TCR engagement.

In the absence of SLP-76, impaired activation of PLCy leads
to reduced production of the second messenger molecules IP3
and DAG. DAG serves as a direct activator for Ras and PKC,
leading to the activation of the Ras-Erk-APl and NF-xB
pathways, respectively [51]. Yablonski et al. reported that Erk2
activation is partially reduced in J14 (SLP-76 deficient) cells,
indicating an incomplete, but significant defect in TCR-
mediated activation of Ras-dependent responses [6]. Consistent
with these earlier reports, our SILAC quantification showed
significant decreases in phosphorylation on Erkl/2 in the
absence of SLP-76 (Erkl at Tyr®™* Erk2 at Tyr'® and
Thr'®Tyr'®). Notably, phosphorylation of Erkl on a peptide
containing phosphorylation at both Thr?** and Tyr*** was
significantly increased in the SLP-76 deficient Jurkat T cells.
However, the underlying mechanistic explanation for this
observation remains obscure.

PLOS ONE | www.plosone.org

10

SLP-76 Dependent Regulation of PAG and SFKs

Other proteins identified with decreased
phosphorylation in J14 (SLP-76 deficient) cells

PAG is exclusively localized to lipid rafts and is known to down-
regulate TCR signaling by recruiting C-terminal Src kinase (Csk)
via the Fyn-mediated phosphorylation of PAG at Tyr®'” [52]. Csk
phosphorylates the C-terminal inhibitory tyrosine residues of Src-
family kinases such as Lck and Fyn, down-regulating their kinase
activities. While PAG is constitutively phosphorylated in resting T
cells, TCR stimulation has been reported to induce rapid
reduction of overall PAG phosphorylation, leading to the
dissociation of Csk from lipid rafts and the subsequent activation
of Src family kinases [52,53]. Previous reports measured PAG
phosphorylation by western blots using anti-P-Tyr antibodies such
as 4G10. The combined average abundance of phosphorylation
on many tyrosine residues would be measured by this approach.
Information about individual phosphorylation sites are not
revealed in a 4G10 blot [52-54]. Phosphoproteomic analysis
provides detailed quantitative information of phosphorylation on
specific sites, allowing for the discrimination between their
different roles. PAG phosphorylation at Tyr®*’, Tyr*'7, Tyr***,
Tyr**', and a previously identified Fyn SH2 domain-interacting
tyrosine residue Tyr'®" was significantly decreased in SLP-76
deficient cells (Figure 7A). The significantly reduced phosphory-
lation of PAG in SLP-76 deficient cells could be due to the
regulation of tyrosine phosphatases by SLP-76, such as CD45,
which has been indicated as the phosphatase that dephosphory-
lates PAG upon TCR stimulation [54]. Alternatively, SLP-76 may
regulate the upstream tyrosine kinase of PAG. Previous studies
have demonstrated that Fyn is predominantly responsible for the
phosphorylation of PAG in resting peripheral T cells [55]. Since
we did not detect the Fyn-specific phosphopeptides, whether the
absence of SLP-76 may impair Fyn activity or the recruitment of
Fyn to phosphorylate PAG is unknown. Nevertheless, SLP-76
regulation of PAG phosphorylation has not been previously
described and the exact mechanism underlying the connection
between PAG phosphorylation and SLP-76 is still not understood.
Notably, the expression level of Fyn compared to Lck in Jurkat T
cells seems to be controversial, with previous studies showing that
expression levels of Fyn and Lck are relatively equal [56], or
expression level of Fyn is approximately 30-fold less than that of
Lck [57]. Our hypotheses on these putative Fyn-regulated
phosphorylation events would need further validation in primary
T cells.

PI3K regulates a vast array of signaling pathways in T cells via
catalyzing the phosphorylation of PIP2 to yield PIP3, a second
messenger molecule that recruits PIP3-specific PH domain-
containing signaling proteins to the plasma membrane. Shim et
al. showed that SLP-76 associates with the N-terminal SH2
domain of p85 in Jurkat T cells after TCR activation, and the
TCR-induced PI3K/Akt activation is dependent on membrane
translocation and tyrosine phosphorylation of SLP-76 [58,59].
PI3K phosphorylation was reduced at the regulatory subunits
tyrosine residues (p85 alpha at Tyr*®’, p85 beta at Tyr*)
(Figure 7B). The possible reduced production of PIP3 by
membrane-associated p85 in the absence of SLP-76 might also
contribute to reduced ITK phosphorylation observed in this
analysis. Consistent with these previous studies, phosphorylation of
P85 (p85 alpha at Tyr*®” and p85 beta at Tyr™") was significantly
reduced in J14 (SLP-76 deficient) cells, supporting the hypothesis
that SLP-76 functions to recruit p85 to the membrane via the LAT
signaling complex, where PI3K gets phosphorylated and activated.

WASP is a key cytoskeletal regulator in hematopoietic cells. The
TCR-induced tyrosine phosphorylation of WASP at Tyr®"' has
been demonstrated to be necessary for WASP effector activities
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downstream of the T cell receptor [45,60]. Using Lck-deficient
Jurkat cells (JCam-1) and primary T cells deficient for Itk, Lck, or
Fyn, Badour et al. has identified that Fyn, but not Itk or Lck, is
required for WASP phosphorylation at Tyr**' after TCR
stimulation in both Jurkat and primary T cells [45]. Previous
studies suggested that SLP-76, as a scaffolding protein, brings
WASP into proximity with Cdc42-GTP, and that this Cde-GTP
binding is required for Fyn-regulated phosphorylation of WASP at
Tyr®"' [61,62]. We hypothesize that SLP-76 mediates scaffolding
of the interaction between WASP and Fyn and therefore the
absence of SLP-76 resulted in the significantly reduced phosphor-
ylation of WASP at Tyr*®' in SLP-76 deficient cells (Figure 7C),
but this hypothesis would have to be validated by future
experiments.

Phosphorylation of the proximal signaling proteins
upstream of SLP-76

The observation that SLP-76 regulates upstream phosphoryla-
tion of Lck, ZAP70, and CD3 9, €, § ITAMs, and the variation of
this effect over time is consistent with a model of SLP-76
regulation of competing positive and negative feedback loops
(Figure 1 and Figure 8).

In support of this hypothesis, Stefanova et al. have demonstrated
the presence of competing ERK positive and SHP-1 negative
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1

represents timepoints with significant changes (less than 2% false discovery rate) in

feedback pathways in T cell signaling regulating Lck activity [28].
The Lek-induced phosphorylation of SHP-1 at Tyr*®* leads to its
association with the SH2 domain of Lck and the recruitment of
SHP-1 to the TCR signaling complex. SHP-1 then dephosphor-
ylates Lck within its activation loop at Tyr™”*, resulting in down-
regulation of Lck activity and decreased phosphorylation of TCR
ITAMs and their associated ZAP70 molecules [30]. Counteracting
SHP-1 negative feedback is a positive feedback loop through
phosphorylation of Lck by Erk. Previous reports have demon-
strated that phosphorylation of Ser’® of Lck can be uniquely
induced by mitogen-activated protein kinase Erk [63] and that
phosphorylation of this site abrogates the binding of SHP-1
[28,64]. Our data as well as previous reports have shown that the
phosphorylation and activation of Erk is reduced in SLP-76
deficient cells [6]. The inhibition of ERK positive feedback on Lck
activity in SLP-76 deficient cells would be expected to coincide
with the timing of ERK activation, which was observed in our data
to occur at 3 min after TCR stimulation. The removal of ERK
positive feedback at 3 min and later timepoints in SLP-76 deficient
cells could explain the significant reduction in phosphorylation
observed in these timepoints on CD3 and &-chain ITAMs and the
ZAP70 activating site Ter’gS (Figure 8) [1,46,65,66]. In contrast,
phosphorylation of Lck within the SH2 domain at Tyr'*?, and
ZAP70 at a functionally uncharacterized tyrosine residue also
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Figure 8. Erk positive feedback on Lck, ZAP70, and CD3 ITAMs. Phosphorylation kinetics of Lck, ZAP70, and CD3 ITAMs from SLP-76
reconstituted (WT) and deficient (ASLP76) cells are presented for 8 timepoints. The differences of phosphorylations between WT and ASLP76 cells
(ASLP76-WT) are also presented to show the trend of phosphorylation changes. Results represent the means of three replicate experiments (error
bars indicate SD). “*” represents timepoints with significant changes (less than 2% false discovery rate) in phosphorylation abundance between WT

and ASLP76 cells.
doi:10.1371/journal.pone.0046725.9008

within its SH2 domain at Tyr**® respond differently to the
removal of SLP-76 (constitutively decreased in SLP-76 deficient
cells compared to reconstituted cells). However, the unique
pathways regulating these particular phosphorylation sites remain
obscure.

Constitutively reduced phosphorylation on PAG in SLP-76
deficient cells would be expected to lead to a reduction in
recruitment of the negative feedback regulator CSK, leading to
constitutive increased phosphorylation of Lck within its activation
loop as well as pathway substrates of Lck such as CD3, and &-
chain ITAMs, and the ZAP70. Before Lck is substantially
activated at 3 min, the SLP-76 mediated regulation of PAG and
its associated negative regulator CSK could explain the observed
significant increased phosphorylation of Lck and its pathway
substrates. After 3 min, SLP-76 mediated regulation of ERK
positive feedback could predominantly regulate the activity level of
Lck. An intricate balance of positive and negative feedback
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pathways could lead to a fine regulation of the precise levels of
activation of the T cell signaling pathway. From this data, the
newly appreciated role of SLP-76 in the regulation of feedback
pathways provides a new glimpse into the pivotal role of this
protein.

Proteins identified with increased phosphorylation in J14
(SLP-76 deficient) cells

Our analysis also revealed that the removal of SLP-76 led to
increased phosphorylation of multiple signaling proteins in J14
(SLP-76 deficient) cells, including the SLP-76 interacting adaptor
proteins ADAP (Tyr>’") and SKAP55 (Tyr'*?), and secveral
negative regulators of TCR signaling, such as the E3 ubiquitin
ligase CBL (Ser®"Tyr®”*, Ser®®®Tyr®™*) Ser®®Tyr®*) and the
CBL-interacting protein STS-1 (Tyr'?), membrane glycoprotein
CD31 (ITIM motif residue Tyr’'®) and CD5 (ITAM-like motif
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residuc Tyr**®), and transmembrane adaptor protein PZR (ITIM

motif residue Tyr?®% and SIT (Tyr'").

This data also revealed previously undescribed SLP-76 regula-
tion of T cell signaling inhibitory proteins. The phosphorylation of
immunoreceptor tyrosine-based inhibitory motif (ITIM) tyrosine
residues in the cytoplasmic domain of CD31 (Tyr®® and Tyr’'?)
and PZR (Tyr?®), as well as the ITAM-like motif tyrosine residue
(Tyr™3) in CD5 and the tyrosine-based signaling motif Y'*?ASV
in SIT, were significantly elevated in SLP-76 deficient cells. The
Src family kinase Lck and/or Fyn have been identified as the
putative kinases that phosphorylate these tyrosine residues in T
cells [67-71].

SLP-76 mediated regulation of Lck substrates

Phosphorylation of many other signaling proteins previously
known to be phosphorylated by Src PTKs, including adaptor
proteins DOK1 (Tyr**) and DOK2 (Tyr?*) [72-74], transmem-
brane adaptor protein LAX (Tyr”®) [75], protein serine/threonine
kinase PKC8 (Tyr’'®) [76], protein tyrosine phosphatase PTPa
(Tyr"®) [77], proline-rich tyrosine kinase 2 (Pyk2) (Tyr"’) [78],
adaptor protein SHC (Tyr**") [79], as well as phosphorylation of
protein tyrosine phosphatase SHP2 at Tyr with a strong scansite
motif for Src PTKs, have been observed with SILAC profiles very
similar to Lck Tyr®* (slightly elevated phosphorylation at the early
timepoints and significantly reduced phosphorylation at the later
timepoints in the SLP-76 deficient Jurkat T cells compared to
reconstituted), supporting the hypothesis that Lck 1s involved in
regulating these sites, either directly or indirectly.

Phosphorylation of proteins not previously associated
with TCR signaling

Many tyrosine phosphorylation sites were also observed on
proteins not previously known to be involved in T cell signaling
(Figure 4 and Figure 5). The majority of these sites were
significantly changed in SLP-76 reconstituted cells through a time
course of TCR stimulation as well as when comparing SLP-76
deficient to reconstituted cells. For example, tyrosine phosphor-
ylation of NTBA at Tyr®%, Tyr?”®, and Tyr®®* was significantly
increased before 3 min and decreased after 3 min. NTBA is an
ITIM containing killer Ig-like receptor that has been previously
shown to be expressed in all human NK, T, and B-lymphocytes
[80,81]. In NK cells, NTBA has been shown to display inhibitory
functions by blocking the ability of NK cells to kill Epstein-Barr
virus-infected target cells [80]. Little is known about their role in T
cells. Recently, certain KIRs (KIR2DL2 and KLRGT1) have been
shown to disrupt late T cell receptor-stimulated effector functions
such the production of IFN-y and interleukin-2, respectively
[82,83]. Furthermore, site-directed mutagenesis of specific tyrosine
residues in the ITIM motif of KLRGI demonstrates the
importance of tyrosine phosphorylation in the inhibitory process
in T cells [83]. In a recently published phosphoproteomic analysis
of ZAP70-deficient T cells, NTBA phosphorylation was slightly
decreased at Tyr®® in ZAP70 deficient cells compared to ZAP70
reconstituted cells, suggesting that this site may be downstream of
ZAP70 activation [40]. In the present study, phosphorylation of
Tyr*® as well as Tyr*”® and Tyr®®** on NTBA was significantly
elevated before 3 min and significantly decreased after 3 min
when comparing SLP-76 deficient to reconstituted cells. This
pattern mimics the same pattern observed on Lek Tyr™
suggesting that NTBA ITIM phosphorylation could be down-
stream of Lck and Erk feedback. This observation also colors the
interpretation of our previous data on ZAP70 suggesting that
ZAP70 mediated regulation of NTBA could either be direct or a
consequence of Erk positive feedback inhibition of Lck activity.
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In this study, a wide-scale quantitative phosphoproteomic
analysis of SLP-76 deficient Jurkat T cells has been performed,
not only to elucidate SLP-76 related signaling networks system-
atically, but also to provide more insights into the molecular
mechanisms of TCR signaling. Through the synergistic combina-
tion of label-free and SILAC quantification techniques, the subtle
fluctuations of cellular signaling networks in response to the
removal of SLP-76 were captured and quantified over time. This
analysis has provided the most comprehensive view to date of the
dynamic tyrosine phosphoproteome after TCR engagement and
the role of SLP-76 in regulation of this constellation of
phosphorylation.  Quantitative, wide-scale phosphoproteomic
analysis of protein-disruption or site-directed mutants of canonical
T cell signaling proteins can greatly complement traditional
biochemical approaches of studying signaling pathways, providing
the possibility of mapping the newly discovered phosphorylation
sites within the framework of the canonical pathway.

Supporting Information

Dataset S1 Quantitative and statistic analysis of all identified
phosphopeptides. Sequence and phosphorylation site assignment
of all identified phosphopeptides with their corresponding SIC
peak areas and statistics (standard deviation, p-values and g-values)
in both SLP-76 reconstituted and deficient Jurkat T cells.

(XLS)

Dataset S2 Assigned MS/MS spectra for all identified phos-

phopeptides in this analysis.
(PDF)

Dataset S3 Phosphorylation kinetics of all identified phospho-
peptides in SLP-76 reconstituted and deficient Jurkat T cells. The
differences of phosphorylations between SLP-76 reconstituted
(WT) and deficient (ASLP76) cells are also presented as plots of
ASLP76-WT across 8 timepoints to show the trend of phosphor-
ylation changes. Results represent the means of three replicate
experiments (error bars indicate standard deviation). ‘“*” repre-
sents timepoints with false discovery rate less than 2% for
significant changes in phosphorylation abundance between WT
and ASLP76 cells.

(PDF)

Figure S1 Variation assessment of SILAC ratios among three
replicate experiments. The reproducibility of SILAC analysis
among 3 replicate experiments was assessed by comparisons of
three SILAC ratios (R, Ry, R3) at 2 min after TCR stimulation.
Difference between SILAC ratios were represented using a scatter
plot of observed phosphopeptides (A, B, C) and a histogram (D, E,
F) of Logy (Ryo/R;), Logys (R3/R;), and Logys (R3/Ry) for each
identified phosphopeptide. In good agreement of the expected
value of 0, the measured average value of Log, (Ro/R}), Logs (R3/
R)), and Logy, (Rs/Ry) was 0.08+0.27, 0.01%0.18, and
0.01£0.46, respectively. Additionally, histogram plots showed
that D) 85.2%, E) 82.2%, and F) 86.8% identified phosphopep-
tides displayed Logs (Ro/R;), Logs (R3/R;), and Logy (R3/Ry)
values respectively in the range of —0.6~0.6.

(TIF)

Figure S2 Disruption of SLP-76 from Jurkat T cells and
phosphorylation of PLCyl. A) SLP-76 expression in Jurkat T
cells. Protein lysates from J14-76-11 (SLP-76 reconstituted) and
J14 (SLP-76 deficient) were separated by SDS-PAGE and
immunoblotted with SLP-76 specific antibodies. B) Effect of
SLP-76 on PLCy1 phosphorylation in OKT3/OKT#% stimulated
Jurkat T cells. Lysates were prepared from J14-76-11 (SLP-76
reconstituted) and J14 (SLP-76 deficient) cells following TCR
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stimulation for the indicated time periods. Total cell lysates were
probed by protein immunoblotting with anti-phospho-PLCy1
(Y783) (top) and anti-PLCy1 (bottom).

(TIF)

Figure 83 Canonical TCR signaling pathway. Established
signaling cascades in activated T cells with quantitative SILAC
ratios (SLP-76 deficient in relative to SLP-76 reconstituted)
represented as SILAC heatmaps beside individual proteins.
SILAC ratios between J14 and J14-76-11 at each of the TCR
stimulation timepoints were represented as SILAC heatmaps as
described in methods.

(PDF)
Method S1 Selection of SILAC labeling conditions. SILAC
labeling conditions were tested for both Jurkat T cell lines J14-76-
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