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Over the past twenty years, significant technical strides have been made in the area of
vascularized composite tissue allotransplantation (VCA). As in solid organ transplantation,
the allogeneic immune response remains a significant barrier to long-term VCA survival
and function. Strategies to overcome acute and chronic rejection, minimize
immunosuppression and prolong VCA survival have important clinical implications.
Historically, large animals have provided a valuable model for testing the clinical
translatability of immune modulating approaches in transplantation, including tolerance
induction, co-stimulation blockade, cellular therapies, and ex vivo perfusion. Recently,
significant advancements have been made in these arenas utilizing large animal VCA
models. In this comprehensive review, we highlight recent immune strategies undertaken
to improve VCA outcomes with a focus on relevant preclinical large animal models.

Keywords: vascularized composite allograft, large animal model, transplantation tolerance induction, cellular
therapies, ex vivo perfusion
INTRODUCTION

Over the past twenty years, notable surgical developments have advanced the field of vascularized
composite tissue allotransplantation (VCA), making it a viable treatment for patients with major
defects involving multiple layers of tissue including hand, face, penis, and laryngeal transplantation,
among others (1–5). As in solid organ transplantation, VCA must overcome a significant immune
Abbreviations: VCA, vascularized composite tissue allotransplantation; HCT, Hematopoietic cell transplantation; BM, Bone
Marrow; MHC, Major Histocompatibility Complex; GVHD, Graft vs. Host Disease; IS, Immunosuppression; NHP, Non-
Human Primates; VBM, Vascularized Bone Marrow; MMF, mycophenolate mofetil; POD, Post operative day; HSC,
Hemopoietic Stem Cells; ATG, Anti-thymocyte globulin; DLA, Dog Leukocyte Antigen; CMPSC, Cytokine mobilized
peripheral stem cells; DSA, Donor Specific Antibody; CoB, Co-stimulation blockade; BM-MSCs, Bone marrow derived
mesenchymal stem cells; DCregs, Dendritic regulatory cells; CyA, Cyclosporine; STSG, Split thickness skin graft; IRI, Ischemia
reperfusion injury; H2S, Hydrogen Sulfide; UW, University of Wisconsin.
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barrier to provide meaningful, long-term benefit. Strategies to
regulate the immune system in favor of VCA tolerance have
important clinical implications as there is a significant risk of acute
and chronic rejection after VCA (6). Further, unlike solid organ
grafts, VCAs primarily serve to enhance quality of life rather than
provide life-sustaining organ function. Consequently, there is risk
to exposing patients to the untoward effects of lifelong
immunosuppressive regimens required to prevent VCA
rejection, including medication side effects, infectious
complications and risk of malignancy.

Given that VCA is a relatively new clinical endeavor
compared to solid organ transplantation, there are a variety of
proven strategies to minimize immune mediated damage of solid
organ allografts that can be translated to VCA. Historically, large
animals have proven to be an important model in which to test
the clinical translatability of immune modulating approaches in
transplantation given the limited success in translating findings
from murine model systems directly to humans. In particular,
large animals are a highly relevant model for VCA studies owing
to their anatomic and physiologic similarities to humans (7).
Early large animal VCA studies overcame technical barriers to
establish clinically relevant models (8–12). Currently, a major
area of focus is optimizing approaches to control the alloimmune
response with the aim of clinical translation. In this review, we
highlight recent advancements in immune modulating strategies
to improve VCA outcomes in relevant preclinical large
animal studies.
METHODS

A PubMed search was conducted using the following search terms:
“vascularized composite allotransplantation”, “composite tissue
allotransplantation”, “large animal models”, “nonhuman
primates”, “cynomolgus”, “rhesus macaque”, “miniature swine”,
“canine”, “tolerance”, “hematopoietic stem cells”, “mixed
chimerism”, “co-stimulation blockade”, “mesenchymal stem cells”,
“dendritic cells”, “chronic rejection”, “local immunosuppression”
and “ex vivo perfusion”. Inclusion criteria consisted of articles
describing studies involving non-human primates (NHP), swine,
or canine models of VCA that investigated an immune modulating
approach in VCA. Articles that focused on the technical aspects of
model development related to VCAwere excluded and were beyond
the scope of this review. In total, 20 articles describing immune
strategies to improve VCA outcomes in large animals
were reviewed.
HEMATOPOIETIC CELL
TRANSPLANTATION

Hematopoietic cell transplantation (HCT), either in the form of
infused bone marrow (BM), cytokine “mobilized” cells, or
vascularized bone marrow (VBM), can induce a state of mixed
chimerism, in which donor and host derived cells coexist in a state
Frontiers in Immunology | www.frontiersin.org 2
of tolerance without a host versus graft allo-response (rejection) or
graft versus host disease (GVHD). Following the induction of
mixed chimerism and immune tolerance, transplantation of a
subsequent donor allograft is accepted without additional
immunosuppression (IS) (13–15). Stable multi-lineage mixed
chimerism has been readily achieved in murine transplant
model systems, however clinical attempts at translating these
protocols has only consistently achieved transient donor
chimerism (14). Despite not achieving long-lasting macro-
chimerism, transient mixed chimerism is adequate to facilitate
tolerance to a subsequent donor allograft if transplanted during
the interval of transient chimerism (14).

As in humans, the majority of HCT regimens in NHP induce
transient mixed chimerism, making NHP an excellent pre-clinical
model for mixed chimerism studies (16, 17). While early VCA
studies in primates strove to generate technically attainable and
immunologically relevant models (8, 11, 18), recent studies have
sought to utilize donor BM, both vascularized and infused
marrow, to modulate the alloimmune response and prolong
graft survival (19–21) (Table 1). Barth et al. (19) assessed the
immunological impact VBM in a VCA model (facial segment), in
which cynomolgus monkeys received VCA grafts with or without
VBM, which incorporated the donor mandible. All recipients
received IS in the form of tacrolimus (goal whole blood level
≤ 30 ng/mL) and mycophenolate mofetil (MMF). A previous
study demonstrated that higher levels of tacrolimus (30 ng/mL –
50 ng/mL) were associated with high rates of post-transplant
lymphoproliferative disease (PTLD) in recipients of VBM (25).
Recipients receiving VCA grafts alone (without VBM) universally
underwent acute rejection by post-operative day (POD) 15 and
graft loss by POD 42. In contrast, the addition of VBM delayed the
onset of acute rejection and significantly prolonged graft survival
to 267 – 462 days. Interestingly, intermittent low-level (1-12%)
donor macro chimerism could be detected in the peripheral blood
of VCA + VBM recipients, but not VCA alone recipients. The
addition of VBM, however, did not induce true VCA tolerance, as
grafts were promptly rejected once IS was discontinued (19).
However, this study served as proof of principle that the
intragraft VBM component conferred an immunological benefit
on VCA survival, since confirmed in murine models (26, 27).

Two subsequent studies evaluated the use of infused bone
marrow as the source of donor hematopoietic stem cells (HSC)
(20, 21). Unlike VBM, Brazio et al. (20) reported no survival
benefit when infused BM was used in conjunction with
tacrolimus and MMF. This despite a significantly higher cell
yield (~6x) when compared to VBM and presumably more HSCs
(20). A caveat to these studies is the lack of preconditioning used,
such as T cell depletion agents or irradiation, which have been
shown to augment HSC engraftment and facilitate mixed
chimerism. Lellouch et al. (21) utilized a delayed tolerance
induction protocol which has previously been used successfully
to induce transient mixed chimerism and confer tolerance to
renal and lung allografts in NHP (15, 28). NHP underwent
upfront VCA transplantation utilizing a conditioning regimen of
anti-thymocyte globulin (ATG), tacrolimus, MMF and
methylprednisolone. This was followed by a two-month period
June 2021 | Volume 12 | Article 664577
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of IS, after which NHP underwent BM transplantation with
donor BM cells cryopreserved at the time of operation. This
delayed induction protocol supposes that recipient conditioning
and BM transplantation at a time point removed from the peri-
transplant period and associated inflammatory milieu is
advantageous for the generation of chimerism and tolerance.
Unlike previous studies in kidney and lung transplant utilizing
this model, transient mixed chimerism was not achieved in this
study, and VCA grafts were quickly rejected following
withdrawal of IS. The authors note that unlike kidney and lung
allografts, VCA allografts may have been compromised by acute
Frontiers in Immunology | www.frontiersin.org 3
rejection episodes in the time interval between VCA and BM
transplant despite ATG depletion and triple IS. Activation of the
allo-immune response during this interval may have impeded
chimerism induction post BMT (21).

Altogether, these studies underscore the substantial
immunogenicity of VCA allografts in NHP compared to solid
organ grafts, likely as a result of skin antigens. Successful
translation of mixed chimerism and tolerance protocols in
NHP VCA models will require additional strategies aimed at
immune modulation to prevent both acute and chronic rejection.
While acute rejection is more commonly observed after clinical
TABLE 1 | Bone marrow and hematopoietic cell transplantation.

Immune
Strategy

Large
Animal
Model

VCA model IS/Regimen Experimental Groups Results/Conclusion Reference

Vascularized
Bone
Marrow

Cynomolgus
Macaques

Facial segment
VCA

Tacrolimus/MMF Group 1 – VCA alone
without VBM + MMF/
Tacrolimus

Group 1 – survival < 42 days (19)

Group 2 – VCA + VBM
(in the form of donor
mandible) + MMF/
Tacrolimus

Group 2 – survival 267 – 462 days. VBM induces
transient chimerism and inhibits VCA rejection until IS
withdrawal.

HCT/mixed
chimerism

Miniature
Swine

Fasciocutaneous
VCA

CD3 Immunotoxin,
1 Gy TBI, 30-day
course of CyA

Group 1 – Untreated
controls

Group 1 – survival 6 days (22)

Group 2 – Delayed
VCA after HCT and
chimerism induction

Group 2 – 115 – 504 days

Group 3 –

Simultaneous VCA
and HCT

Group 3 – 79 – 486 days. Long term tolerance to VCAs
can be achieved through mixed chimerism induction

Infused
Bone
Marrow

Cynomolgus
Macaques

Facial segment
VCA

Tacrolimus/MMF Group 1 – VCA alone
without BMC

Groups 1 and 2 – Infused BM confers no advantage on
VCA survival

(20)

Group 2 – VCA +
BMC

HCT/mixed
chimerism

Canine Rectus VCA 1 or 2 Gy TBI Group 1 –

Simultaneous bone
marrow + VCA +
MMF + CyA

Group 1 – 100% VCA survival 62-69 weeks after
cessation of IS

(10)

MMF, CyA Group 2 – VCA +
MMF + CyA

Group 2 – 3 out of 4 animals rejected VCA after
cessation of IS. Simultaneous establishment of mixed
chimerism and VCA tolerance is feasible.

Minor-mismatched
BMT

HCT/mixed
chimerism

Canine Rectus VCA 4.5 Gy TBI, MMF,
CyA

Group 1 – BMT +
VCA + MMF + CyA

Group 1 – 3 out of 4 animals rejected BM and VCA at 5-
7 weeks post-transplant

(23)

HCT (cytokine
mobilized vs. BMT)

Group 2 – cytokine
mobilized HCT +
VCA + MMF + CyA

Group 2 – 100% acceptance of VCA and long term
tolerance. Cytokine mobilized stem cells are superior to
bone marrow for mixed chimerism induction and VCA
tolerance but associated with increased incidence of
GvHD.

HCT/mixed
chimerism

Miniature
Swine

Vascularized skin
flap

CD3 Immunotoxin,
1 Gy TBI, 30-day
course of CyA

Group 1 – MHC class I
mismatched VCA
transplant

Group 1 – Rejected VCA skin (24)

Group 2 – MHC class
II mismatched VCA
transplant

Group 2 – Were tolerant of all VCA components. MHC
class I matching is necessary for skin tolerance and long-
term VCA tolerance.

Delayed
BMT

Cynomolgus
Macaques

Orthotopic upper
extremity and
heterotopic
partial face VCA

Anti-thymocyte
globulin (ATG),
tacrolimus, MMF
and
methylprednisolone,
BMT

6 animals underwent
VCA transplant
followed by induction
regimen and delayed
BMT 2 months later

All animals developed acute rejection within 2-4 weeks
after VCA transplant. Following BMT, mixed chimerism
failed to develop and VCAs underwent irreversible graft
loss. Delayed tolerance induction protocol not capable of
inducing tolerance to VCA.

(21)
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VCA, chronic rejection remains a poorly understood and poorly
defined entity due to the paucity of transplants performed
worldwide (29). Several large animal models have proven to
demonstrate features of chronic rejection consistent with clinical
VCA (12, 30). In a cynomolgus macaque model of free fibula
VCA, 2/5 animals developed evidence of chronic rejection
including vessel occlusion by intimal proliferation, transplant
vasculopathy and graft fibrosis (12). Interestingly, the
development of chronic rejection did not appear to be
associated with prior episodes of acute rejection, suggesting a
possible distinct pathway for the development of chronic
rejection in VCA. In a subsequent NHP model of heterotopic
face transplantation, five animals were weaned off IS after 200-
day survival to assess the histological features of chronic rejection
(30). All five animals progressed to graft loss, characterized by
tertiary lymphoid follicles, neointimal proliferation, and vessel
wall fibrosis. While there is evidence linking the production of
alloantibody to chronic rejection in solid organ transplantation,
neither NHP VCA model revealed any connection between
alloantibody formation and chronic VCA rejection (31).
Further, both NHP models demonstrated that chronic graft
rejection can be present without overlying skin changes,
supporting the routine use of deeper biopsies to monitor for
evidence of chronic rejection. Collectively, these observations of
chronic rejection in NHP VCA models have since been validated
in clinical reports of chronic VCA rejection, further supporting
the use of large animal VCA models, particularly NHP (32–34).

Unlike NHP, swine and canine models are generally
conducive to the induction of stable mixed chimerism and
therefore long-term tolerance to VCA grafts (22–24, 35). Based
on these consistently achievable results, swine and canine VCA
models allow for mechanistic insights into VCA tolerance
including the effect of MHC antigen matching on skin
tolerance, the temporal relationship between BMT and VCA
necessary for tolerance induction, and the effectiveness of BM
versus cytokine mobilized HSC in VCA tolerance induction.
Shanmugarajah et al. (24) evaluated the effect of MHC class I
versus class II mismatching on skin tolerance induction in a
swine HCT + VCA model and found that MHC class I matching
was necessary for skin tolerance and long-term VCA tolerance
despite the induction of stable mixed chimerism (24). This result
has important clinical implications, as currently, clinical VCAs
do not undergo MHC antigen matching because of the small
pool of potential donors. Moving forward, careful attention to
matching VCA donor and recipients for MHC class I antigens
may potentially improve long term VCA outcomes.

In a canine model of HCT +VCA,Mathes et al. (10) described
acceptance of VCA grafts between 52-90 weeks following
establishment of mixed chimerism. Given that the majority of
VCA grafts used clinically are deceased donor grafts, such a
prolonged period between HCT and VCA transplant is not
usually feasible. Therefore, Mathes et al. (35) tested the
hypothesis that established immunological tolerance was not
required for VCA acceptance, and that simultaneous
establishment of mixed chimerism and VCA tolerance was
possible. Four dog leukocyte antigen (DLA) identical (minor
Frontiers in Immunology | www.frontiersin.org 4
antigen mismatched) transplants were performed, and
recipients underwent 200 cGy of radiation. Three of four
recipients developed stable mixed chimerism and all four
animals remained tolerant to all components of the VCA
despite withdrawal of IS. This result served as proof of principle
that simultaneous establishment of mixed chimerism and VCA
tolerance was possible, increasing the potential clinical
translatability of HCT + VCA protocols (35). Finally, Chang
et al. (23) evaluated whether this protocol could be extended
across an MHC haploidentical barrier and whether either BM or
cytokine mobilized peripheral stem cells (CMPSC), via
granulocyte-colony stimulating factor (G-CSF), conferred any
advantage. Eight total haploidentical canine pairs underwent
simultaneous HCT and VCA transplantation – four received
BM and four received CMPSC. While only one animal (25%) in
the BM group became chimeric and accepted its VCA graft long
term, all four animals in theCMPSCgroup accepted their stem cell
grafts and maintained immune tolerance to VCA long term (one
animal eventually rejected its stem cell graft but remained tolerant
to theVCA). Interestingly, therewas a high incidence ofGVHD in
the CMPSC group (75%), which is not completely unexpected
given the haploidentical MHC barrier and the higher dose of
irradiation (450 cGy) used to condition the recipients (23). These
results are consistent with a previous study across haploidentical
MHC barriers in miniature swine utilizing cytokine mobilized
peripheral stem cells (22).

The induction of tolerance to VCA allografts is the ideal
scenario as it would minimize the risks conferred by long-term
IS. A preliminary study in five human recipients of VCA
suggested that infusion of BM cells was well tolerated and
facilitated maintenance IS with tacrolimus monotherapy, a
significant improvement compared to standard triple IS (36).
While swine and canine HCT + VCA models allow for
mechanistic insights, NHP models more consistently reflect the
clinical scenario in which transient, and not stable, chimerism is
achievable. Although it is unclear why the immune threshold to
achieve stable mixed chimerism in NHP is higher than for swine
or canines, a contributing factor may be the increased frequency
of memory T cells in primates (37). Further refinement of these
HCT protocols is necessary prior to clinical translation, which
may include several of the strategies discussed below.
COSTIMULATION BLOCKADE

Costimulation blockade (CoB) has recently come to the forefront
of solid organ transplantation as a viable alternative to standard
calcineurin inhibitor (CNI) therapy. Belatacept, a CTLA4-Ig
fusion protein was recently shown to confer improved graft
and patient survival compared to CNI in renal transplant
patients (38). Despite these advantages, increased rates of early
acute cellular rejection have impeded the use of CoB based
regimens. A major contribution to CoB refractory rejection
appears to be the relative resistance of memory CD8+ T cells
to CoB given the lack of requirement of costimulation signaling
for activation. Nevertheless, CoB based therapy blocking either
June 2021 | Volume 12 | Article 664577
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the CD28-CD80/86 or CD40-CD154 pathways has shown
promising results in murine VCA models (26, 27, 39). There
have been few studies of CoB based regimen in large animals
(40–42) (Table 2). Wachtman et al. (40) first evaluated the
efficacy of combination CTLA4-Ig + tacrolimus compared to
tacrolimus alone in a Yucatan miniature swine model and found
that the addition of CTLA4-Ig significantly increased survival of
grafts from a mean of 31 days to > 150 days. Atia et al. (41)
hypothesized that the addition of Th17 blockade to a CoB based
regimen would limit T cell infiltration and may prolong graft
survival. Treatment with ustekinumab (anti-IL12/23) and
secukinumab (anti-IL17A) was shown to decrease skin T cell
infiltration and expression of IL17A but was not associated with
prolonged graft survival. In the most expansive study to date of
CoB based regimens in large animal VCA model, Freitas et al.
(42) evaluated the use of several CoB agents, including CTLA4-Ig
and Belatacept, in a NHP study comparing CNI to CoB based
regimens. Overall, the use of CoB was associated with improved
rejection free survival compared to tacrolimus, justifying further
preclinical studies of CoB based therapy for VCA. One
hypothesis for this outcome was the prevention of donor
specific antibody (DSA) formation in the CoB group, a known
therapeutic effect of CoB (43). This study also highlighted the
careful balance required between control of rejection and
protective immunity as several animals required euthanasia
with high cytomegalovirus (CMV) viral loads due to failure
Frontiers in Immunology | www.frontiersin.org 5
to thrive. CMV prophylaxis for high-risk individuals is
standard practice in solid organ transplantation and should be
an important consideration in the clinical VCA setting. Another
important observation in this study was the association between
sirolimus and lack of VCA engraftment. The authors initially
used sirolimus in combination with CoB based on mechanistic
studies that indicated a synergistic effect between the two (44).
However, sirolimus was associated with healing complications
resulting in lack of VCA engraftment. This observation in a
clinically relevant NHPmodel suggests that sirolimus may not be
an appropriate agent to use in the immediate post-operative
VCA setting. Initial treatment with tacrolimus with conversion
to sirolimus ameliorated the wound healing complications. This
study represents the first experience with a CoB based regimen in
a NHP VCA model (42). Further studies are necessary to
optimize a CoB based regimen for VCA.
CELLULAR THERAPIES

Cellular therapies have long been an area of study as an adjunct
to traditional IS in solid organ transplantation. Various
regulatory cell populations have been studied in large animal
models of transplantation including regulatory T cells, bone
marrow derived mesenchymal stem cells (BM-MSCs), and
TABLE 2 | Costimulation blockade.

Large
Animal
Model

VCA
model

IS Experimental Groups Results/Conclusions Reference

Yucatan
miniature
swine

Hind
limb
VCA

Leukocyte Depletion:
TBI and TI

Group 1 - no treatment;
Group 2 - Tacrolimus only;
Group 3 - irradiation, BMT,
and FK506;
Group 4 - received Tacrolimus
and CTLA4-Ig

Group 1 survival: 5-8 days (40)

Cell infusion: Animal groups
received 15, 30, or 60 million
cells per kilogram of whole
unmodified BM.

Group 2 survival: 30 – 32 days (only skin and muscle
rejected)

Immunosuppression: CTLA4Ig. Group 3 survival 5-53 days (only skin rejected).
Group 4 survival: > 150 days (skin survival in 2/3 animals
> 150 days).
Addition of CTLA4-Ig to calcineurin inhibitors significantly
prolonged survival of VCA grafts.

Rhesus
Macaque

Radial
forearm
VCA

Belatacept, Steroids,
Ustekinumab (Anti-IL12/23,
Secukinumab (anti-IL17A)

Group 1 - Belatacept and steroids;
Group 2 - Belatacept, Ustekinumab
with steroid taper;
Group 3 - Belatacept, Secukinumab
with steroid taper.

Group 1 survival: 10 days (41)
Group 2 survival: 10.33 days
Group 3 survival: 11 days
Ustekinumab and secukinumab were associated with
decreased T-cell infiltration and IL-17a expression in the
allograft but had no impact on VCA survival in the setting of
Belatacept and steroids.

Rhesus
Macaque

Radial
forearm
VCA

Belatacept/CTLA4Ig vs.
Tacrolimus

Group 1 – Tacrolimus;
Group 2 – CTLA‐4Ig, alefacept,
sirolimus;
Group 3 – CTLA‐4lg, alefacept,
tacrolimus conversion to sirolimus;
Group 4 – Belatacept, alefacept,
tacrolimus conversion to sirolimus;
Group 5 – Belatacept, tacrolimus
conversion to sirolimus.

CoB was superior to calcineurin inhibitors in prolonging
VCA survival.

(42)

Sirolimus was associated with healing complications
resulting in lack of VCA engraftment.
June 2021 | Volume 12 | Art
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dendritic regulatory cells (DCregs) (45–47). Tolerance induction
via traditional bone marrow transplantation can be complicated
by significant risks including GVHD as well as the morbidity of
the conditioning regimen. In comparison, cellular therapies can
modulate the alloimmune response in a more directed manner,
minimizing collateral effects. This is especially relevant in the
setting of VCA in which patient morbidity is of utmost concern
based on the nature of VCA as a life-enhancing graft.

Kuo and colleagues (48–50) evaluated the efficacy of bone
marrow derived MSCs in swine VCA models (Table 3). First,
donor derived BM-MSCs were administered alone or
incorporated into a traditional BMT regimen to improve VCA
survival in a heterotopic hind-limb model (50). When compared
to untreated controls, multiple BM-MSCs infusions alone
without IS had a modest, but significant effect on survival (9-
14 days vs. 15-25 days). However, when BM-MSCs were used as
part of a BMT protocol that included irradiation, cyclosporin A
(CyA), and BMT, the effect was amplified. Animals receiving the
BMT regimen alone experienced VCA survival of 13-57 days.
The addition of BM-MSCs extended survival to >200 days.
Animals tolerant of their VCA allografts demonstrated
increased regulatory T cells in the peripheral blood, a known
byproduct of BM-MSC infusion (49, 50). Analysis of donor VCA
skin revealed the presence of donor BM-MSCs, indicating that
infused MSCs homed to the graft and may have provided an
additional local protective effect. Similarly, in a swine hemi-facial
allotransplant model, BM-MSCs had only a modest, but not
statistically significant, effect on allograft survival (mean survival
time [MST] – 34 days) compared to untreated controls (MST – 9
days) (48). However, the addition of transient IS with CyA
augmented the effect of MSCs, significantly prolonging graft
survival. Animals treated with MSCs again demonstrated
Frontiers in Immunology | www.frontiersin.org 6
increased Tregs in the peripheral blood and graft, as well as
decreased expression of proinflammatory cytokines (TNF-a) in
circulation. These results in a large animal VCA model support
murine findings that BM-MSCs are a novel cellular therapy
capable of suppressing the alloimmune response and prolonging
VCA survival in the setting of concomitant IS.

The use of MSCs in clinical VCA transplant may be an
exciting strategy to improve outcomes. The safety of MSCs has
already been demonstrated in various clinical trials in solid organ
transplantation, which could pave the way for their use in VCA
(51, 52). However, there remain outstanding questions that need
to be further explored prior to applying MSC-based therapies to
human VCA patients including their mechanisms of action in
preventing rejection in vivo as well as the fate of MSCs following
infusion. Interestingly, murine studies suggest that MSCs are
quickly trapped within the pulmonary circulation after
intravenous administration and only a small proportion of
MSCs reach the systemic circulation and peripheral tissues (53,
54). For these reasons, the long-lasting immunomodulatory
effect of MSCs is likely mediated through their ability to
harness the effects of other cell types including Tregs. MSCs
are capable of inducing Tregs through various mechanisms
including TGF-B and indoleamine 2,3-dioxygenase (IDO) (55,
56). Confirming these murine findings in large animal models
will be an important step in paving the way to clinical trials of
MSCs in VCA.

DCregs are a population of bone marrow derived dendritic
cells with immune suppressive properties (57). In murine
models, DCregs are capable of inducing transplant tolerance
through both peripheral and central mechanisms (57). Based on
these tolerogenic properties, DCregs have been studied in early
phase clinical trials of autoimmune disease and were shown to be
TABLE 3 | Cellular therapies.

Large
Animal
Model

VCA model IS Experimental Groups Results Conclusion Reference

Swine Heterotopic
hind-limb
VCA

Irradiation, BMT,
Cyclosporine,
MSCs

Group 1 – untreated controls. Group 1 Survival – 9-14 days Donor MSCs augment the
effect of BMT and
significantly prolong VCA
survival.

(50)
Group 2 - received MSCs alone (given on
days -1, +3, +7, +14, +21).

Group 2 survival – 15-25 days

Group 3 - received cyclosporine A. Group 3 survival – 28-45 days
Group 4 - received preconditioning
irradiation (day -1), BMT (day +1), and CyA.

Group 4 survival - 13-57 days

Group 5 - received irradiation (day -1), BMT
(day +1), CyA, and MSCs (days +1, +7,+14).

Group 5 survival – > 200 days

Swine Heterotopic
hind-limb
VCA

Irradiation,
Cyclosporine,
MSCs

Group 1 – untreated controls. Group 1 Survival – 9-14 days Donor MSCs prolong VCA
survival in the setting of
irradiation/CyA

(49)
Group 2 – received MSCs alone (on days -1,
+3, +7, +14, and +21).

Group 2 survival – 15-25 days

Group 3 – received cyclosporine A. Group 3 survival – 28-45 days
Group 4 received irradiation (on day -1),
MSCs (days +1, +7, +14, and +21), and
cyclosporine A.

Group 4 survival – > 120 days

Swine Orthotopic
hemi-facial
VCA

Cyclosporine,
MSCs

Group 1 – untreated controls. Group 1 Survival – 7-28 days Donor MSCs + transient
CyA significantly prolong
VCA survival.

(48)
Group 2 – received MSCs alone (on days -1,
+1, +3, +7, +14, and +21).

Group 2 survival – 17-38 days

Group 3 – received cyclosporine A. Group 3 survival – 36-48 days
Group 4 received MSCs (days -1 +1, +3,
+7, +14, and +21), and cyclosporine A.

Group 4 survival – 42-87 days
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safe (58, 59). Current trials of autologous and donor derived
DCregs in kidney and liver transplantation are currently
underway. DCregs have been generated in NHP using
granulocyte-macrophage colony stimulating factor (GM-CSF)
and GCSF mobilization followed by leukapheresis to capture
CD14+ monocytes (46, 60). CD14+ monocytes were then
cultured with GM-CSF, IL-4, vitamin D3, and IL-10 to generate
DCregs. In a NHP model of kidney transplantation, both donor
derived and autologous DCregs significantly prolonged renal
allograft survival, providing a foundation for DCreg use in large
animal VCA models (46, 60). Currently, preliminary studies are
ongoing to produce swine DCregs for evaluation in a miniature
swine VCAmodel (61). Elgendy et al. (61) generated swine DCregs
from both bone marrow and peripheral blood sources. Using a
similar culture strategy as above, swine DCregs were generated and
found to have similar properties as NHP DCregs including poor
allogeneic stimulation, reduced MHC class II expression, and low
levels of costimulatory molecules (CD80/86) (61). In vivo studies
utilizing these swine DCregs in a VCA model are forthcoming.
LOCAL IMMUNOSUPPRESSION

The systemic effects of chronic IS can cause significantmorbidity in
VCA recipients and impair quality of life. Unlike solid organ
allografts, VCAs are candidates for local interventions and
delivery of IS given their easy accessibility. Local IS strategies,
such as topical application of IS or the use of a local drug delivery
system, could minimize systemic exposure of IS while maintaining
sufficient levels at the graft site to prevent rejection. The
mechanisms of local delivery of IS are not completely intuitive as
much of the IS administered locally likely does not directly reach
secondary lymphoid organs (62). Site specific delivery of IS may
have alternative effects including inhibiting APC activation,
mitigating transendothelial migration of activated leukocytes and
prevention of ischemia reperfusion injury (62).

Clinically, there is anecdotal evidence that topical IS may be
useful in the treatment of low-grade acute rejection, although
there have been no randomized trials evaluating the efficacy of
topical IS in VCA (63). Rodent models have suggested that local
IS may be equally as efficacious as systemic IS in preventing VCA
rejection (64, 65). In a rat hindlimb model, Gajanayake et al. (64)
demonstrated the utility of an enzyme responsive tacrolimus-
laden hydrogel to provide local IS at the graft site. The hydrogel is
designed to release the drug (tacrolimus) upon encountering
proteolytic enzymes, such as matrix metalloproteinases,
produced during inflammation. A single local injection of this
tacrolimus-laden hydrogel prolonged VCA survival > 100 days,
compared to local tacrolimus alone (no hydrogel) (33.5 days)
(64). In a different study by the same group, subcutaneous
intragraft applications of a tacrolimus hydrogel prolonged graft
survival as long as daily systemic tacrolimus, despite a four times
smaller overall tacrolimus dose in the subcutaneous group (65).

Several large animal models have studied the efficacy of these
local IS strategies (66–68) (Table 4). Mastroianni et al. (66)
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evaluated the use of slow-release topical formulations of CyA and
tacrolimus in baboons by applying these formulations topically
after allogeneic and xenogeneic split thickness skin grafts (STSG)
as well as to the wound bed prior to skin grafting. In both
scenarios, there was no improvement in STSG survival with the
use of either topical CyA or tacrolimus, although histology
revealed decreased inflammatory cell infiltrate in tacrolimus
treated STSG. It is unclear whether the dosing used in this
study was sufficient to significantly prolong graft survival (66).

The role of ischemia reperfusion injury (IRI) in VCA
outcomes is not yet completely understood, although several
studies have suggested that IRI may contribute to acute rejection
episodes, development of chronic rejection, and impede
tolerance induction. Hydrogen sulfide (H2S) has previously
been shown to avert the development of IRI in autologous
swine VCA model (gracilis musculocutaneous flap) and was
associated with significant decreases in skeletal muscle IRI
biomarkers including creatine kinase, lactate dehydrogenase,
and aspartate aminotransferase (AST) (69). The same group
then attempted to translate these findings to an allotransplant
model, in which allografts were pretreated with H2S prior to
three hours of cold ischemia time (67). Recipients did not receive
any systemic IS. Compared to untreated controls undergoing the
same period of cold ischemia, H2S delayed the onset of rejection
both by clinical and histopathological assessment, but the effect
was most dramatic in the early postoperative period (day 6-8).
Future studies may combine H2S graft pretreatment with
traditional IS to determine if the effect of H2S can be augmented.

Finally, Fries et al. (68) utilized a similar enzyme responsive,
tacrolimus-eluting (TAC) hydrogel as described above, in a
swine limb VCA model. Orthotopic forelimb transplants were
performed across one haplotype MHC barrier in miniature
swine. Untreated controls rejected by POD 6. In comparison,
two experimental groups received an injection of either low (49
mg per limb) or high (91 mg per limb) dose of TAC hydrogel on
the day of transplant. Both treatment groups experienced
prolonged graft survival times (low dose 56-93 days; high dose
24-42 days), although the group receiving low dose treatment
fared clinically better than the high dose treatment group in
which animals necessitated euthanasia due to failure to thrive.
Whole blood levels of tacrolimus were not different between the
two experimental groups, so the reason for the clinical differences
is unclear. Nevertheless, such a significant prolongation of VCA
survival in the absence of systemic IS is a notable achievement
and serves as proof of principle that drug eluting hydrogel is a
viable form of IS delivery in VCA. The authors noted that future
studies will need to focus on optimizing measurement of graft
delivered IS as well as restricting drug release to episodes of acute
rejection while minimizing release in response to non-specific
inflammatory insults (68).

Whereas local IS seems to efficiently control the ongoing
process of T cell mediated rejection of the allogenic skin, there is
little evidence that it has any impact on the humoral arm of the
immune response. The advantage of local IS, which reduces the
need for systemic IS, could be counterbalanced by its inability to
inhibit the occurrence of chronic vascular rejection (chronic
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allograft vasculopathy), the main cause of VCA graft loss in
the long term. For this reason, it is unlikely that local IS will serve
as a replacement for systemic IS in VCA; rather it will most likely
be utilized as an adjunct to reduce the amount of systemic IS
required to temper the immunogenicity of VCA allografts.
EX VIVO PERFUSION

The current standard of care for organ preservation is static cold
storage at 4 degrees Celsius in University of Wisconsin (UW)
solution. Ex vivo perfusion of organs has recently emerged as a tool
to preserve the viability of time-sensitive organs, revitalize marginal
organs, and immunomodulategraftsprior to transplantation(70,71).
Early-stage clinical trials are currently underway in solid organ
transplantation including kidney (NCT03837197), liver
(NCT03930459), heart (NCT00855712) and lung (NCT01365429).
Due to the limited availability of donors and time sensitivity
associated with VCA grafts, prolonging the period between
procurement and revascularization while preserving viable tissue
could significantly increase the donor pool and increase the
indication for VCA. Further, as a result of the muscle component,
VCA grafts are particularly susceptible to IRI. The ability to
“optimize” VCA grafts on an ex vivo circuit could potentially
diminish the degree of IRI after revascularization. Large animal
preclinical studies are especially valuable in the area of ex vivo
perfusion for logistical reasons, mainly the size similarities between
large animal and human organs.

In a swine forelimb model, Ozer et al. (72) compared standard
static cold preservation (4 degrees Celsius) for six hours to
normothermic machine perfusion (27-32 degrees Celsius –
room temperature) with autologous blood for 12 hours
(Table 5). In contrast to cold preservation, which slows the
Frontiers in Immunology | www.frontiersin.org 8
metabolic rate leading to a depletion of ATP stores and acid-base
disturbances, normothermic perfusion maintains normal
metabolic rates (72). Further, normothermic perfusion appears
to limit expression of hypoxia-related genes in comparison to
static cold storage (75). In this study, animals receiving machine
perfused grafts demonstrated adequate levels of microvascular
blood flow and maintained near normal muscle contractility
after transplantation up to 24 hours. In contrast, control animals
demonstrated blood flow only in large vessels (radial and
brachial arteries), without evidence for microvascular blood
flow, and a steady decline in muscle contractility compared to
the contralateral limb. Physiologic parameters were measured
while VCA grafts were on the pump and in the recipient after
transplantation, and no significant changes were observed
among K+, pH, pO2, and pCO2. Lactate levels did increase
while the graft was on pump but returned to normal levels in the
recipient after transplantation. The same group then extended
their perfusion time to 24 hours, instead of 12, with similar
results (73). These results demonstrate that normothermic ex
vivo machine perfusion of VCA grafts up to 24 hours is possible
without major metabolic derangements and leads to superior
functional outcomes compared to static cold storage (73, 74).
DISCUSSION

The future of VCA appears to be at a crossroads (76). Historically,
the United States Department of Defense (DOD) has been a
major financial contributor to the field of VCA. Recently
however, there has been a major push for insurance companies
to cover the procedure and the ongoing care required, similar to
solid organ transplantation (76). Given VCA’s perceived status as
a non-vital transplant, insurance companies may be hesitant to
TABLE 4 | Local Immunosuppression.

Large
Animal
Model

VCA model IS Experimental Groups Results/Conclusion Referenc

Yorkshire
Swine

Gracilis
musculocutaneous
flap

Hydrogen Sulfide Group 1 (control) – 3-hour ischemic period
without perfusion.

H2S perfusion associated with decreased levels
of injury biomarkers and proinflammatory
cytokines including creatine kinase, LDH, and
AST

(69)

Group 2 – 3-hour ischemic period with an interim
perfusion of H2S.

Baboons Skin Slow-release
(TyroSphere-
encapsulated)
topical formulations
(cyclosporine or
Tacrolimus)

Group 1 – Topical formulations applied directly to
the STSGs only.

No graft survival benefit of topical treatment to
either the STSG or wound bed

(66)

Group 2 – Topical formulations applied to both
the wound bed and the STSG.

Swine Gracilis
musculocutaneous
flap

Hydrogen Sulfide Group 1 (control) – 3 hours of cold ischemic time
without treatment.

Local pretreatment with H2S delayed the onset of
rejection both by clinical and histopathological
assessment.

(67)

Group 2 –Allografts pretreated with hydrogen
sulfide prior to 3 hours cold ischemic time.

Swine Forelimb VCA Enzyme
responsive,
tacrolimus-eluting
(TAC) hydrogel

Group 1 (control) – No treatment. Group 1 – survival 6-7 days (67)
Group 2 – Low dose TAC hydrogel (49 mg). Group 2 survival – 56-93 days
Group 3 – High dose TAC hydrogel (91 mg). Group 3 survival – 24-42 days

Graft implanted TAC hydrogel allows for long term
survival of orthotopic forelimb VCA in absence of
systemic IS. Low dose treatment better tolerated
than high dose treatment.
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provide lifelong reimbursement for the IS medications necessary.
Continued advances in technology and immune strategies to
improve VCA outcomes and reduce the IS burden will be an
important step in moving the field of VCA forward. To this effect,
large animal models of VCA will play a critical role in this
endeavor. Large animal models of VCA have proven to share
distinct technical, immunologic, and histopathological features
with clinical solid organ and VCA transplantation. Because of
these similarities, they will be useful in understanding the short-
and long-term immunological barriers to VCA survival and
optimizing novel immune modulating approaches to minimize
IS, prevent VCA rejection, and expand the donor pool.

As in solid organ transplantation, swine and canine models
appear to be most useful in contributing to mechanistic insights
underlying tolerance induction andotherproof of principle strategies
(ex vivo perfusion). In contrast, preclinical NHP models more
realistically reflect the clinical VCA experience in terms of acute
and chronic alloimmune responses, IS effects, and histopathological
features.Overcoming the immune barrier in preclinicalNHPmodels
of VCA will confer an increased chance of success when translated
clinically. There is evidence that combining several of the strategies
described here relative to each individual strategy alone may confer
additional benefit in preclinicalmodels of solid organ transplantation
(77).However, these attempts shouldbeapproachedcautiously in the
Frontiers in Immunology | www.frontiersin.org 9
setting of clinical VCA, given the nature of VCA as a life-enhancing
graft rather than a life-saving option. Patient morbidity should be of
utmost importance, and immunemodulating strategies that result in
over-immunosuppression of recipients should be avoided.

In conclusion, as clinical VCA expands to include more
indications, the future of VCA research will undoubtedly
expand in various directions. Key areas of research that will be
important to moving the field forward include expanding the
donor pool to potentially allow for HLA matching, overcoming
the barrier of chronic rejection, and identifying strategies to
minimize the need for chronic, high-dose IS. As described in this
review, large animal models are well positioned to address these
questions and continued funding of these models is imperative to
support these studies.
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