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Abstract

The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically
adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism
by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual
identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and
heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition,
directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system
of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions
concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics
and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning
about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among
members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group.
Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of
flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to
pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific
compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might
allow the hybrid-based genesis of newly combined host specificities.
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Introduction

Sexual reproduction affords important benefits owing to an

accelerated adaptive evolution and the efficient elimination of

deleterious mutations [1,2]. As a result of the evolutionary struggle

for life sexual reproduction became prevalent in most organisms

[3–5]. However, sexually reproducing organisms have to ensure

the maintenance of individual sexual identities and the prevention

of selfing and hybridisation, all linked to increased costs. The

functional and genetic aspects of these trade-offs have been

broadly studied in many organismic groups such as mammals,

plants and fungi [6–10].

Fungi are excellent model systems to study sex determination,

mate recognition and mating type evolution [5,11,12]. The

fruiting bodies of agaricomycetes are the most prominent sexual

structures in fungi giving rise to comprehensive studies on sex in

this subgroup of basidiomycetes [13–18]. Strikingly, most

basidiomycetes are stringently heterothallic and sexual identity is

determined by two specific mating type gene clusters that encode a

pheromone-receptor (PR) system and heterodimerising homeodo-

main (HD) transcription factors. Their components are function-

ally conserved even across phyla [19–21] and transspecific

polymorphism of mating type alleles has been preserved since

the last common ancestor of basidiomycetes and ascomycetes

[22,23].

Depending on the chromosomal independence or linkage of

both mating loci, meiosis segregates either four or two different

mating types referred to as tetrapolarity and bipolarity, respec-

tively [12,14]. In the tetrapolar agaricomycetes Coprinopsis cinereus

and Schizophyllum commune each allele of the multiallelic PR locus

contains several receptors and pheromones giving rise to

thousands of sexes [24]. By contrast, PR loci of bipolar species

are biallelic, either due to suppressed recombination within the

large mating type region [25] or due to the loss of their mating

type-specific pheromone receptor function [26]. Interestingly,

there are intermediate states of less strict bipolarity and partially

preserved recombination as shown in Sporidiobolus salmonicolor, a

member of Puccinomycotina [27]. However, mating type loci of

different phylogenetic groups underwent individual genetic

transitions. A clear basidiomycete-wide survey regarding the

diversity of those regions and their origin is still missing.

Basidiomycete pheromones and receptors are both allelic

variants of a single gene each [15]. Pheromone genes encode

precursors of lipopeptide pheromones that are proteolytically

processed as well as S-farnesylated and -carboxymethylated at

their C-terminal CAAX-motif [15,28]. After secretion phero-
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mones are recognised by their cognate G protein-coupled

receptors (GPCRs), which represent the largest family of

transmembrane receptors in eukaryotes. GPCRs are believed to

have a conserved tertiary structure and serve as potential targets

for antifungal drug development [29]. Pheromone-activated

receptors trigger an intracellular signal transduction network that

involves a specific signal transduction cascade, the mitogen-

activated protein kinase (MAPK) module [30].

The functionality of the PR system relies on the simple principle

of only allowing the combination of proteins from different mates

to initiate sexual development [11]. This restriction makes

demands on the specificity of both receptors and pheromones in

a co-evolutionary manner. Single amino acid changes in

pheromone receptors altered their specificity and enabled the

sensing of different non-self pheromones [31–33]. Furthermore,

studies applying synthetic pheromone derivatives of both Ustilago

maydis and U. hordei revealed a qualitative and quantitative

correlation between pheromones and pheromone-dependent

mating responses [34,35]. This functional plasticity of the PR

system corresponds to observations of interspecific sexual com-

patibility in Ustilaginaceae encompassing merely fusing sporidia

up to completely fertile F1 hybrids with mixed host preferences

(summarised in [36]).

Among basidiomycetes the plant biotrophic grass smuts are of

special interest since in their life cycle mating is directly linked to

parasitism. They belong to a speciose monophyletic group of plant

biotrophic parasites that are specifically adapted to hosts of the

sweet grasses, the Poaceae [37,38]. Research on its model species

U. maydis, U. hordei and Sporisorium reilianum revealed first insights

into their complex and diverse mating biology [39–42]. U. maydis is

a particularly good example with respect to mating genetics,

physiology and pheromone signalling [43–45]. Its parasitic phase

is initiated by a morphological and physiological transition from

haploid saprobic yeast cells to dikaryotic infectious filaments. To

this end compatible mating partners have to find each other and

fuse. During this process pheromone signalling triggers the

formation of conjugation hyphae, their directed growth towards

the source of compatible pheromone and their final fusion [40].

On the molecular level pheromone perception triggers the

phosphorylation of the HMG box transcription factor Prf1

(pheromone response factor 1) via a MAPK cascade. Subsequent-

ly, Prf1 specifically activates a set of pheromone-responsive genes

including the mating type genes by binding to pheromone

response elements (PRE) [46,47].

Upon plasmogamy, pathogenic development and the mainte-

nance of the dikaryon are mediated by the heterodimerising

transcription factors bW and bE that originate from the HD

mating type loci of both mating partners [12,48]. Thus, the sexual

life cycle can only proceed if mating partners are heteroallelic in

both mating loci. This dependence on mating imposes strong

selection pressure towards a fully compatible mating system and

obviously favoured HD allele radiation to at least 19 functionally

different HD alleles in U. maydis and five in S. reilianum (J. Kämper,

personal communication; [42,49]).

Unlike multiallelic HD loci, the PR loci of grass smuts were long

thought to be biallelic, e.g. in U. maydis and U. hordei with each PR

allele a1 and a2 encoding one receptor and one pheromone

flanked by two species-specific genes, lba and rba [21,39]. The a2

allele encodes two additional pheromone-induced genes, lga2 and

rga2, that are involved in the uniparental inheritance of

mitochondria in U. maydis [50]. Interestingly, further studies on

the PR system of additional grass smut species revealed a large

diversity showing three different molecular organisations in the

corresponding genomic region. In particular, U. maydis is

tetrapolar using two PR alleles [39], U. hordei is bipolar using

two PR alleles [41] and S. reilianum is tetrapolar using three PR

alleles [42]. Furthermore, the a2 locus of U. maydis contains a

pheromone-encoding pseudogene, encouraging speculations about

a more complex ancestral mating type system [39]. These

observations raised questions about their ancient genetic structure

and the subsequent evolutionary transitions of the mating type

system in smut fungi and furthermore, challenged the idea of a

species-specific PR system. In order to re-evaluate current findings

and to round up our perspective on fungal mating in a broader

genetic and evolutionary context, we focused on the specificity of

the PR system and its genetic diversity in non-model species. In

this evolutionary approach of 10 different species spanning about

100 million years of Ustilaginaceae evolution, we sequenced 11

novel PR loci including complete gene sequences of 10 fungal

pheromone receptors and 21 lipopeptide pheromones. Combining

sequence comparisons and interspecies mating assays, we assessed

the probability of hybridisation in Ustilaginales and its potential

role in evolution.

Results

Phylogenetic backbone of Ustilaginales
To understand genetic transitions of mating type loci in a

broader evolutionary context, we investigated a representative

world-wide set of 25 Ustilaginales species (Table S1, shaded in

grey). 18 of these species either collected on field trips (6

specimens) or originating from herbarium material (12 specimens)

were cultured for further investigation (Tables S1, S2). From 22

species (Table S1) we amplified the well-established marker genes

ef1-a, rpb1, lsu rDNA, ssu rDNA and ITS containing 5.8S rDNA

encoding elongation factor 1-alpha, RNA polymerase II subunit 1,

large subunit rDNA, small subunit rDNA and internal transcribed

spacer containing 5.8S rDNA, respectively. Together with the

reference sequences of Cintractia limitata, Malassezia globosa, Mal.

pachydermatis, Schizonella melanogramma, Sporisorium reilianum, Ustan-

Author Summary

Sexual reproduction is prevalent among eukaryotes and
involves the maintenance of different sexes within
reproducing populations. Due to similarities to higher
eukaryotes like animals and plants, fungi serve as adequate
model systems to study sex determination, mate recogni-
tion, and mating type evolution. In fungi, sexual identity is
determined by a few genes that reside at specific genomic
regions. Those so-called mating type loci encode a
pheromone-receptor system and heterodimerising tran-
scription factors. Intensive studies of various model
organisms uncovered important aspects of sex in fungi.
However, comparative surveys that cover distinct phylo-
genetic groups within the fungal kingdom are still rare,
leaving many questions unanswered about the diversity,
specificity, and evolutionary transitions of fungal mating
types. Here, we report on mating genetics and the
specificity of mate recognition in the plant biotrophic
basidiomycete family Ustilaginaceae. In our Ustilaginaceae-
wide study, we unravel a conserved triallelic pheromone-
receptor system that preserved interspecific sexual com-
patibility for more than 100 million years and most likely
gave rise to the convergent evolution of biallelic mating
type determinations. Moreover, our results demonstrate
that grass smuts represent a valuable model group to
study the hybrid-based genesis of novel genotypes and
their evolutionary impact on speciation.

Interspecific Sex and MAT Diversity in Grass Smuts
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ciosporium standleyanum and Ustilago maydis (Table S1) we calculated a

robust multi-gene phylogeny that represents all major groups of

Ustilaginales. The phylogeny was rooted with the non-grass smuts

Mal. globosa, Mal. pachydermatis, Melanotaenium euphorbiae and Urocystis

eranthidis (Figure 1). Bayesian Markov chain Monte Carlo and

Maximum Likelihood (ML) analyses revealed identical topologies

supporting the monophyly of Ustilaginaceae as well as Ustilagi-

nales with 1.0 posterior probabilities and 100% bootstrap support

each. Within Ustilaginaceae, we found one clade dominated by

Sporisorium species including S. reilianum and U. maydis (Figure 1,

coloured in red), a second clade dominated by Ustilago species

including U. hordei (Figure 1, coloured in green), a third clade that

consists of S. consanguineum and U. spermophora (Figure 1, coloured in

blue) and a forth clade that consists of Tranzscheliella hypodytes and

Figure 1. Multi-gene phylogeny and interspecific sexual compatibility of Ustilaginales. Concatenated Maximum Likelihood (ML) analysis
of 2571 bp of ssu, ITS, lsu rDNA, ef1-a and rpb1. Circles next to branches indicate bootstrap support values and a posteriori probabilities of Bayesian
and ML analyses, respectively. Branch lengths correspond to substitutions per site and abbreviated branches indicate longer branches. Connected
squares illustrate hybrid filament formation (bold lines) or pheromone response (thin lines). Numbers in squares represent respective a mating types.
Coloured boxes depict different phylogenetic clades (see text). Host ages refer to [60].
doi:10.1371/journal.pgen.1002436.g001

Interspecific Sex and MAT Diversity in Grass Smuts

PLoS Genetics | www.plosgenetics.org 3 December 2011 | Volume 7 | Issue 12 | e1002436



U. williamsii (Figure 1, coloured in yellow). Macalpinomyces eriachnes is

resolved as a sister taxon of the ingroup species of the first three

clades (Figure 1). Thus, at least four different clades could be

defined in the Ustilaginaceae.

Diversity of the PR system of Ustilaginales
To analyse the diversity of the PR system, we pursued two

sequencing strategies. We first assessed the occurrence of the

pheromone receptor genes pra1, pra2 and pra3 in a set of 104

different species of Ustilaginaceae using PCR amplification. To

this end, we designed allele-specific degenerated primers based on

available sequences of pheromone receptors of U. maydis, U. hordei

and S. reilianum. Primers for pra1, pra2 and pra3 were directed

against conserved regions overlapping with trans-membrane

domain (TMD) 1 and TMD6, TMD2 and the inner loop between

TMD5 and TMD6, as well as TMD1 and the inner loop between

TMD5 and TMD6, respectively (see Materials and Methods,

Table S3). This initial approach revealed fragments of the

expected sizes of about 780 bp, 620 bp and 680 bp from three

pra1, five pra2 and two pra3 receptor genes, respectively.

Subsequently, these sequences were used in addition to the initial

reference sequences to design nested degenerated primers, which

were again allele specific and directed against conserved regions

(for details see Table S3). Thereby, 20 additional PCR fragments

were obtained resulting in a dataset of 36 partial sequences of

pheromone receptor genes containing 30 novel sequences (Table 1)

and six known sequences.

In a second approach, we sequenced complete PR loci of U.

cynodontis, U. filiformis, U. xerochloae, Me. pennsylvanicum, S. walkeri and

the non-grass smut Us. gigantosporum. To this end, we performed

genome walks starting either from genes of PR locus-flanking

regions or from the pheromone receptor sequences obtained in the

degenerated primer approach. Within flanking regions, we chose

the highly conserved genes lba and panC (left border a locus and

probable pantoate-beta-alanine ligase). For this purpose, we

designed gene-specific degenerated primers based on available

sequences of S. reilianum, U. hordei and U. maydis (see Materials and

Methods). Since degenerated primers directed against flanking

genes were applicable for all tested strains we were able to

sequence PR loci of Me. pennsylvanicum (a1 locus), S. walkeri (a1

locus), U. filiformis (a1 locus) and Us. gigantosporum (a1, a2, a3 locus)

that escaped the described initial approach. Applying BLAST [51]

we predicted complete coding sequences of 10 pheromone

receptors within these mating type loci. In sum, the two strategies

revealed 42 novel sequences of pra receptors from 34 species

(Table S4).

To assess the number of different a alleles in our dataset we

performed ML analyses of two pheromone receptor sequence

alignments comprising either complete coding sequences of 17

pheromone receptors or all available partial sequences, including

trimmed sequences from genome walks and published sequences

(Table S1). Both phylogenies resolve three mating type-specific

clades with 100% bootstrap support for full length sequences and

83, 99 and 100% bootstrap support for partial sequences, showing

a very high consistency between the different datasets (Figure 2,

Figure S1). Furthermore, each novel gene encoding pheromone

receptors, that has been sequenced by use of primers non-specific

for certain alleles, groups with sequences of one of the three pra

alleles. This suggests that the existence of a fourth PR allele is

highly unlikely. In sum, 21 sequences could be assigned to pra1, 13

to pra2 and 13 to pra3. Together with the observed conservation of

one receptor per locus this indicates the presence of only three pra

alleles in Ustilaginaceae.

To support this observation, we also identified pheromone

precursor genes in our genome walk data by performing sequence

comparisons to mfa genes of U. maydis, S. reilianum and U. hordei.

This resulted in the identification of 21 pheromone precursor

genes with, at most, two genes per locus. A ML analysis of a

pheromone precursor alignment including all 28 available coding

sequences confirmed three mating type-specific clades albeit the

support in single clades was weaker due to the sparse sequence

information of short pheromone sequences (Figure S2). In essence,

three pra and three mfa alleles are ancient and unique to

Ustilaginales.

To evaluate the occurrence of pra alleles in a phylogenetic

background, we mapped species-specific information on a ML

phylogeny from partial rDNA sequences (lsu and ITS containing

5.8S) of 108 species of Ustilaginomycotina containing all 104

species that were tested in the degenerated primer approach

(Figure S3). All three pra alleles are present in the three major

clades of Ustilaginaceae as well as in the non-Ustilaginaceae

species Us. gigantosporum showing that these three pra receptors are

not restricted to S. reilianum but are apparent in many species. In

addition, they do not correlate with phylogenetic groupings. Thus,

these data strongly support the hypothesis that the last common

ancestor of the Ustilaginaceae had a triallelic PR system whose

three alleles are conserved and which gave rise to convergent

evolution of biallelic states.

Organisation and genetic diversity of genes at the PR
locus of Ustilaginales

So far, we focused on the pheromone receptor and pheromone

precursor genes. To examine the precise organisation of the PR

locus we analysed 11 a loci of Ustilaginales spanning at least one

border gene (Figure 3). Remarkably, there is a high degree of

synteny between PR loci of different species regarding genes for

pheromones and receptors as well as PRE (pheromone response

element) sites. The latter suggests a conserved regulation of

pheromone and receptor gene expression via Prf1 homologs. In

contrast, the genetic organisation of border genes flanking the PR

locus is less conserved. For example, the border genes rba and panC

are missing in Us. gigantosporum. In addition, the a1 locus of U.

xerochloae is flanked by an inverted homologous gene of um02342

and sr13546 encoding two proteins of unknown function. They

locate 106.2 kb upstream on the same chromosome in U. maydis

and 43.1 kb downstream in S. reilianum (Figure 3). The first right

border a locus genes of Us. gigantosporum represent an inverted

sr13582 homolog (protein of unknown function) and two

homologous genes that locate at the same chromosome 81.1 kb

downstream of the a1 locus of U. maydis (um02414 and um02415;

related to dihydrouridine synthase and related to anti-silencing

protein 1) and 92.5 kb upstream of the a2 locus of S. reilianum

(sr10827 and sr10828; related to tRNA dihydrouridine synthase

and related to anti-silencing protein 1). A left border gene of the S.

walkeri a3 locus preserved only the first of three introns that were

observed in the homologous genes um02380, sr13588 and in a

respective homolog of Us. gigantosporum (protein of unknown

function). Furthermore, the panC homolog of S. walkeri is inverted

(Figure 3). These differences between inner and outer regions of

PR loci provide evidence for differential constraints on recombi-

nation comprising strong conservation of mating type regions and

weak dynamics in the evolutionary history of flanking regions.

We next addressed whether interspecific genetic diversity of

single genes reflects the differential conservation of gene

organisation between PR loci and their flanking regions. For this

purpose, we calculated the nucleotide diversity p from all genes of

the PR locus and its flanking regions. Since single gene datasets

Interspecific Sex and MAT Diversity in Grass Smuts
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each contain sequences of different species, we considered their

individual phylogenetic diversity (pd) based on the five-gene

phylogeny described above and divided p by pd. The pd index

indicates the proportional branch length in relation to the total

branch length of the phylogeny [52]. Genes within the PR locus,

namely lga2, rga2 and genes for pheromone receptors and

pheromones show significantly increased nucleotide diversity p
in comparison with the flanking genes lba, rba, aro4, coding for a

probable phospho-2-dehydro-3-deoxyheptonate aldolase, ORF1,

panC, as well as the house-keeping genes rpb1, ef1-a, lsu rDNA, ssu

rDNA and ITS rDNA including 5.8S (Figure 4). The diversity of

the pheromone genes is most probably even higher since gap

positions in their alignment are not considered in DnaSP diversity

calculations (Figure S4). Unlike other flanking genes, homologs of

um02380 revealed increased nucleotide diversity similar to pra3

(Figure 4). Hence, the increased nucleotide diversity of mating type

genes and PR locus-flanking genes contrasts the conservation of

their gene organisation and suggests accelerated mutation rates for

the highly syntenic PR locus genes.

Increased nucleotide diversity could relate to adaptive changes

that were driven by specific evolutionary constraints. In order to

compare the evolutionary constraints of PR locus-associated genes

we used seven codon site models of variable ratios of v values

across sites, which are implemented in PAML v4.3 (see Material

and Methods), and calculated likelihood ratio statistics for each

dataset of Figure 4. In addition, we analysed datasets from partial

sequences of lba and panC. Datasets of lga2 and the pheromones

were excluded from the analysis because of the small dataset with

only three sequences for lga2 and shortness of the pheromone

sequences. The analysis revealed that in each gene v varied

among codons (except ORF1) as the Nsites Model M3 rejects M0

(Table S4). For the datasets of pra2 and panC model M8 (beta&v),

which allows for positive selection, fitted the data better than

model M7 (beta), which does not allow for positive selection. As

model M8a is not rejected by M8 the identified divergence of both

genes rather accounts to relaxed purifying selection than positive

Figure 2. Phylogeny of mating type-specific pheromone
receptors. Maximum Likelihood analysis of complete pheromone
receptor-coding sequences. Numbers and asterisks next to branches
indicate bootstrap (bt) support values and branch lengths correspond
to substitutions per site.
doi:10.1371/journal.pgen.1002436.g002

Figure 3. Genetic structure of mating type a gene clusters of Ustilaginales. Shown are three a locus alleles of different Ustilaginales species.
Arrows indicate coding regions of respective genes and lines represent non-coding or intron regions. Pheromones and cognate pheromone
receptors are depicted in red shades. Homologous border genes are depicted in identical colours or patterns. Strokes represent pheromone response
element sites (ACAAAGGGA) with no (black) or one mismatch (grey). Abbreviation signs depict connected regions on respective chromosomes. um
and sr gene numbers correspond to gene identifications on MUMDB [104] and MSRDB [105].
doi:10.1371/journal.pgen.1002436.g003
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selection. In summary, these results support the hypothesis that the

investigated PR-flanking regions do freely recombine (except one

flanking region of Ustilago hordei).

To investigate whether the increase in nucleotide diversity is

linked to specific sites within the encoded pheromone receptors,

we predicted transmembrane domains for pheromone receptor

sequences and performed sliding window analyses of the

nucleotide diversity p and the ratio of non-synonymous and

synonymous substitutions (dN/dS ratios) for each allele-specific

pheromone receptor alignment. The analyses revealed several

diversity peaks within pra1, pra2 and pra3 that slightly resemble

each other but neither nucleotide diversity nor dN/dS ratios

suggest prominent sites (Figure S5). This shows that diversity peaks

and species-specific substitutions scatter almost randomly on the

pra genes without hints to differential selection of single sites. In

summary, we observed strong synteny of PR loci whose genes

accumulated significantly more substitutions than PR locus-

flanking and house-keeping genes.

Homologs of lga2 and rga2 in Ustilaginaceae
Besides pheromone- and receptor-encoding genes, a2 loci of U.

maydis and S. reilianum contain two additional genes, namely lga2

and rga2. As shown for U. maydis they encode mitochondrial

proteins, whose concerted action is responsible for the uniparental

inheritance of mitochondria [50]. Sequence comparison applying

BLAST [51] furthermore identified homologs of rga2 in respective

regions of a2 loci of Ma. eriachnes and Us. gigantosporum. Surprisingly,

a3 loci of U. xerochloae, S. walkeri and Us. gigantosporum also encode a

homolog of rga2 that locates between homologs of pra3 and mfa3.1

(Figure 3). To assess the homology of these putative rga2 genes, we

performed a multiple amino acid alignment of all predicted Rga2

proteins and the reference proteins of U. maydis and S. reilianum

(Figure S6). All predicted genes of different species revealed the

same intron structure and encoded proteins comprised compara-

ble amino acid sequence identities of 30 to 53% in relation to

Rga2 of U. maydis and S. reilianum. Additionally, we applied

iPSORT prediction [53] revealing mitochondrial target signals for

the putative Rga2 proteins as was reported for Rga2 of U. maydis

[54].

Compared to rga2, lga2 is significantly less conserved between U.

maydis and S. reilianum. To identify homologs within respective

regions of a2 and a3 loci we conducted gene predictions based on

U. maydis intron characteristics using the Augustus prediction

server [55]. To verify homology of the identified genes to lga2, we

furthermore predicted targeting peptide signals in the respective

proteins applying iPSORT prediction [53] and screened for

functional domains applying SMART [56,57]. Since lga2 is a

direct target of the bW/bE homeodomain transcription factor we

additionally searched for promoter sequence identity upstream of

the putative lga2 genes. Importantly, in the a2 locus of Ma. eriachnes

we found a putative lga2 gene that showed homology to known

sequences. This gene displays 32% sequence identity to lga2 of S.

reilianum, shows the same intron structure and the gene product

contains a mitochondrial target signal and an F-box-like motif.

Although this domain does not completely overlap with the

predicted F-box-like motif of Lga2 of U. maydis [54] (Figure 5A),

both F-box-like motifs are located within a protein region that

contains the most shared amino acids (12 out of 20) for all three

species (Figure 5A). Based on information of the promoter

sequence of lga2 in U. maydis [58,59], we identified a sequence

with high similarity to the His-Kon8 binding site within the 59

region of lga2 of S. reilianum and Ma. eriachnes indicating the same

regulation via bW/bE transcription factors (Figure 5B). In

particular, out of 29 nucleotides 18 and 15 nucleotides overlap

in S. reilianum and Ma. eriachnes, respectively. However, even

lowering stringency and gene predictions based on intron

characteristics did not identify a clear lga2 homolog in other

species. We only identified an ORF with four introns and a

mitochondrial target signal in the a3 locus of S. walkeri. Thus, lga2

homologs are likely lacking in the a loci of Us. gigantosporum. In

conclusion, rga2 is not restricted to the a2 locus but also occurs in

the a3 locus, where it does not pair with lga2. This indicates a

complex mechanism of parental inheritance of mitochondria

within Ustilaginales.

Interspecific compatibility in Ustilaginales
The dimension of intercompatibility within grass smuts is still

unclear and a representative dataset that gives an overview of the

whole Ustilaginaceae and beyond is currently missing. Conse-

quently, we screened a representative set of seven species for

interspecies sexual compatibility (summarised in Figure 1). Firstly,

we monitored the development of conjugation hyphae in liquid

media indicating an active PR locus-dependent pheromone

response. Secondly, we examined the formation of hybrid

filaments on plates containing potato dextrose and charcoal (PD-

CC), indicating plasmogamy and the activity of compatible HD

alleles. Finally, we illustrated interspecific sexual fusion and

filament formation for two examples using scanning electron

microscopy (SEM).

Initially, we optimised mating conditions under which all tested

species showed an adequate intraspecific mating behaviour.

Whereas each species efficiently formed filaments on PD-CC

plates, the mating reaction in liquid media distinctly varied

between species. Although most compatible strains of one species

developed mating structures in water and liquid PD, the reaction

in PD was significantly weaker (data not shown). However, since

U. cynodontis and U. xerochloae only mated in liquid PD, each mating

assay applying liquid media was performed in water and in liquid

PD (Table S5).

In the first two series, 720 single mating tests were performed

comprising two replicates of 120 different mating tests under the

Figure 4. Nucleotide diversity of PR loci-associated and house-
keeping genes. Bars indicate nucleotide diversity (p) estimates
divided by the phylogenetic diversity (pd) of respective datasets. Black
bars: a locus genes, dark grey bars: a locus-flanking genes, light grey
bars: house-keeping genes. Numbers above bars indicate the quantity
of analysed sequences.
doi:10.1371/journal.pgen.1002436.g004
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three conditions described above (water, liquid PD, PD-CC

plates). The 120 different mating tests consisted of 11 intraspecific

and 109 interspecific confrontations. From 109 different interspe-

cific confrontations 18 resulted in a distinct mating reaction

(Figure 1, Tables S5 and S6). Figure 6A and 6B exemplify the

three recognised interaction types comprising conjugation hyphae

formation (Figure 6A v) followed by filament formation (Figure 6B

v), conjugation hyphae formation (Figure 6A vi) without filament

formation (Figure 6B vi) and yeast-like growth without any

reaction (Figure 6A, 6B vii). In three cases, namely S. scitamineum

MAT2 confronted with U. xerochloae a1 or a3 and S. reilianum a1

confronted with U. xerochloae a3, we detected only very few hybrid

filaments without respective observations of conjugation hyphae in

liquid media (Tables S5, S6) which, most probably, is the result of

a very low mating rate.

Each tested species revealed intercompatibility at least with two

other species including matings between pairs of closely and

distantly related species. All five interspecies matings with Us.

gigantosporum, that means across the Ustilaginaceae family border,

stimulated the formation of conjugation hyphae that did not fuse

(Figure 1, Tables S5 and S6). Within Ustilaginaceae hybrid

filament formation was observed for all interspecific crossings

except for the crossing of S. reilianum a3b1 with U. maydis a1b1.

SEM revealed that haploid sporidia of different species

(Figure 6C i, iv) form conjugation hyphae that fuse through a

thickened fusion site (arrowheads in Figure 6C ii, v). Conjugation

hyphae of S. scitamineum are significantly thicker than those of S.

reilianum (Figure 6C ii). Upon fusion, hybrids of S. reilianum and S.

scitamineum as well as U. cynodontis and U. xerochloae form filaments

that expand at the apical growth cone and form characteristic

empty sections via insertion of retraction septa at the basal pole

(arrows in Figure 6C iii, vi). This clearly confirms the sexual

compatibility between different grass smut species and emphasises

their increased potential for hybridisation that, considering the

phylogenetic background of their hosts [60], has been preserved

for more than 100 million years of evolution.

To find out whether the development of interspecific mating

structures is directly linked to pheromone signalling we used two

haploid strains of U. maydis (a1b1 and a2b2) that express Gfp under

the control of the mfa1 promoter. In these strains Gfp expression is

specifically increased in response to pheromone recognition ([46],

Materials and Methods), thereby serving as a molecular readout

for active pheromone signalling. Both Gfp strains were confronted

with 14 different haploid strains of six Ustilaginales species and

screened for Gfp fluorescence. As a positive control, we used two

haploid wild type strains of U. maydis (a1b2 and a2b1) and the

respective compatible Gfp strain. For quantification of Gfp

expression three independent experiments were performed.

Consistent with the results of mating assays described above, only

combinations of the U. maydis a1b1 Gfp reporter strain with S.

scitamineum and S. reilianum induced mating structures (Figure 7A).

The quantification of the fluorescence revealed that interspecific

confrontations with S. scitamineum (MAT2) and S. reilianum (a2+a3)

induced significantly less fluorescence than intraspecific confron-

tations with compatible wild type strains of U. maydis (Figure 7B).

These differences are consistent with the quantitative differences of

sexual structures observed in interspecific matings. Thus, reporter

gene expression illustrates that similar to intraspecific crossings

interspecific mating also induces pheromone signalling, indicating

the deployment of the same physiological and molecular network

in both events.

Discussion

Genetic organisation and evolution of a mating type loci
in Ustilaginales

Sexual identity in basidiomycetes is determined by a few genes

that reside at two specific genomic regions, the so-called mating

type loci [61]. Studies on many model organisms, e.g. Coprinopsis

cinerea [16], Cryptococcus sp. [62], Microbotryum violaceum [23],

Schizophyllum commune [63] and Ustilago maydis [45], revealed that

the mating type genes and the mating-dependent signalling

network are conserved across large phylogenetic distances. By

contrast, the genetic structure of both sex-determining regions is

remarkably diverse resulting in bipolar and tetrapolar species with

two or multiple alleles of mating type loci [18]. The mating type

Figure 5. Multiple alignment of Lga2 homologs and their regulatory regions. (A) Amino acid alignment of Lga2 sequences from reference
species (S. reilianum and U. maydis) and proposed sequences of Ma. eriachnes. Dots indicate predicted mitochondria target signals. Arrowheads
indicate positions of introns in the respective genes. Dashes represent alignment indels. Grey shades mark positions with two (light grey) or three
(dark grey) identical amino acid residues. Bold letters indicate predicted F-box-like motifs. (B) Nucleotide sequence alignment of the lga2 b-binding
site and its flanking regions of U. maydis with 59 sites of lga2 of S. reilianum and Ma. eriachnes. Grey shades mark sites with two (light grey) or three
(dark grey) identical aminoacids and nucleotides, respectively.
doi:10.1371/journal.pgen.1002436.g005
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Figure 6. Interspecific mating reactions between different species of Ustilaginales. (A) Differential interference contrast (DIC) images of
mating assays in liquid potato dextrose. Images i–iv show yeast cultures of respective species. Images v, vi and vii show confrontations of S. reilianum
with S. scitamineum, Us. gigantosporum and U. cynodontis, respectively. All figures are scaled equally. bar: 10 mm, b?: unknown b allele. (B) Filament
formation on charcoal-containing potato dextrose media. Images i–vii correspond to sample descriptions in A. Figure width represents 3 mm. (C) SEM
images of mating assays of S. reilianum and S. scitamineum (i–iii) and U. cynodontis and U. xerochloae (iv–vi). Single yeast cells (i, iv) form conjugation
hyphae that fuse (arrowheads in ii, v), expand and form empty sections by the insertion of basal septa (arrows in iii, vi). bar: 4 mm, dotted bar: 1 mm.
doi:10.1371/journal.pgen.1002436.g006
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locus encoding the pheromone-receptor (PR) system shows diverse

genetic determinations that have supposedly evolved from rather

simple ancestral types via individual translocations, gene duplica-

tions and fusions to the second mating type locus [61].

Studying a representative set of different species of Ustilaginales

we could show that three PR alleles, which were until now only

described for S. reilianum [42], are conserved among members of

Ustilaginaceae and most likely represent the plesiomorphic

character state of this group (Figure 1 and Figure 2). In

consequence, the less frequently observed biallelic states as

reported for S. scitamineum [36], U. maydis [39] or for species of

the conspecific group of U. hordei and its close relatives [36] should

have evolved independently from triallelic states at least three

times. With opposite mating obligatory for the pathogenic

development of grass smuts it is highly unlikely that the genetic

transitions of their PR system from tetrapolarity to bipolarity

occurred as a result of loss of function as shown for Coprinellus

disseminatus [26]. However, it remains unknown whether those

transitions in the mating type loci followed degeneration processes

as proposed for U. maydis [39] or whether the linkage of the PR

and HD locus as shown for U. hordei [41] predominates in

Ustilaginaceae. Since most basidiomycetes with a biallelic PR

locus are bipolar and several fungal examples propose an

evolutionary trajectory from tetrapolarity to bipolarity via

Figure 7. Interspecific induction of mating via pheromone signalling in U. maydis. (A) Differential interference contrast (DIC) and
fluorimetric images from positive pheromone response reactions in liquid potato dextrose. Conjugation hyphae are formed by both mating partners
(DIC images). All figures are scaled equally. bar: 10 mm. (B) The diagram illustrates fluorimetric measurements (relative fluorescence units, RFU) from
mating assays of U. maydis Pmfa1-egfp strains FB1 (a1b1) and FB2 (a2b2) confronted with different mating types (a1, a2 and a3) of different smut
species in water. Black and grey bars refer to RFUs of confrontations with strain FB1 Pmfa1-egfp and strain FB2 Pmfa1-egfp, respectively. U. maydis wild
type strains FB6a (a2b1) and FB6b (a1b2) were used as positive controls. The white bar depicts RFU of the mating of FB1 Pmfa1-egfp and FB2 Pmfa1-
egfp. Error bars indicate standard deviations of three independent experiments.
doi:10.1371/journal.pgen.1002436.g007
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chromosomal linkage of both mating type loci [64–66], we

propose that most of the biallelic species of Ustilaginaceae have

chromosomally linked mating type loci.

The necessity for Ustilaginales to mate in order to conserve their

parasitical niche as well as to assure sexual recombination imposes

strong selection pressure towards successful mating. In general,

diversity levels of reproductive genes in many taxonomic groups

show rapid diversification of sex-related genes [67]. Although the

precise selective forces driving this diversification and their

functional consequences for mating biology are poorly understood,

accumulating evidence suggests an adaptive co-evolutionary

process as a main driving force for increased diversification of

reproductive genes [67–69]. Consistently, in Ustilaginales the

mating type-specific genes pra1 to 3, mfa1 to 3, rga2 and lga2

revealed increased interspecific diversity compared to either a

locus-flanking or house-keeping genes (Figure 4). At least for

pheromones and their cognate receptors a co-evolutionary

scenario is likely since interacting genes reside on different alleles

and their expression patterns are similar [70]. This would suggest

similar constraints on their evolutionary rate as shown for

Saccharomyces cerevisiae [71]. An additional aspect that could

promote diversification of mating type genes is the functional

plasticity and broad specificity of the PR system. Since small

changes within pheromone and receptor genes do not necessarily

lead to loss of function, they are rather under relaxed than strict

purifying selection favouring their rapid diversification.

Lga2- and Rga2-dependent inheritance of mitochondria
In most sexually reproductive eukaryotes, stochastic and

deterministic processes induce uniparental inheritance (UPI) of

mitochondria. Both UPI and biparental inheritance (BPI) of

mitochondria entail advantages and disadvantages regarding

mitochondrial recombination, evolutionary conflicts and energy

balance [72–75]. In U. maydis, UPI is a deterministic process

depending on the interplay of the mating type-specific proteins

Lga2 and Rga2 [76]. Whereas Lga2 blocks the fusion of parental

mitochondria and mediates their uniparental elimination, Rga2

protects against Lga2-dependent elimination [50]. In S. reilianum

and U. maydis lga2 and rga2 genes are restricted to the a2 allele

[39,42]. We could show that in the case of Ustilaginales with three

PR alleles this restriction to the a2 allele rather constitutes an

exception since rga2 genes of S. walkeri, U. xerochloae and Us.

gigantosporum additionally reside within a3 alleles (Figure 3). Since a

homolog of lga2 is missing in the three mating type loci of Us.

gigantosporum and the a3 allele of S. walkeri contains a predicted gene

coding for a novel protein with a mitochondrial targeting signal,

our data strongly suggest a more complex or even species-specific

mechanism of mitochondrial inheritance in grass smuts, involving

different combinations of a mating type-specific genes. Referring

to the role of Lga2 and Rga2 in U. maydis [50] and based on our

sequence data (Figure 3), one mechanism could encompass sexual

fusions of species with three PR alleles resulting in either UPI or

BPI of mitochondria depending on the combination of the two a

mating types. In particular, mating of a1 and a2 strains would

result in UPI whereas mating of a1 and a3 strains as well as a2 and

a3 strains would result in BPI, thereby uniting uniparental and

biparental inheritance of mitochondria in one species.

Interspecific sex and hybridisation-based speciation in
Ustilaginales

Hybridisation can lead to substantial genomic changes and

thereby gives rise to various novel phenotypes [77]. In conse-

quence, hybridisation has been frequently discussed with regard to

its role in evolutionary adaptation and diversification for various

organismic groups (reviewed in [78,79]) including fungi [80]. In

order to hybridise parental species have to overcome pre- and

postzygotic barriers requiring interspecific sexual compatibility

[81]. Using a set of seven species we demonstrated that sexual

intercompatibility up to the stage of plasmogamy (Figure 6) is

common within Ustilaginales bridging more than 100 million

years of evolutionary differentiation (Figure 1). In addition, in the

investigated crossings interspecific sex activates the same signalling

machinery as intraspecific sex (Figure 7), emphasising the

functional redundancy of self and non-self pheromones and their

cognate receptors. Referring to studies in various animals and

plants (reviewed in [82]), this broad intercompatibility between

closely as well as distantly related species of Ustilaginales could

lead to hybridisation events more frequently than previously

expected. In most cases, hybridisation effects introgression but

sometimes it also initiates hybrid speciation [83]. The more

frequent emergence of newly combined genotypes would increase

the probability for one genotype to arise that exhibits a higher

fitness compared to its parental species or that enables the

exploitation of a novel ecological niche [78]. Such niche

differentiation is known from homoploid hybrids of several smut

species including closely related species, e.g. the conspecific group

of U. hordei and its close relatives as well as distantly related species

like S. reilianum and S. cruentum [36]. In addition, co-phylogenetic

studies of Ustilaginaceae and their hosts revealed evidence for

hybridisation events in Ustilaginaceae. In particular, there is much

incongruity between both topologies [84] that, referring to the

strong host specificity of grass smuts, was assumed to result from

common host jumps and/or hybridisation events [38]. Although it

is not clear how these host jumps occurred, as in highly adapted

species this might involve complex genetics, our data and several

observations of natural hybrids (summarised in [36]) highlight the

potential relevance of hybridisation in grass smut speciation.

Nevertheless, there are reproductive barriers between intercom-

patible grass smut species as shown for U. maydis and S. reilianum

that independently established on the same host and coexist

without evidence for ‘‘natural’’ hybrids [85].

Thus, it remains unclear whether mating specificities are

directly linked to host specificities or if mating specificities and

mating efficiency change after the establishment of new host

specificities. However, single outbreaks, as the rust fungus hybrid

Melampsora xcolumbiana on Populus hosts [86], emphasise the

ecological relevance of novel hybrid-based genotypes. Hence, the

future challenge will be to track the distribution of hybrids among

natural populations and to examine their individual ecological

potential.

Materials and Methods

Species selection, fungal cultures, and growth conditions
For phylogenetic analyses 104 species of Ustilaginales were

analysed in total (Table S1, Figure S3). Seven of the species,

namely Melanopsichium pennsylvanicum, Urocystis eranthidis, Ustilago

avenae, U. cynodontis, U. filiformis, U. williamsii and Ustanciosporium

gigantosporum were collected in field trips for this study. For Cintractia

limitata, Malassezia globosa, Mal. pachydermatis and Schizonella melano-

gramma we used sequence information from GenBank [87].

From 24 species we used cultures that either originate from

collaborators (5 species) or were cultured from herbarium material

in this work (19 species, Table S2). The strains of 22 species were

deposited at CBS. To increase the germination success of spores

and to separate sporidia, spores were germinated in three different

liquid media (complete media (CM) [88]; potato dextrose (PD);

water) with shaking at 16uC and 28uC. If necessary, kanamycin
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was added to the media (100 mg/ml). Single haploid yeast cultures

were isolated from streak plates (PD) of liquid cultures with

germinated spores. U. maydis strain FB2 Pmfa1-egfp was constructed

by transformation of progenitor strain FB2 (a2b2) with linearised

plasmid pmfa1-egfp-cbx [46]. Homologous integration event at

the ip locus was verified by Southern analysis [89].

Species identity of new cultures was checked by ITS rDNA

sequencing (Table S1, see below). In mating assays we used only

verified single yeast cultures of 18 haploid cultures of 7 different

species in total, namely Sporisorium reilianum, S. scitamineum, U.

cynodontis, U. hordei, U. maydis, U. xerochloae and Ustanciosporium

gigantosporum (Table S2). For further experiments isolated strains

were stored at 280uC in PD-glycerine and re-grown at 28uC on

PD or CM agar plates.

PCR conditions and sequencing
Genomic DNA from yeast cultures was isolated by the method

of [90]. Genomic DNA from herbarium material was isolated with

DNeasy96 Plant Kit (Qiagen, Hilden). ITS rDNA containing 5.8S

was amplified using the primers ITS1 and ITS4 [91]. Partial ssu

rDNA, lsu rDNA, rpb1 and ef1-a were amplified using the primers

NS23 and NS24 [92], LR0R and LR6 [93,94], RoK157 and

RoK158 (Table S3) and 987F and 1567R [95], respectively.

Detailed primer descriptions are given in Table S3. Primer

properties were evaluated with OligoCalc [96,97] or Clonemana-

ger v9.0 (Sci-Ed Software). Primers were obtained from SIGMA-

ALDRICH (Hamburg). All PCR amplifications were performed

on a PTC-200 Thermo Cycler (MJ Research). For DNA

amplification #5 kb PhusionH High-Fidelity Polymerase (Finn-

zymes, Espoo) or peqGold Taq DNA Polymerase (Peqlab) and for

.5 kb KOD XtremeTM Polymerase (Merck Biosciences, Notting-

ham) were used following manufacturer’s instructions. PCR

products were purified directly or through gel purification using

my-Budget Double Pure Kit (Bio-Budget). Purified fragments were

sequenced on an Abi 3130XL sequencer (Applied Biosystems) by

the sequencing service of the Biochemistry department at the

Ruhr-Universität Bochum or by GATC Biotech AG Konstanz.

Nucleotide sequences of ITS, lsu, ssu, ef1-a, rpb1, pra1, pra2, pra3

and mating type loci have been deposited at GenBank under the

accession numbers JN367287 - JN367447 as listed in Tables S1

and S4.

Genome walking procedure
In order to obtain complete a loci sequences, degenerated

primers were used to amplify pra1, pra2, pra3, lba and panC in

different species. Initial primer design was based on published

sequences of U. maydis (MUMDB), Sporisorium reilianum (MSRDB)

and U. hordei (GenBank; [87]). Genome walks started from

amplified regions applying the GenomeWalkerTM Kit (Clontech

Laboratories, Mountain View) and following manufacturer’s

instructions. Completed loci were checked by long-range PCR

and enzymatic digestion. A detailed primer list is given in Table

S3.

Phylogenetic reconstructions
Sequences were quality checked and hand edited using

Sequencher 4.8 (Gene Codes Corporation). Nucleotide alignments

were performed with MAFFT 6.707 [98] in default mode using a

maximum number of 1000 iterations. Amino acid alignments were

performed with BioEdit [99] applying ClustalW [100]. Afterwards,

leading and trailing gaps were removed manually from the

alignments except for ITS alignments which were trimmed using

Gblocks v0.91 on the MABL server (http://www.phylogeny.fr)

applying all less stringent settings. Maximum Likelihood (ML)

[101] analyses were performed with RAxML 7.0.4 [102]. RAxML

7.0.4 conducted 1000 bootstrap replicates using a rapid bootstrap

algorithm [103] applying GTRMIX approximation. The more

accurate GTRCAT approximation was applied in the subsequent

ML search for the best scoring ML tree starting from each 5th

bootstrap tree. Bootstrap support values were drawn at the best

scoring ML tree. In multi-gene ML analyses, sequences were

concatenated. For each partition RAxML estimated and optimised

individual a-shape parameters, GTR-rates and empirical base

frequencies. With the partitioned multiple alignment of ITS, lsu,

ssu, ef1-a and rpb1 we additionally performed a Bayesian analysis

using MrBayes v3.1 [104]. In order to allow the overall

evolutionary rate to be different across partitions, the evolutionary

model was applied individually and parameter estimations were

unlinked. Monte Carlo Markov chains (MCMC) were run over

one million generations under the GTR+I+G model. Trees were

sampled every 100 generations leading to 10,000 trees. To check

for overall convergence, this approach was repeated four times

with random starting trees. After examination in Tracer v1.5

(http://tree.bio.ed.ac.uk/software/tracer), a burn-in of 2500 was

chosen for each run. Out of the remaining trees a majority rule

consensus was calculated to obtain estimates for a posteriori

probabilities. All trees were visualised and edited in FigTree

v1.3.1.

Gene identification and sequence analyses
In order to identify homologous genes, sequences were

compared with GenBank [87] and the genome databases from

Ustilago maydis (MUMDB, [105]) and Sporisorium reilianum (MSRDB,

[106]) applying BLAST [51]. Furthermore, SMART [56,57] and

iPSORT [53] were used to identify functional domains and

subcellular localisation signals in the corresponding amino acid

sequences. Since lga2 homology between U. maydis and S. reilianum

is weak except for the number of introns and BLAST [51] did not

identify homologs, we ran gene predictions in respective mating

loci regions using Augustus (http://augustus.gobics.de). Coding

sequences of homologous genes were determined manually

according to reference sequences from U. maydis, S. reilianum and

U. hordei.

Completely sequenced pheromone receptors and the deduced

protein sequences were characterised with respect to their

predicted transmembrane domains, nucleotide diversity and their

dN/dS ratios along the protein sequence. Transmembrane

domains were predicted using TMpred [107], as well as

MEMSAT and MEMSAT-SVM [108] on the PSIPRED server

(http://bioinf.cs.ucl.ac.uk/psipred, [109]). Nucleotide diversity p
was calculated with DnaSP v5.10.01 [110] applying Jukes-Cantor

correction. To compare nucleotide diversity of different gene

datasets, values were divided by the phylogenetic diversity (pd) of

respective species subsets. pd was calculated with phylocom 4.1

[52] based on the multi-gene phylogeny (Figure 1).

To analyse how genetic variation distributes along pheromone

receptor genes, we performed sliding window analyses of p in

DnaSP v.5.10.01 (windowlength: 25, step size: 5). Differential

selection of single sites within pheromone receptors was tested

applying codeml (implemented in PAML v4.3 [111–113]). Since

we found no significance for positive selection, we illustrated the

proportion of non-synonymous substitutions along the receptor

alignments. Therefore, we estimated the average behaviour of

each codon for all pairwise comparisons for synonymous and non-

synonymous mutations using SNAP of the HIV database website

(http://www.hiv.lanl.gov, [114]) and illustrated the ratio of non-

synonymous and synonymous values along the amino acid

sequence.
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Mating assays on PD-CC and in liquid media
Mating assays were performed with haploid strains that were

isolated from different species. To determine the mating type and

to validate haploidy, we performed mating tests, amplified

pheromone receptors and stained nuclei with DAPI. Mating tests

were performed with cultures of the same species and with cultures

of different species. Densely grown liquid pre-cultures (PD,

200 rpm shaking at 28uC) were diluted in liquid media (PD,

pH 8.0) and grown over night (28uC, 200 rpm,) to an optical

density OD600 between 0.4 and 0.8. Cells were harvested by

centrifugation (1000 g, 5 min at room temperature) and pellets

were resuspended in distilled water (pH 8.0) or PD (pH 8.0) to a

final OD600 of 1.0. 150 ml cell suspensions of each strain were

mixed and added into 24 well plates. a mating type compatibility

and conjugation hyphae formation were screened after 6 and

12 hours of incubation at 28uC using a Zeiss Axiostar microscope.

To test for b mating type compatibility, 3 ml cell suspensions were

dropped on PD charcoal plates, incubated at 28uC and screened

for filament formation after 18 hours using a Zeiss Stemi 2000-C

binocular. Mating type-specific primers that locate within

pheromone receptors were used to identify and validate opposite

mating types of fungal strains (Table S3). For DAPI staining, cells

were fixed in 2% formaldehyde for 30 min, transferred to

mounting media containing DAPI (Linaris, Wertheim-Bettingen)

and analysed using a Zeiss Axio Observer microscope.

Light microscopy
Cell suspensions were dropped on glass slides that were covered

with a thin layer of agarose (2% w/v) and analysed using a Zeiss

Axio Observer microscope equipped with objective lenses of 40-

fold (Plan-Neofluar, 1.3 NA), 63-fold (Plan-Apochromat, 1.4 NA)

and 100-fold (Plan-Apochromat, 1.4 NA) magnification. Epifluor-

escence microscopy was conducted using Gfp filter sets (ET470/

40BP, ET495LP, BP525/50) and DAPI filter sets (HC 387/11,

HC 447/60, BS 409). Filters were obtained from AHF

Analysentechnik (Tübingen). Frames were taken with a CCD

camera CoolSNAP HQ2 (Photometrics, Tucson). Microscope and

camera were controlled by MetaMorph 7.5 (Molecular Devices,

Ismaning). The same software was used for measurements and

image processing including adjustment of brightness, contrast and

c values, as well as correction of background unevenness.

SEM microscopy
Cell suspensions were dropped on Poly-L-Lysine coated glass

slides. Immediately after drying samples were fixed with 4%

formaldehyde - 1% glutaraldehyde (v/v) in 0.2 M phosphate

buffer (pH 7.4, modified from [115]) for one hour. Afterwards,

samples were rinsed three times in 0,2 M phosphate buffer

(pH 7.4), dehydrated in ethanol (50/75/100/100%), transferred

to formaldehyde dimethyl acetal (FDA), critical-point dried,

sputter-coated with gold-palladium for 200 s and analysed using

a DSM 950 scanning electron microscope (Zeiss, Oberkochen,

Germany).

Fluorimetric measurements of pheromone induced Gfp
U. maydis mutant strains expressing Gfp under the mfa1

promoters were confronted with a collection of haploid strains

from different species and screened for Gfp fluorescence. Due to

differences in mating behaviour of different species, matings were

performed under two different conditions, in distilled water

(pH 8.0) and in liquid PD (pH 8.0), for six hours at 28uC in 24

well plates. After incubation, 200 ml cell suspension was trans-

ferred to black-walled 96 well plates and relative fluorescence units

(RFU) were measured at room temperature with excitation and

emission wavelengths of 485 nm and 520 nm, respectively

(bandwidth 9 nm and 20 nm, respectively) using a monochroma-

tor fluorescence reader (Tecan, Männedorf). Three independent

experiments were performed. In order to compare different

measurements of one experiment and due to differences in base

fluorescence and optical densities between different fungal species

and strains, OD600 dependent base fluorescence was subtracted

from measured RFUs.

Supporting Information

Figure S1 Phylogeny of partial pra sequences. Maximum

Likelihood tree (RAxML 7.0.4) of 47 partial pheromone receptor

nucleotide sequences (pra1, pra2, pra3). Alignments were performed

with MAFFT v6.707. Bootstrap values ($50) of 1000 replicates

are given next to branches. Branch lengths correspond to

substitutions per site.

(PDF)

Figure S2 Phylogeny of pheromones. Maximum Likelihood tree

(RAxML 7.0.4) of 31 complete pheromone amino acid sequences.

Alignments were performed with MAFFT v6.707 and trimmed by

Gblocks v0.91 applying settings with lowest stringency. Bootstrap

values (.50) of 1000 replicates are given next to branches. Branch

lengths correspond to substitutions per site. Me: Ma. eriachnes, Mp:

Me. pennsylvanicum, Sr: S. reilianum, Sw: S. walkeri, Uc: U. cynodontis,

Uf: U. filiformis, Uh: U. hordei, Um: U. maydis, Ux: U. xerochloae, Ug:

Us. gigantosporum.

(PDF)

Figure S3 Distribution of different Ustilaginaceae pra alleles

mapped on a phylogram. Maximum Likelihood tree of concate-

nated partial sequences of lsu rDNA and ITS containing 5.8S

rDNA. The alignment was generated with MAFFT v6.707,

truncated by Gblocks v0.91 and analysed in RAxML 7.0.4.

Bootstrap values (.50) of 1000 replicates are given above

branches and branch lengths correspond to substitutions per site.

Coloured circles illustrate those species for which pra could be

identified. Empty circles represent detected pheromones specific

for the corresponding pra receptor.

(PDF)

Figure S4 Amino acid alignments of pheromone precursors.

Pheromone precursors of U. maydis (Um), S. reilianum (Sr), S. walkeri

(Sw), U. cynodontis (Uc), U. xerochloae (Ux), U. hordei (Uh), Me.

pennsylvanicum (Mp), U. filiformis (Uf), Us. gigantosporum (Ug) and Ma.

eriachnes (Me) were aligned according to the three allelic

pheromone variants. Mature pheromone peptide sequences are

indicated in bold [34,35,42]. Amino acids that are important for

activity in U. maydis are shaded [34].

(PDF)

Figure S5 Sliding window analysis of interspecific pheromone

receptor variation and divergence. The three graphs show

independent analyses of pheromone receptor datasets (8, 5 and

4 species) each representing one receptor allele. Grey regions

signify predicted transmembrane domains (TMD) that are either

shared by all sequences (dark grey) or vary between sequences

(bright grey). The black curve illustrates codon-based dN/dS ratio

estimates (SNAP, [114]) scaled on the left axis. The red graph

illustrates sliding window analyses (window length: 25, stepsize: 5)

of nucleotide diversity p estimates along coding sequence

alignments of pheromone receptor genes, scaled on the right axis.

Empty sections are sites that comprise alignment gaps for which

DnaSP could not estimate values.

(PDF)
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Figure S6 Multiple alignment of Rga2. Amino acid alignment of

Rga2 sequences of reference species (S. reilianum and U. maydis) and

proposed sequences of Ma. eriachnes, S. walkeri, U. xerochloae and Us.

gigantosporum. Dots in the alignment represent identical amino acid

residues. Bold dots indicate predicted mitochondria target signals.

The arrowhead indicates the intron position in the respective gene.

(PDF)

Figure S7 Interspecific induction of mating via Mfa signalling in

U. maydis. The graph illustrates fluorimetric measurements (relative

fluorescence units, RFU) from mating assays of U. maydis Pmfa1-egfp

strains FB1 (a1b1) and FB2 (a2b2) confronted with different mating

types (a1, a2 and a3) of six different smut species in (A) liquid PD

(pH 8,0) and (B) water (pH 8,0). White and grey bars refer to RFUs

of confrontations with strain FB1 Pmfa1-egfp and strain FB2 Pmfa1-egfp,

respectively. U. maydis wild type strains FB6b (a1b2) and FB6a (a2b1)

were used as positive controls. The black bar depicts RFU of the

mating of FB1 Pmfa1-egfp and FB2 Pmfa1-egfp. Error bars indicate

standard deviations of three independent experiments.

(PDF)

Table S1 Species collection and accession numbers of the 5-gene

phylogeny. CBS: Centraalbureau voor Schimmelcultures, DB:

Dominik Begerow, HAJB - Herbarium Havanna Jardı́n botánico,

hmk: Herbarium Martin Kemler, HRK: Herbarium Ronny

Kellner, HUV: Herbarium Ustilaginales Vánky, JG: Herbarium

J. Gossmann, KVU: Kálmán Vánky Ustilaginales, M: Botanische

Staatssammlung München, MP: Herbarium Meike Piepenbring,

RK: strain collection Ronny Kellner, n.a.: not available, (1): [37];

(2): [88], (3): personal communication. Greyed-out species were

used in the 5-gene phylogeny.

(PDF)

Table S2 Strain selection. Strain designations correspond to strain

collections of Ronny Kellner (RK) and Michael Feldbrügge (UMa).

n.a.: not available, b?: unknown b allele. Most of the strains are

deposited at the Centraalbureau voor Schimmelcultures (Utrecht).

(PDF)

Table S3 Primer list. lba: left border a locus, panC: probable

pantoate-beta-alanine ligase, rpb1: RNA Polymerase II, IL: inner

loop, OL: outer loop, TMD: transmembrane domain.

(PDF)

Table S4 Summary of likelihood ratio statistics. Likelihood ratio

statistics for datasets of single PR-flanking genes and PR genes as

inferred under seven Nsites models (M0 – M8a) of v over codons.

Sites of positive selection are identified at the posterior probability

cutoff .0,8 and sites with pp .0,95 are shown in boldface. BEB:

Bayes empirical Bayes [113]; N: number of sequences used in

respective datasets; Asterisks indicate significance for likelihood

ratio statistics of model comparisons with **: p,0,001 and *:

p,0,05; _c: complete sequences; _p: partial sequences.

(PDF)

Table S5 Summary of interspecies a mating type compatibility

tests. Mating assays that revealed conjugation tube formation and

no mating reaction are marked in blue and yellow, respectively.

PD and H2O: conjugation tube formation was observed only in

PD or in H2O. Sc: Sporisorium scitamineum, Sr: S. reilianum, Uc:

Ustilago cynodontis, Uh: U. hordei, Um: U. maydis, Ux: U. xerochloae,

Usg: Ustanciosporium gigantosporum.

(PDF)

Table S6 Summary of interspecies b mating type compatibility

tests. Mating assays on PD-charcoal plates that revealed a fuzzy

phenotype or no fuzzy phenotype are marked in blue and yellow,

respectively. Sc: Sporisorium scitamineum, Sr: S. reilianum, Uc: Ustilago

cynodontis, Uh: U. hordei, Um: U. maydis, Ux: U. xerochloae, Usg:

Ustanciosporium gigantosporum.

(PDF)
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24. Casselton LA, Kües U (2007) The Origin of Multiple Mating Types in the

Model Mushrooms Coprinopsis cinerea and Schizophyllum commune. In: Heitman J,

Kronstad JW, Taylor DR, Casselton LA, eds. Sex in fungi - Molecular

Determination and Evolutionary Implications. Washington D.C.: ASM Press.

pp 283–300.

25. Fraser JA, Diezmann S, Subaran RL, Allen A, Lengeler KB, et al. (2004)

Convergent evolution of chromosomal sex-determining regions in the animal

and fungal kingdoms. PLoS Biol 2: e384. doi:10.1371/journal.pbio.0020384.

26. James TY, Srivilai P, Kües U, Vilgalys R (2006) Evolution of the bipolar

mating system of the mushroom Coprinellus disseminatus from its tetrapolar

ancestors involves loss of mating-type-specific pheromone receptor function.

Genetics 172: 1877–1891.

27. Coelho MA, Sampaio JP, Goncalves P (2010) A deviation from the bipolar-

tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet 6:

e1001052. doi:10.1371/journal.pgen.1001052.

28. Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones

trigger filamentous growth in Ustilago maydis. EMBO J 13: 1620–1627.

29. Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-

coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:

1010–1032.
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analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis.

Mol Genet Genomics 268: 362–370.

35. Kosted PJ, Gerhardt SA, Anderson CM, Stierle A, Sherwood JE (2000)

Structural requirements for activity of the pheromones of Ustilago hordei. Fungal

Genet Biol 29: 107–117.

36. Fisher GW, Holton CS (1957) Biology and Control of the Smut Fungi. New

York: The Ronald Press Company. 622 p.

37. Stoll M, Begerow D, Oberwinkler F (2005) Molecular phylogeny of Ustilago,

Sporisorium, and related taxa based on combined analyses of rDNA sequences.

Mycol Res 109: 342–356.

38. Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of

Ustilaginomycotina based on multiple gene analyses and morphological data.

Mycologia 98: 906–916.

39. Urban M, Kahmann R, Bölker M (1996) The biallelic a mating type locus of

Ustilago maydis: remnants of an additional pheromone gene indicate evolution

from a multiallelic ancestor. Mol Gen Genet 250: 414–420.

40. Snetselaar KM, Bölker M, Kahmann R (1996) Ustilago maydis Mating Hyphae

Orient Their Growth toward Pheromone Sources. Fungal Genet Biol 20:

299–312.

41. Bakkeren G, Jiang G, Warren RL, Butterfield Y, Shin H, et al. (2006) Mating

factor linkage and genome evolution in basidiomycetous pathogens of cereals.

Fungal Genet Biol 43: 655–666.

42. Schirawski J, Heinze B, Wagenknecht M, Kahmann R (2005) Mating type loci

of Sporisorium reilianum: novel pattern with three a and multiple b specificities.

Eukaryot Cell 4: 1317–1327.

43. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, et al. (2006) Insights from

the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:

97–101.

44. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A,

et al. (2009) Ustilago maydis as a Pathogen. Annu Rev Phytopathol 47: 423–445.

45. Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, et al. (2011)

Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol

Rev;DOI:10.1111/j.1574-6976.2011.00296.x.

46. Kaffarnik F, Müller P, Leibundgut M, Kahmann R, Feldbrügge M (2003) PKA
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