
Spiegel and Durrant ﻿J Cheminform (2020) 12:25
https://doi.org/10.1186/s13321-020-00429-4

SOFTWARE

AutoGrow4: an open‑source genetic
algorithm for de novo drug design and lead
optimization
Jacob O. Spiegel and Jacob D. Durrant*

Abstract 

We here present AutoGrow4, an open-source program for semi-automated computer-aided drug discovery. Auto-
Grow4 uses a genetic algorithm to evolve predicted ligands on demand and so is not limited to a virtual library of
pre-enumerated compounds. It is a useful tool for generating entirely novel drug-like molecules and for optimizing
preexisting ligands. By leveraging recent computational and cheminformatics advancements, AutoGrow4 is faster,
more stable, and more modular than previous versions. It implements new docking-program compatibility, chemi-
cal filters, multithreading options, and selection methods to support a wide range of user needs. To illustrate both de
novo design and lead optimization, we here apply AutoGrow4 to the catalytic domain of poly(ADP-ribose) polymer-
ase 1 (PARP-1), a well characterized DNA-damage-recognition protein. AutoGrow4 produces drug-like compounds
with better predicted binding affinities than FDA-approved PARP-1 inhibitors (positive controls). The predicted bind-
ing modes of the AutoGrow4 compounds mimic those of the known inhibitors, even when AutoGrow4 is seeded
with random small molecules. AutoGrow4 is available under the terms of the Apache License, Version 2.0. A copy can
be downloaded free of charge from http://durra​ntlab​.com/autog​row4.

Keywords:  Autogrow, Genetic algorithm, Computer-aided drug design, Virtual screening, PARP-1

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Computer-aided drug discovery (CADD), a critical com-
ponent of many pharmaceutical pipelines, is a power-
ful tool that complements the expertise of medicinal
chemists and biologists. Given that there are 1020–1023
synthesizable drug-like molecules [1–3], no method—
experimental or computational—can hope to explore
even a small subset of drug space. But CADD enables in
silico experiments at scales much larger than are possi-
ble ex silico [1–5] and so can prioritize which candidate
ligands warrant further testing in enzymatic or biophysi-
cal assays. CADD has been successfully applied to hit
discovery, lead optimization, and compound synthesis
[4–7].

CADD can be broadly divided into two categories:
ligand-based drug design (LBDD) and structure-based
drug design (SBDD) [6, 8]. To predict ligand binding,
LBDD considers the physiochemical properties of known
ligands without regard for the atomic structure of the tar-
get macromolecular receptor (e.g., protein). In contrast,
SBDD predicts binding based on the receptor structure
[6, 8]. SBDD can be further divided into screening and de
novo approaches. Screening considers a finite database
of pre-enumerated compounds, and de novo approaches
generate new compounds in silico using algorithms that
explore a wider range of chemistry space [4–6, 9].

We here describe AutoGrow4, a free Python-based
open-source program for de novo SBDD CADD. Auto-
Grow4 uses a genetic algorithm (GA) to create new pre-
dicted ligands. It draws on an initial population of seed
molecules to create a new population (i.e., a genera-
tion) of potential solutions (ligands). It then docks these

Open Access

Journal of Cheminformatics

*Correspondence: durrantj@pitt.edu
Department of Biological Sciences, University of Pittsburgh, 4200 Fifth
Ave, Pittsburgh, PA 15260, USA

http://durrantlab.com/autogrow4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00429-4&domain=pdf

Page 2 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

compounds into a user-specified target protein and
ranks each by its calculated fitness. New generations are
seeded with the top-scoring molecules of the previous
generation.

AutoGrow4 expands on the approach used in previ-
ous versions of the algorithm. The original AutoGrow,
released in 2009, was one of the first de novo CADD pro-
grams to use fully flexible docking and was one of only
a few free open-source programs for de novo CADD [4,
5]. More recent advances in docking software, chemin-
formatics libraries, and multithreading approaches [10,
11] have now enabled further improvements. AutoGrow4
has an entirely rewritten codebase that is designed to
be faster, more stable, and more modular than previous
versions.

To demonstrate utility, we show how AutoGrow4 can
be used both to design entirely novel drug-like molecules
and to optimize preexisting inhibitors. In both cases,
we apply AutoGrow4 to poly(ADP-ribose) polymerase 1
(PARP-1), a well-characterized DNA-damage recognition
protein. We chose PARP-1 because (1) the many known
PARP-1 inhibitors (PARPi) serve as positive controls and
leads to optimize [12–15]; (2) PARPi are effective treat-
ments for many cancers with defects in the Breast Cancer
(BRCA) 1 and 2 genes [16, 17]; and (3) the PARP-1 cata-
lytic domain has a well-characterized druggable pocket
[18–20].

AutoGrow4 will be a useful tool for the CADD commu-
nity. We release it under the terms of the Apache License,
Version 2.0. A copy can be downloaded free of charge
from http://durra​ntlab​.com/autog​row4.

Methods
AutoGrow4 design and implementation
AutoGrow4 starts with an initial (input) population of
compounds. This source population, called generation
0, consists of a set of chemically diverse molecular frag-
ments (for de novo design) or known ligands (for lead
optimization). AutoGrow4 creates the first generation by
applying three operations to the source population: elit-
ism, mutation, and crossover (Fig. 1). Subsequent gen-
erations are created similarly from the compounds of the
immediately preceding generation.

Population generation via elitism
The elitism operator progresses a sub-population of the
fittest compounds from one generation to the next with-
out alterations. The AutoGrow4 elitism operator is simi-
lar to that of previous AutoGrow implementations, with
two notable improvements. First, users can now option-
ally choose to regenerate and redock elite compounds.
Many docking programs (e.g., AutoDock Vina [21]) are
stochastic, so users may get slightly different poses each

Fig. 1  A process-flow diagram of the AutoGrow4 algorithm. Three independent seed pools are formed from the high-scoring and diverse
compounds of generation n - 1. These are used to create the next generation of compounds (n) via elitism, mutation, and crossover. Compounds
are converted to 3D using Gypsum-DL, converted to a dockable file format (e.g., PDBQT), docked, (re)scored, and ranked according to the fitness
function

http://durrantlab.com/autogrow4

Page 3 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

time. Reassessment may identify better poses than previ-
ous attempts.

Second, AutoGrow4 decouples the elitism operator
from seed-population selection. In previous AutoGrow
versions, the compounds that advanced via elitism were
the same compounds used to seed the mutation and
crossover operators (see below). With these two pro-
cesses now decoupled, the user can independently con-
trol the number of compounds that advance via elitism
vs. other operators.

Population generation via mutation
The mutation operator performs an in silico chemical
reaction to generate an altered child compound derived
from a parent (Fig. 2b). AutoGrow4’s file-naming scheme
allows the user to easily trace any mutant compound’s
lineage.

The AutoGrow4 mutation operator is improved over
previous versions of AutoGrow. AutoGrow 3.1.3 used
AutoClickChem [22] to perform in silico reactions on 3D
compound models, which required an extensive custom
codebase to perform substructure searches, molecular
alignments, and in silico reactions [5, 22]. In contrast,
AutoGrow4 uses SMARTS-reaction notation, together
with RDKit, to perform chemical mutations much faster.

This improved approach allowed us to easily add new
reaction sets. Aside from the 36 click-chemistry reac-
tions that were already possible with AutoClickChem
(the AutoClickChemRxn set), AutoGrow4 also draws on
a second library of 58 reactions published by Hartenfeller
et al. (the RobustRxn set) [23]. We merged these two sets
to form a third with 94 reactions (the AllRxn set). All sets
were manually inspected, extensively unit tested, and
adjusted where chemical modifications were necessary.
The tutorial included with the AutoGrow4 download
describes how users can create and incorporate their own
custom reaction sets.

Seventy-nine of AutoGrow4’s 94 default reactions
require two reactants. In these cases, one of the reac-
tants is taken from a previous generation, and the other
is taken from one of AutoGrow4’s complementary
molecular-fragment libraries. To create these libraries,

Fig. 2  Compound lineages from a lead-optimization run seeded
with PARPi fragments, chosen to illustrate crossover and mutation
operations. QVina2 was used for docking. To simplify presentation,
we omit some intermediate steps such as changes in protonation
states. a Olaparib recreated via crossover from two source fragments.
The largest commonly shared substructure is highlighted in purple.
b A high-scoring compound derived from a E7449 (known inhibitor)
fragment illustrates the mutation operator

▸

Page 4 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

we downloaded a set of 19,274,338 commercially avail-
able small molecules from the Zinc15 database [24] on
December 19, 2019. Each compound had a molecular
weight (MW) less than 250 Da and a predicted octanol–
water partition coefficient (logP) less than 5.0. We further
filtered the compounds using the Lipinski* filter, which
allows for no violations (Table 1). To ensure that all com-
pounds could participate in at least one of AutoGrow4’s
default in silico reactions, we discarded those molecules
that did not possess any appropriate functional groups.
We then divided the remaining compounds into func-
tional-group categories. For each category, we retained
at most the 5000 compounds with the lowest MW. These
complementary libraries are included in the AutoGrow4
download in the SMILES (SMI) format. A customization
option also allows users to provide their own comple-
mentary molecule libraries.

Population generation via crossover
The crossover operator merges two compounds from
previous generations into a new compound. Like the pre-
vious version of AutoGrow (3.1.3) [5], the AutoGrow4
crossover operator finds the largest substructure that the
two parent compounds share and generates a child by
randomly combining their decorating moieties (Fig. 2a).
AutoGrow4 embeds information about the lineage of
each crossover in the compound file name, allowing users
to easily examine any compound’s evolution.

AutoGrow 3.1.3 used LigMerge [25] to perform cross-
overs. LigMerge requires computationally expensive
geometric calculations to merge 3D molecular models.
In contrast, AutoGrow4 uses the RDKit Python library
[26] to generate child compounds from SMILES strings
of the parents. This change dramatically reduces the

computational cost of compound generation and greatly
simplifies the AutoGrow4 codebase.

Molecular filtration
AutoGrow4 uses common molecular filters to remove
generated compounds with undesirable physical and
chemical properties (e.g., poor predicted solubility, high
biological reactivity, etc.). These compounds are elimi-
nated before docking to avoid wasting computational
resources (Fig. 1). If too few compounds pass the user-
specified filter(s), AutoGrow4 automatically returns to
the mutation and crossover operators to generate more
candidate molecules (Fig. 1).

AutoGrow4 includes the nine predefined molecular
filters shown in Table 1. Users can combine any of these
filters in series. The new modular codebase also makes it
easy for users to add their own custom filters that assess
other molecular properties.

Conversion of SMILES to 3D PDB
AutoGrow4 uses the open-source program Gypsum-DL
[11] to convert the SMILES representations of all new
molecules into 3D models for docking. For each input
SMILES, Gypsum-DL generates one or more 3D models
with alternate ionization, tautomeric, chiral, cis/trans iso-
meric, and ring-conformational forms [11, 27]. The user
can specify the pH range to use for protonation as well as
the maximum number of molecular forms (variants) that
Gypsum-DL should produce per input SMILES.

Assessing fitness
AutoGrow4 uses two metrics to assess the fitness of each
solution. These fitness scores are used to select seeds
for the next generation (see below). The primary fitness

Table 1  The default AutoGrow4 molecular filters

Lipinski allows for one violation. Lipinski* is a stricter version that allows for no violations. Ghose* is a more lenient version of Ghose that allows compounds with
molecular weights up to 500 Da

HD hydrogen-bond donor; HA hydrogen-bond acceptor; MW molecular weight (Da); MR molar refractivity (m3 mol-1); Atoms atom count; RotB rotatable bonds; R rings;
N, O, and X nitrogen, oxygen, and halogen atoms, respectively; PSA polar surface area (Å2); Sub substructure searching

Name logP HD; HA MW MR Atoms RotB R N; O; X PSA Sub

Lipinski [72] ≤ 5.0 ≤ 5; ≤ 10 ≤ 500

Lipinski* [5] ≤ 5.0 ≤ 5; ≤ 10 ≤ 500

Ghose [54] -0.4 to 5.6 160–480 40–130 20–70

Ghose* [5] -0.4 to 5.6 160–500 40–130 20–70

VandeWaterbeemd [107] < 450 < 90

Mozziconacci [108] ≤ 15 ≤ 6 ≥ 1; ≥ 1; ≤ 7

BRENK [56] +
NIH [109, 110] +
PAINS [111] +

Page 5 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

metric assesses how well each compound is predicted to
bind the target receptor. By default, AutoGrow4 uses the
docking score of the top-scoring pose. AutoGrow4 has
broader docking-program support than previous ver-
sions. It supports not only AutoDock Vina [21] but also
QuickVina 2.1 (QVina2) [10], a Vina-based program that
runs about twofold faster. AutoGrow4 can also rescore
docked poses using the NNScore1 and NNScore2 scoring
functions [28, 29]. The score associated with each com-
pound can optionally be divided by the number of non-
hydrogen ligand atoms, a metric called ligand efficiency
[30]. AutoGrow4’s modular, plugin-based architecture
also enables long-term expandability and user customi-
zation. With the appropriate plugin code, virtually any
method for docking and/or reassessing ligand binding
can be integrated into AutoGrow4, including quantita-
tive structure–activity relationship (QSAR) approaches,
ligand-similarity evaluations, etc.

Aside from this primary fitness metric, AutoGrow4
also calculates a secondary fitness metric called the
diversity score. The diversity score is optionally used to
select seed compounds that are structurally unique com-
pared to those of the previous generation. By seeding a
new generation with a population comprised of mole-
cules separately selected for target binding and molecu-
lar diversity, AutoGrow4 delays population convergence
while still refining for the desired binding affinity.

To determine the diversity score, AutoGrow4 uses
RDKit [26, 31, 32] to calculate the Morgan fingerprint of
each population compound after successful docking. The
similarity s of two compounds molA and molB is given by

where FA and FB are the fingerprint bit-strings of molA
and molB, respectively. The value of s ranges from 0.0
(completely different) to 1.0 (perfectly matched). The
diversity score d of a given molecule molM measures its
uniqueness relative to the other molecules in its genera-
tion. The score is calculated by

where the summation is over all molN within the genera-
tion except molM.

Compound ranking and seed selection
AutoGrow4 implements Ranking, Roulette, and Tour-
nament selection strategies [33] to choose which com-
pounds will seed the next generation. Each strategy has
its advantages and disadvantages. A Ranking selector
simply chooses the best-scoring solutions. It quickly

(1)s(FA, FB) =
2|FA ∩ FB|

|FA| + |FB|

(2)d(molM) =

n∑

N �=M

s(FM , FN)

identifies local optima but often produces inbred popula-
tions of highly similar compounds [33]. In extreme cases,
population convergence can cause AutoGrow4 to perpet-
ually recreate very similar compounds each generation,
without substantial improvement in fitness. A Roulette
selector assigns each solution to a metaphorical roulette
wheel, where the size of each area is weighted by fitness.
By incorporating randomness into each generation, Rou-
lette selection reduces the chances of becoming trapped
in local optimum. But it gives all potential solutions—
even the most unfit—an opportunity to advance [33].
Lastly, a Tournament selector randomly chooses a sub-
population of solutions and then selects the fittest solu-
tions from that subpopulation. A Tournament selector
incorporates more randomness than a Ranking selector
while reducing the risk of selecting unfit solutions [33].

AutoGrow4 performs three subselections per gen-
eration, one for elitism, mutation, and crossover opera-
tions, respectively (Fig. 1). When using a stochastic (i.e.,
Roulette or Tournament) selector, these subselections
are independent (i.e., each subselection picks a different
but potentially overlapping set of compounds). When
using a deterministic (i.e., Ranking) selector, the three
subselections are identical. In all cases, each subselec-
tion separately selects compounds based on their pri-
mary (binding) and/or secondary (diversity) scores. The
user can also specify the number of compounds selected
based on each score type.

Benchmark AutoGrow runs
Protein preparation
We tested AutoGrow4 against the PARP-1 catalytic
domain. We first obtained the 4R6E structure from the
Protein Data Bank (PDB) [18, 34] and removed all atoms
but those of the chain A protein (4R6E:A). We used the
PDB2PQR server (2.1.1, default settings) [35, 36] to add
hydrogen atoms and optimize the hydrogen-bond net-
work (pH 7). We then converted the resulting PQR file
back to the PDB format using OpenBabel (2.3.1) [37].

To define the location of the binding pocket, we
selected five protein residues that flank the bound, crys-
tallographic niraparib ligand: E763, I872, G888, T907,
and E988. We used the Scoria Python library [38] to
calculate a bounding box that encompasses these resi-
dues. We expanded the width, length, and height of this
box by a few Å to ensure that it entirely surrounded the
pocket. The docking box ultimately had dimensions 25.0
Å × 16.0 Å × 25.0 Å, centered on the binding pocket. We
used this PARP-1 PDB file and docking box for all Auto-
Grow runs (see published tutorial).

Page 6 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

Comparison benchmark runs
AutoGrow 3.1.3 provides a set of 117 PDB-formatted
small molecules with naphthalene substructures as
source compounds [5]. To compare AutoGrow4 and
AutoGrow 3.1.3, we converted these compounds to
SMILES using OpenBabel 2.3.1 [37] and RDKit [26]. They
are included as an SMI file in the AutoGrow4 download.

We ran the AutoGrow4 and AutoGrow 3.1.3 bench-
marks on the same hardware: 12-core Xeon E5-2643v4
3.40 GHz Broadwell nodes with 512 GB RAM, provided
by the University of Pittsburgh’s Center for Research
Computing (CRC). We also closely matched the Auto-
Grow4 and AutoGrow 3.1.3 settings in terms of proces-
sor counts, population sizes, mutation reaction sets, seed
molecules, and population-size/seed-size ratios. In all
cases, we subjected the evolving molecules to the Ghose*
and Lipinski* filters (Table 1). The complete settings are
provided in Additional file 1: JSON 1 and 2.

AutoGrow 3.1.3 has some notable limitations, requir-
ing several additional considerations. AutoGrow 3.1.3 is
not Python 3 compatible, so we ran these benchmarks in
a Python 2.7 environment. We also limited AutoGrow4
to one molecular variant per input SMILES, Vina 1.1.2
docking, the Ranking selector, and symmetric multiproc-
essing (SMP) because AutoGrow 3.1.3 does not consider
alternate molecular forms, cannot use QVina2, does not
implement the Roulette or Tournament selectors, and
does not support message passing interface (MPI) mul-
tiprocessing [5].

All benchmark AutoGrow4 and AutoGrow 3.1.3 runs
were repeated independently 24 times.

Large‑scale de novo PARPi run
We generated a sizable, chemically diverse source library
for general use when performing de novo AutoGrow4
runs. We started with the same large set of Lipinski*-
filtered Zinc15 molecules described above, which was
previously used to generate the default complementary
small-molecule libraries required for the mutation opera-
tor. We discarded those compounds that lacked func-
tional groups capable of participating in at least one of
AutoGrow4’s 94 default reactions. The remaining com-
pounds were grouped by MW ( ≤ 100 Da, 100 Da < MW
≤ 150 Da, 150 Da < MW ≤ 200 Da, and 200 Da < MW
≤ 250 Da). To keep the source library reasonably sized
while maintaining chemical diversity, we randomly dis-
carded excess compounds in each MW category that had
overrepresented functional groups. Ultimately, at most
100 compounds remained for each functional group in
each weight range. These four source-library sets, which
collectively comprise 24,595 molecules, are included in
the AutoGrow4 download.

The large-scale de novo run described in "Results and
discussion" was seeded with small molecules from the
100 Da < MW ≤ 150 Da category. This run used MPI
multiprocessing, QVina2 docking, and the Ranking selec-
tor in a Python 3.7 environment. It ran for thirty gen-
erations on ten MPI-enabled CRC computer nodes with
28-core Broadwell Processors and 64 GB RAM/node,
networked with Intel’s Omni-Path communication archi-
tecture. Evolving molecules were subjected to the Ghose,
Lipinski*, and PAINS filters (Table 1). In the first genera-
tion, AutoGrow4 generated 40, 500, and 500 compounds
via elitism, mutation, and crossover, respectively. In sub-
sequent generations, it generated 500, 2500, and 2500
compounds via elitism, mutation, and crossover, respec-
tively. The complete settings are provided in Additional
file 1: JSON 3. We used BlendMol [39] to generate figures
of representative docked molecules.

PARPi lead‑optimization runs
To show how AutoGrow4 can be used for lead optimi-
zation, we generated a focused source library of 94 seed
molecules. This library includes eleven known PARPi,
identified using http://www.clini​caltr​ials.gov. It also
includes 83 PARPi molecular fragments derived from
those eleven via Breaking of Retrosynthetically Interest-
ing Chemical Substructures (BRICS) decomposition [7].

We used AutoGrow4 with this small source library to
predict new PARP-1 ligands similar to known inhibitors.
To focus computational effort on the chemistry space
near known PARPi, we ran AutoGrow4 for only five gen-
erations, but with demanding docking-exhaustiveness,
variant-per-molecule, and population-size settings.
Evolving molecules were subjected to the Ghose, Lipin-
ski*, and PAINS filters (Table 1). The complete settings
are provided in Additional file 1: JSON 4. The settings of
the first generation were conservative because the small
source library had a limited number of reactive func-
tional groups. We thus limited the first generation’s size
to 40, 500, and 500 molecules derived using the elitism,
mutation, and crossover operators, respectively. Subse-
quent generations were larger. They included 250, 2500,
and 2500 molecules derived using the elitism, mutation,
and crossover operators, respectively.

These lead-optimization runs were repeated six inde-
pendent times using Python 3.7 on the same MPI-ena-
bled nodes available through the CRC. We again used
BlendMol [39] to generate figures of representative
docked molecules.

PARPi‑like compounds: AutoGrow4 optimization vs.
similarity‑based screening
To compare AutoGrow4 lead optimization to a more tra-
ditional similarity-based virtual screening (VS) approach

http://www.clinicaltrials.gov

Page 7 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

[40, 41], we generated a library of small molecules that
are structurally similar to known PARPi. We down-
loaded the structures of ~2200 known PARPi from the
BindingDB database [42, 43] on March 14, 2020. Many
of these compounds were close analogues, so we used
a Tanimoto-based clustering algorithm [44] (Tanimoto
cutoff: 0.65) to group the compounds into 40 clusters.
We then selected one molecule per cluster to construct a
set of structurally unique known PARPi.

For each of these PARPi, we next downloaded at
most 250 compounds from PubChem [45] with corre-
sponding Tanimoto coefficients greater than 0.80 (8444
unique molecules). To maximize structural diversity
and reduce the number of compounds, we again applied
the clustering algorithm (Tanimoto cutoff: 0.2), yield-
ing a set of 4631 PARPi-like molecules that (1) were not
in the original PARPi set and (2) could be docked into
PARP-1 with QVina2.

Results and discussion
Poly(ADP‑ribose) polymerase 1
We used PARP-1, a protein critical for DNA repair, as a
test system to demonstrate AutoGrow4 utility. DNA is
under constant threat of damage by ionizing radiation,
UV radiation, and reactive oxygen species [16, 46]. Base
excision repair (BER) is a crucial pathway for repairing
single-strand DNA (ssDNA) breaks, and non-homolo-
gous end joining (NHEJ) and homologous recombination
(HR) are critical pathways for repairing double-strand

DNA (dsDNA) breaks [16, 46–49]. When PARP-1 rec-
ognizes sites of DNA damage, it begins to convert
NAD+ molecules into a negatively charged network of
poly(ADP-ribose) (PAR) chains [16]. These PAR chains
are covalently attached to nearby proteins, including
PARP-1 itself, through a process known as PARylation
[16]. This PARylation signal recruits DNA repair proteins
(e.g., NHEJ and BER) [16, 50].

Defects in the BRCA 1 and 2 genes, prevalent in breast
and ovarian cancers, cause loss of HR repair function
[16]. HR-defective cancer cells rely heavily on NHEJ
and BER to compensate, so much so that further loss of
NHEJ and BER is lethal [16]. PARPi capable of disrupting
BER and NHEJ signaling are thus potential therapeutics
for treating HR-defective breast-cancer cells [16, 17]. In
contrast, non-cancerous cells survive PARPi exposure
because their HR-repair mechanisms are intact [16, 17].
HR is also most active during the S to M transition, so
actively dividing tumor cells are especially vulnerable [16,
51, 52]. Four PARPi are FDA approved (olaparib, ruca-
parib, niraparib, and talazoparib), and several more are in
clinical trials [12–15].

Comparison Benchmark runs
To compare AutoGrow4 and its predecessor AutoGrow
3.1.3, we ran both programs 24 times using similar set-
tings. On average, AutoGrow4 completes five generations

Fig. 3  Benchmark AutoGrow runs. Bar heights show the mean times required to complete five generations, averaged over 24 runs. Error bars
represent standard errors. a A comparison of AutoGrow 3.1.3 and AutoGrow4, when run using similar settings (see "Methods"). b AutoGrow4 runs
when generating at most one, three, and five variants per input compound, using Vina docking. c AutoGrow4 runs when generating at most one,
three, and five variants per input compound, using QVina2 docking

Page 8 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

1.21 times faster than AutoGrow 3.1.3 (59.64 vs 49.34
min/run, see Fig. 3a).

We also compared AutoGrow4 performance under dif-
ferent user-parameter conditions. AutoGrow4 has been
outfitted with many new features not available in previ-
ous versions. Of note, it uses Gypsum-DL [11] to gen-
erate alternate ionization, tautomeric, chiral, cis/trans
isomeric, and ring-conformational variants of each input
SMILES string. Figure 3b shows that AutoGrow4 run
times vary roughly linearly with the specified maximum
number of variants per input molecule (Additional file 1:
JSON 2). It is worth noting that in practice Gypsum-
DL often produces fewer variants than the maximum
specified. In these benchmarks, specifying a maximum
of three and five produced 2.5 and 3.9 variants per
compound.

Finally, we assessed AutoGrow4 performance when
docking with QVina2 (Fig. 3c). Compared to the other
steps in our algorithm, docking is particularly time con-
suming. AutoGrow4’s ability to dock with QVina2 in
addition to Vina is a notable improvement over previous
versions. When set to generate at most five variants per
compound, AutoGrow4 runs 1.6 times faster when dock-
ing with QVina2 vs. Vina (125.04 vs. 203.52 min/run,
respectively; Fig. 3b, c).

Large‑scale de novo PARPi run
Predicted ligands
We performed an extensive PARP-1 run to show how
AutoGrow4’s parallelization and multiprocessing capa-
bilities enable large-scale de novo design. These runs
used a large, diverse library of seed molecules and frag-
ments to produce high-scoring compounds such as
Compound 4, which has a QVina2-predicted binding
affinity of -16.7 kcal/mol (Fig. 4). This predicted ligand
has a 1H-naphtho[2,3-d][1,2,3]triazole substructure that
forms π–π stacking interactions with the PARP-1 Y907,
H862, and Y896 residues. Interestingly, two of these resi-
dues (H862 and Y896) belong to the PARP-1 catalytic
triad, which is conserved in PARP-1 through PARP-6
[53]. Additional hydrogen bonds form between the com-
pound’s cyclic nitrogen atoms and the backbone atoms
of G863, R865, and R878. An electrostatic interaction
with D766 is also possible, depending on the protona-
tion states of D766 and the compound tetrazolidine
substructure.

A caution regarding chemical properties
Though longer AutoGrow4 runs can produce compounds
with remarkable scores, we generally recommend mul-
tiple independent runs with fewer generations. Longer
runs have several disadvantages. First, the evolving com-
pounds increasingly take on chemical properties that

are artefactually favored by the fitness function and/or
ligand-creation operations. For example, Compound 4
(Fig. 4b), one of the best-scoring compounds produced
by the extensive PARP-1 de novo run, has a molecular
weight (MW) near the 480 Da maximum that the applied
Ghose filter permits (478.1 Da) [54]. The Vina scoring
function is known to favor larger molecules [55], perhaps
explaining in part this apparent evolutionary tendency
towards increased MW. Filters that place tighter restric-
tions on MW, as well as ligand-efficiency rescoring [30],
can mitigate this bias.

Second, longer runs can lead to the accumulation of
undesirable moieties. The 24th-generation compound
shown in Additional file 1: Figure S1, one of the highest
scoring compounds from our large-scale de novo run,
provides a good example. This compound possesses azo
and ethyne moieties, which belong to a broad category
of substructures thought to be mutagenic, pharmacoki-
netically unfavorable, reactive, and/or likely to interfere
with typical high-throughput screening approaches [56].
This challenge, typical of longer runs, can be mitigated by

Fig. 4  Results of a large-scale de novo run. a QVina2 scores per
generation. The average score of all compounds per generation
is shown in blue. The average scores of the top 50, 20, 10, and 1
compounds are shown in cyan, purple, green, and red, respectively.
The QVina2 scores of known ligands are shown as dashed lines. b The
AutoGrow4-generated compound with the best QVina2 score (30th
generation). The PARP-1 catalytic domain was used for docking (PDB
ID: 4R6E:A, shown in blue ribbon). Select protein residues are shown
in colored sticks representation

Page 9 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

applying the appropriate filter(s) (e.g., the BRENK filter
[56]).

Third, compound synthesizability, also a critical chemi-
cal property, similarly tends to diminish in later gen-
erations as the accumulation of mutation and crossover
events causes the population to drift from the source
molecules.

A caution regarding homogeneity and convergence
Long runs also suffer from population homogeneity
and premature convergence. In this scenario, the fit-
ness scores of existing molecules are so good that new
compounds generated via mutation and crossover can
rarely outcompete them [57]. Compound fitness thus
tends to improve quickly in the earliest generations but
stalls in later generations despite consuming compara-
ble computational resources. For example, the average
docking score of the top 50 molecules in our large-scale
de novo run improved -6.09 kcal/mol from generation
zero to five (-7.36 kcal/mol to -13.45 kcal/mol, respec-
tively), but it only improved another -2.99 kcal/mol by
generation 30 (-16.44 kcal/mol). The populations began
to converge by generation 20, with only minor subse-
quent improvements in fitness (Fig. 4a).

AutoGrow4 uses several strategies to avoid popula-
tion convergence and homogeneity. First, its sizable
libraries of diverse seed molecules encourage the explo-
ration of a large subset of chemistry space, at least in
early generations. Second, it considers both primary
(binding) and secondary (diversity) scores when select-
ing molecules for elitism, mutation, and crossover
operations (Fig. 1). By seeding each generation with a
combination of well docked and unique compounds,
AutoGrow4 aims to search more of chemistry space
while still maintaining a selective pressure for reason-
able predicted ligands. Finally, AutoGrow4 provides
different selection strategies (e.g., Roulette and Tourna-
ment) that may delay convergence. Despite these meas-
ures, multiple independent runs of fewer generations
are typically more computationally efficient.

PARPi lead‑optimization runs
AutoGrow4 applied to lead optimization
We performed six short PARP-1 runs to show how
AutoGrow4 is a useful tool for lead optimization. These
runs used 94 known PARPi and PARPi fragments as
seeds rather than a large library of diverse molecular
fragments. Our ultimate goal was to evolve molecules

Fig. 5  Example ligand poses and structures. Select protein residues are shown in colored sticks representation (top row). Common substructures
are highlighted in blue, yellow, and pink (bottom row). a The crystallographic olaparib pose (PDB: 5DS3), aligned and superimposed on the 4R6E:A
structure for comparison’s sake (blue ribbon). b CEP-9722 docked into the 4R6E:A structure. c Compound 5, derived from olaparib and CEP-9722
fragments, docked into the 4R6E:A structure

Page 10 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

that are chemically similar to known ligands, but with
improved docking scores. To perform a narrow but thor-
ough search of the chemistry space centered around the
initial leads, we ran each AutoGrow4 run for only five
generations. But we used large population sizes (see
"Methods") and increased the QVina2 exhaustiveness
parameter to 25 to improve the chances of finding opti-
mal docked poses.

By the third generation, the average QVina2 score
of the top-20 compounds across all six runs (the grand
mean) already matched the score of the best-scoring
known PARPi, olaparib (-13.6 kcal/mol, AstraZeneca).
By the fifth generation, the grand mean of the top-50
compounds (-14.0 kcal/mol) was better than the olaparib
score (Additional file 1: Figure S2).

Of all the molecules generated during the six PARPi
lead-optimization runs, compound 5 had one of the
best QVina2 scores (Fig. 5 and Additional file 1: Figure
S3, -14.7 kcal/mol). We focused subsequent analysis on
this molecule rather than the best-scoring compound
(Fig. 2b) because compound 5 was derived from two
source-library PARPi fragments (OlaparibFrag3 and CEP-
9722Frag1), the result of a crossover in the first generation
(Additional file 1: Figure S3). It thus provides an excellent
example of AutoGrow4-guided lead optimization.

Compound 5 participates in π–π stacking interactions
with the PARP-1 Y907 and Y896 residues. One of its car-
bonyl oxygen atoms also forms a hydrogen bond with
G863 (Fig. 5c). These interactions are typical of the bind-
ing modes of known PARPi [18–20, 58–66] such as the
crystallographic olaparib pose (Fig. 5a) [19] and a docked
CEP-9722 pose (Cephalon, Fig. 5b).

In constructing compound 5, AutoGrow4 attached an
olaparib-derived piperazine moiety at a different position
than the CEP-9722 piperazine, but the docked poses of
both compounds orient their respective piperazines simi-
larly. Interestingly, this orientation differs from that of the
olaparib piperazine (Fig. 5). We note that the crystallo-
graphic poses of several other PARPis position piperazine
moieties at alternate locations [19, 66–68]. For example,
the crystal structure of the potent PARPi EB47 [69, 70]
bound to PARP16 (PDB ID: 6HXR) places a piperazine
substructure near that of our compound 5 docked pose.
Notably, EB47 was not among the source-library com-
pounds used for the PARP-1 lead-optimization runs.

AutoGrow4 vs. other docking techniques for lead
optimization
Similarity-based virtual screening (VS) is a popular tech-
nique for in silico ligand optimization [40, 41]. One first
generates a library of compounds that are chemically
similar to known ligands. VS is then used to prioritize the
compounds in hopes of ultimately identifying molecules

that bind with better predicted affinities than those of the
known ligands. Two methods for identifying chemically
similar compounds are common: substructure and simi-
larity searching.

In the substructure scheme, the compound library
consists of molecules that share substructures in com-
mon with known ligands. The generation-1 compounds
of each AutoGrow4 lead-optimization run form such
a library because (1) they are derived from the PARPi
fragments/molecules of generation 0, and (2) both the
mutation and crossover operators generate compounds
that share substructures in common with parent mol-
ecules. The progress made from generation 1 to genera-
tion 5 thus illustrates how AutoGrow4 optimization can
improve scores beyond substructure-based VS alone. As
shown in Additional file 1: Figure S2, the grand-mean
docking score of the top 50 compounds from generation
1 ( ∼ 1% of all compounds screened that generation) was
-12.3 kcal/mol. Following five generations of AutoGrow4
optimization, that grand-mean score improved to -14.0
kcal/mol.

In the similarity-searching scheme, the compound
library consists of molecules that are structurally similar
in their entirety to known ligands, per a whole-molecule
metric such as the Tanimoto coefficient [71]. To compare
this in silico optimization method to our GA approach,
we generated a library of 4631 PARPi-like molecules.
These compounds were processed with Gypsum-DL
[11] and docked into PARP-1 with QVina2 [10] using the
same parameters used in the AutoGrow4 lead-optimiza-
tion runs.

The average docking score of the top-50 compounds
from this similarity library ( ∼ 1% of all unique com-
pounds docked) was -12.7 kcal/mol. In contrast, five
generations of AutoGrow4 optimization produced com-
pound sets with top-50 average scores around -14.0
kcal/mol. This comparison of course has its limitations.
Generating the similarity library using stricter Tanimoto
cutoffs would have likely improved the average scores,
though at the expense of structural diversity. In contrast,
had we run the AutoGrow4 lead-optimization runs for
additional generations, our GA method would have likely
identified compounds with improved docking scores. But
the comparison nevertheless contextualizes the Auto-
Grow4 approach.

AutoGrow4 operators and molecular weight
In evaluating AutoGrow4, we also carefully studied the
program’s tendency to evolve compounds with increasing
MW. The AutoGrow4 mutation and crossover operators
could in theory drive this tendency. On the other hand,
larger ligands often form more molecular interactions
with their targets, so the observed MW increases over

Page 11 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

time may reflect physiochemical reality. The Vina scoring
function may also explain the tendency towards greater
MW, given its known bias in favor of larger molecules
[55].

To determine the role AutoGrow4 operators play in the
observed tendency, we first explored the impact of the
mutation operator on MW. From among all the opera-
tions performed during the six PARPi lead-optimization
runs, we identified 55,683 mutation events involving an
AutoGrow4-generated reactant. On average, each of
these operations increased MW by 28% (66.0 Da). But in
11% of cases, the MW decreased. To illustrate how this
is possible, consider the transesterification of phenyl ben-
zoate and methanol. The resulting products (methyl ben-
zoate and phenol) both have MWs less than the phenyl
benzoate reactant.

We next explored the impact of the crossover opera-
tor on MW. We identified 50,169 crossover events from
the six PARPi lead-optimization runs that involved two
AutoGrow4-generated parent compounds. On average,
the MW of the resulting child compound was only 5%
larger (11.5 Da) than the average MW of the two parents.
In 43% of cases, the MW decreased because the child
molecule inherited a low-weight set of decorating moie-
ties from the parents.

These results show that the mutation and crossover
operators may promote some compound growth, but
they often reduce compound size as well. Users who wish
to limit AutoGrow’s tendency towards larger-MW mol-
ecules may be interested in the included molecular filters
that place tighter restrictions on MW (e.g., Lipinski [72],
Ghosh [54]). We also recommend source (generation 0)
populations comprised of small molecular fragments
to maximize the number productive AutoGrow4 gen-
erations executed before running into MW filter cutoffs.
Increasing the number of crossover operations per gen-
eration may also effectively control MW, given that cross-
overs are more likely to reduce MW than are mutations.
Finally, users can instruct AutoGrow4 to rescore docked
molecules by ligand efficiency [30], which normalizes
docking scores by the number of compound heavy atoms
and so penalizes larger molecules.

Identifying critical protein–ligand interactions
Beyond de novo generation and lead optimization, Auto-
Grow4 provides a systematic way of identifying phar-
macologically important protein–ligand interactions.
Cataloguing the most common interactions among top-
scoring AutoGrow4-generated compounds can inform
subsequent experiments ranging from QSAR drug design
to site-directed mutagenesis.

The large-scale de novo run provides many useful
examples of compounds with high predicted affinities.
We identified the 100 compounds with the best docking
scores from among the hundreds of thousands of dock-
ing events performed over 30 generations of evolution.
We then used the BINANA 1.1.2 algorithm [73] to auto-
matically characterize the protein–ligand interactions of
each best-docked pose. Four interactions were present in
all 100 docked poses: two separate π–π stacking interac-
tions with Y907 and H862, an electrostatic interaction
with D766, and a hydrogen-bond interaction with G863
(Table 2). Several other interactions were prevalent,
though not universal: an electrostatic interaction with
D770 (41%), a hydrogen-bond interaction with R865
(56%), and electrostatic and hydrogen-bond interactions
with R878 (9% and 47%, respectively) (Table 2). The crys-
tallographic poses of known PARPi (e.g., olaparib) par-
ticipate in many of the same interactions seen among
the top AutoGrow4 compounds [19]. Our large-scale de
novo run—which was seeded with random molecular
fragments not necessarily related to known PARPi—thus
serves as a blind-study validation of AutoGrow4’s ability
to identify pharmacologically important catalytic-pocket
interactions.

Given that many of the AutoGrow4 generated com-
pounds have better docking scores than known PARPi,
the in silico compounds provide insight into future opti-
mization strategies. For example, all 100 of the top-scor-
ing AutoGrow4-generated compounds (large-scale de
novo run) form electrostatic interactions with D766, but
olaparib does not. Adding a positively charged moiety to
the olaparib piperazine might enable an additional inter-
action with D766.

Table 2  The protein–ligand interactions of the 100 best-docked compounds from the large-scale de novo run,
per BINANA

Infrequent interactions (< 10%) are excluded. Values are given as percents

D766 D770 H862 G863 R865 R878 Y907

Cation-π 0 0 98 0 0 0 0

Hydrogen bond 3 0 1 100 56 47 1

Electrostatic 100 41 3 0 0 9 0

T-stacking 0 0 71 0 0 0 0

π–π 0 0 100 0 0 0 100

Page 12 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

These results reinforce the critical role Y907 plays in
high-affinity binding. Many known co-crystallized PARPi
participate in a π–π stacking interaction with Y907
[18–20, 58–66]. The top-100 compounds (per the dock-
ing score) produced in both the large-scale de novo and
lead-optimization runs are all predicted to interact with
Y907, suggesting that this interaction may be broadly
critical regardless of the chemical scaffold. Unfortunately,
interactions with Y907 also raise concerns for the future
of orthosteric PARPi. When the receptor tyrosine kinase
c-Met phosphorylates Y907, PARP-1 catalytic activity
increases and PARPi binding affinity weakens [74]. c-Met
phosphorylation thus provides a potential mechanism for
PARPi resistance [74]. Consequently, there is a need for
improved PARPi that do not rely on any interaction with
Y907. Based on our AutoGrow4 results, we hypothesize
that developing catalytic-pocket inhibitors that do not
interact with Y907 will be difficult. A better strategy may
be to target other (allosteric) pockets or to pursue cock-
tail treatments that inhibit both PARP-1 and c-Met.

Comparison with other programs
Over the years, a number of programs have been devel-
oped to assist with de novo drug design [75–91]. A com-
prehensive review is beyond the scope of this article, but
a few programs, summarized in Table 3, warrant specific
mention. MoleGear is a recently published algorithm
that also takes an evolutionary approach to de novo drug
design [92]. It provides a graphical user interface and
allows users to dock compounds with either AutoDock
[93] or AutoDock Vina [21]. But despite its recent pub-
lication, MoleGear does not appear to be publicly avail-
able, and the program is closed source.

In contrast, de novo DOCK [94] is an open-source
algorithm that is integrated into the DOCK6 docking
program itself [95]. To produce novel compounds, it
uses an iterative fragment-growth method that is based
on the DOCK6 anchor-and-grow search algorithm [94].
The method first identifies core components of a given

compound, referred to as anchors, and then expands
that anchor layer by layer via fragment addition. Though
de novo DOCK is a powerful program, AutoGrow4 has
several advantages. First, AutoGrow4 is not tied to a
specific docking program. Users can choose between
Vina and QVina2 docking by default, and AutoGrow4’s
plugin-based architecture makes it easy to incorporate
other docking programs as well. Second, AutoGrow4
uses high-yielding in silico chemical reactions to gener-
ate compounds via mutation. In contrast, de novo DOCK
does not provide a reaction-based mutation operator.

The free and open-source program GANDI takes a
different approach to de novo design [96]. It first docks
and scores molecular fragments using the DAIM [97],
SEED [98], and FFLD [99] programs. It then joins prom-
ising fragments via a molecular linker taken from a pre-
defined look-up table. GANDI uses a GA that employs
a parallel-model approach, often referred to as an island
model [96]. It evolves multiple populations separately,
only occasionally swapping molecules between them.
GANDI’s fragment-and-linker approach, though effec-
tive, does limit the search space to compounds that can
be generated using a pre-defined set of linkers. In con-
trast, AutoGrow4 effectively allows any linker regions to
evolve with the rest of the compound.

Recent efforts have also used machine learning for
de novo design. For example, the open-source program
REINVENT [100] uses recurrent neural networks and
reinforcement learning to generate de novo compounds.
LigDream, another example, uses a convolutional neu-
ral network [101] and focuses training instead on the 3D
shapes of known ligands. Machine-learning approaches
such as these are effective, but they must often be trained
on preexisting ligands. In contrast, AutoGrow4 can gen-
erate compounds in the absence of known inhibitors (see
the large-scale de novo run above).

Table 3  A comparison of several de novo design programs

FOSS stands for “free and open source software”

Program FOSS Docking options MPI enabled OS

AutoGrow4 Yes Vina/QVina2/customizable Yes Linux/macOS/
Windows (via
Docker)

MoleGear [92] No Autodock and Vina Yes Unspecified

GANDI [96] Yes DAIM/SEED/FFLD Yes Linux

de novo DOCK [94] Yes DOCK Yes Linux/macOS

REINVENT [100] Yes N/A Unspecified Linux/macOS

LigDream [101] Yes N/A Unspecified Unspecified

Page 13 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

Conclusions
AutoGrow4 is a powerful program for hit discovery and
lead optimization, particularly when paired with expert
knowledge about the target pocket and any known
ligands. We view AutoGrow4 as an open-source tool
for hypothesis generation. It effectively narrows the vast
scope of all possible compounds to a subset of candidate
ligands. Expert users must then apply their own biologi-
cal and chemical understanding to properly interpret the
results and to ensure that the generated compounds are
chemically feasible.

AutoGrow4 is available free of charge under the terms
of the open-source Apache License, version 2.0. A copy
of the latest version can be downloaded from http://
durra​ntlab​.com/autog​row4, and an archived copy is pro-
vided as Additional file 2. AutoGrow4 is compatible with
both Python 2.7 and 3.7. Users must separately install
the following third-party Python-library dependencies:
RDKit [26], numpy [102, 103], scipy [104], matplotlib
[105], and func_timeout (available via pip). If the mpi4py
Python package is installed [106], AutoGrow4 can lev-
erage multiple processors using MPI on MPI-enabled
clusters. Finally, to convert structures from the PDB to
the PDBQT format for use with Vina and QVina2, Auto-
Grow4 requires either AutoDock MGLTools or Open
Babel [37, 93].

Installation instructions for AutoGrow4 and its
dependencies are provided in the AutoGrow4 tutorial.
AutoGrow4 runs on Linux and macOS. We strongly
encourage use of the AutoGrow4 Docker container
(Docker, Inc.), included in the download, which automat-
ically installs all dependencies and further enables use on
Windows.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-020-00429​-4.

Additional file 1. The Additional file includes detailed descriptions of the
AutoGrow 3.1.3 and AutoGrow4 parameters used in the benchmark and
PARP-1 runs. It also includes Figures S1, S2, and S3, referenced in the text.

Additional file 2. An archive of the AutoGrow4 source code. See http://
durra​ntlab​.com/autog​row4 for the latest version.

Acknowledgements
We would like to thank Patrick J. Ropp for useful discussions and programming
tips; Erich Hellemann for discussions and help with SMARTS reactions; Pauline
Spiegel for manuscript editing and tutorial testing; Yuri Kochnev for compiling
QVina2 for macOS; Kevin C. Cassidy for help with molecular rendering; and
Harrison Green for help developing AutoGrow4 accessory scripts. We would
like to thank the University of Pittsburgh’s Center for Research Computing for
providing helpful computer resources. The default fragment libraries included
with AutoGrow4 were derived from a subset of the ZINC database (https​://
zinc.docki​ng.org/). We thank ZINC for allowing us to distribute these fragment
libraries to AutoGrow4 users.

Availability and requirements

Project name: AutoGrow4
Project home page: http://durra​ntlab​.com/autog​row4
Operating systems: Linux, macOS, and Windows (via Docker)
Programming language: Python 2/3
Other requirements: RDKit, NumPy, SciPy, funct_timeout, Mpi4py (optional),
MGLTools (optional), Open Babel (optional)
License: Apache License, Version 2.0

Authors’ contributions
JOS and JDD conceived of and planned the study. JOS rewrote the Auto-
Grow4 codebase and performed the computational validation. JOS and JDD
wrote the manuscript and prepared figures together. All authors discussed the
results and contributed to the final manuscript. All authors read and approved
the final manuscript.

Funding
None.

Availability of data and materials
All data and materials used to validate AutoGrow4 are included in the Auto-
Grow4 download.

Competing interests
The authors declare that they have no competing interests.

Received: 3 February 2020 Accepted: 31 March 2020

References
	 1.	 Ertl P (2003) Cheminformatics analysis of organic substituents: iden-

tification of the most common substituents, calculation of substitu-
ent properties, and automatic identification of drug-like bioisosteric
groups. J Chem Inf Comput Sci. https​://doi.org/10.1021/ci025​5782

	 2.	 Bohacek RS, McMartin C, Guida WC (1996) The art and practice
of structure-based drug design: a molecular modeling perspec-
tive. Med Res Rev. https​://doi.org/10.1002/(SICI)1098-1128(19960​
1)16:1<3::AID-MED1>3.0.CO;2-6

	 3.	 Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of
drug-like chemical space based on GDB-17 data. J Comput Aided Mol
Des. https​://doi.org/10.1007/s1082​2-013-9672-4

	 4.	 Durrant JD, Amaro RE, McCammon JA (2009) Autogrow: a novel algo-
rithm for protein inhibitor design. Chem Biol Drug Des 73(2):168–178.
https​://doi.org/10.1111/j.1747-0285.2008.00761​.x

	 5.	 Durrant JD, Lindert S, McCammon JA (2013) Autogrow 3.0: an improved
algorithm for chemically tractable, semi-automated protein inhibi-
tor design. J Mol Graph Model 44:104–112. https​://doi.org/10.1016/j.
jmgm.2013.05.006

	 6.	 Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational
methods in drug discovery. Pharmacol Rev. https​://doi.org/10.1124/
pr.112.00733​6

	 7.	 Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of
compiling and using ’drug-like’ chemical fragment spaces. ChemMed-
Chem. https​://doi.org/10.1002/cmdc.20080​0178

	 8.	 Yu W, MacKerell AD (2017) Chap. 5. Computer-aided drug design meth-
ods. In: Sass P (ed) Antibiotics methods in molecular biology, vol 1520.
Springer, Berlin, pp 85–106

	 9.	 Kawai K, Nagata N, Takahashi Y (2014) De novo design of drug-like mol-
ecules by a fragment-based molecular evolutionary approach. J Chem
Inf Model. https​://doi.org/10.1021/ci400​418c

	 10.	 Alhossary A, Handoko SD, Mu Y, Kwoh CK (2015) Fast, accurate, and reli-
able molecular docking with QuickVina 2. Bioinformatics 31(13):2214–
2216. https​://doi.org/10.1093/bioin​forma​tics/btv08​2

	 11.	 Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA, Ringe
JJ, Durrant JD (2019) Gypsum-dl: an open-source program for prepar-
ing small-molecule libraries for structure-based virtual screening. J
Cheminform 11(1):34. https​://doi.org/10.1186/s1332​1-019-0358-3

http://durrantlab.com/autogrow4
http://durrantlab.com/autogrow4
https://doi.org/10.1186/s13321-020-00429-4
https://doi.org/10.1186/s13321-020-00429-4
http://durrantlab.com/autogrow4
http://durrantlab.com/autogrow4
https://zinc.docking.org/
https://zinc.docking.org/
http://durrantlab.com/autogrow4
https://doi.org/10.1021/ci0255782
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1111/j.1747-0285.2008.00761.x
https://doi.org/10.1016/j.jmgm.2013.05.006
https://doi.org/10.1016/j.jmgm.2013.05.006
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1002/cmdc.200800178
https://doi.org/10.1021/ci400418c
https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1186/s13321-019-0358-3

Page 14 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

	 12.	 Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E,
Tzou A, Philip R et al (2015) Fda approval summary: olaparib mono-
therapy in patients with deleterious germline BRCA-mutated advanced
ovarian cancer treated with three or more lines of chemotherapy. Clin
Cancer Res 21(19):4257–4261

	 13.	 Balasubramaniam S, Beaver JA, Horton S, Fernandes LL, Tang S, Horne
HN, Liu J, Liu C, Schrieber SJ, Yu J, Song P, Pierce W, Robertson KJ,
Palmby TR, Chiu HJ, Lee EY, Philip R, Schuck R, Charlab R, Banerjee A,
Chen XH, Wang X, Goldberg KB, Sridhara R, Kim G, Pazdur R (2017) FDA
approval summary: rucaparib for the treatment of patients with delete-
rious BRCA mutation-associated advanced ovarian cancer. Clin Cancer
Res 23(23):7165–7170. https​://doi.org/10.1158/1078-0432.CCR-17-1337

	 14.	 Ison G, Howie LJ, Amiri-Kordestani L, Zhang L, Tang S, Sridhara R, Pierre
V, Charlab R, Ramamoorthy A, Song P, Li F, Yu J, Manheng W, Palmby TR,
Ghosh S, Horne HN, Lee EY, Philip R, Dave K, Chen XH, Kelly SL, Janoria
KG, Banerjee A, Eradiri O, Dinin J, Goldberg KB, Pierce WF, Ibrahim A,
Kluetz PG, Blumenthal GM, Beaver JA, Pazdur R (2018) FDA approval
summary: niraparib for the maintenance treatment of patients with
recurrent ovarian cancer in response to platinum-based chemotherapy.
Clin Cancer Res 24(17):4066–4071. https​://doi.org/10.1158/1078-0432.
CCR-18-0042

	 15.	 Hoy SM (2018) Talazoparib: first global approval. Drugs 78(18):1939–
1946. https​://doi.org/10.1007/s4026​5-018-1026-z

	 16.	 Bitler BG, Watson ZL, Wheeler LJ, Behbakht K (2017) PARP inhibitors:
clinical utility and possibilities of overcoming resistance. Gynecol Oncol
147(3):695–704. https​://doi.org/10.1016/j.ygyno​.2017.10.003

	 17.	 Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end
joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality
in homologous recombination-deficient cells. Proc Nat Acad Sci USA
108(8):3406–3411. https​://doi.org/10.1073/pnas.10137​15108​

	 18.	 Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, Moche
M, Cohen MS, Schüler H (2017) Structural basis for potency and promis-
cuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J
Med Chem. https​://doi.org/10.1021/acs.jmedc​hem.6b009​90

	 19.	 Dawicki-McKenna JM, Langelier M-F, DeNizio JE, Riccio AA, Cao CD,
Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM (2015) Parp-1
activation requires local unfolding of an autoinhibitory domain. Mol
Cell 60(5):755–768. https​://doi.org/10.1016/j.molce​l.2015.10.013

	 20.	 Kinoshita T, Nakanishi I, Warizaya M, Iwashita A, Kido Y, Hattori K, Fujii T
(2004) Inhibitor-induced structural change of the active site of human
poly(ADP-ribose) polymerase. FEBS Lett 556(1–3):43–6. https​://doi.
org/10.1016/s0014​-5793(03)01362​-0

	 21.	 Trott O, Olson AJ (2009) Autodock vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimiza-
tion, and multithreading. J Comput Chem 31(2):455–461. https​://doi.
org/10.1002/jcc.21334​

	 22.	 Durrant JD, McCammon JA (2012) Autoclickchem: click chemistry in
silico. PLoS Comput Biol. https​://doi.org/10.1371/journ​al.pcbi.10023​97

	 23.	 Hartenfeller M, Eberle M, Meier P, Nieto-Oberhuber C, Altmann KH,
Schneider G, Jacoby E, Renner S (2011) A collection of robust organic
synthesis reactions for in silico molecule design. J Chem Inf Model
51(12):3093–3098. https​://doi.org/10.1021/ci200​379p

	 24.	 Sterling T, Irwin JJ (2015) ZINC 15-ligand discovery for everyone. J Chem
Inf Model. https​://doi.org/10.1021/acs.jcim.5b005​59

	 25.	 Lindert S, Durrant JD, Mccammon JA (2012) LigMerge: a fast algorithm
to generate models of novel potential ligands from sets of known
binders. Chem Biol Drug Des 80(3):358–365. https​://doi.org/10.111
1/j.1747-0285.2012.01414​.x

	 26.	 Landrum G RDKit: open-source cheminformatics. http://www.rdkit​.org/
	 27.	 Ropp PJ, Kaminsky JC, Yablonski S, Durrant JD (2019) Dimorphite-DL: an

open-source program for enumerating the ionization states of drug-like
small molecules. J Cheminform 11(1):14. https​://doi.org/10.1186/s1332​
1-019-0336-9

	 28.	 Durrant JD, McCammon JA (2010) NNScore: a neural-network-based
scoring function for the characterization of protein–ligand complexes. J
Chem Inf Model 50(10):1865–1871. https​://doi.org/10.1021/ci100​244v

	 29.	 Durrant JD, McCammon JA (2011) Nnscore 2.0: a neural-network
receptor-ligand scoring function. J Chem Inf Model 51(11):2897–2903.
https​://doi.org/10.1021/ci200​3889

	 30.	 Reynolds CH, Tounge BA, Bembenek SD (2008) Ligand binding
efficiency: trends, physical basis, and implications. J Med Chem
51(8):2432–2438

	 31.	 Landrum G (2011) Getting started with the RDKit in Python. https​://
www.rdkit​.org/docs/Getti​ngSta​rtedI​nPyth​on.html

	 32.	 Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropri-
ate choice for fingerprint-based similarity calculations? J Cheminform.
https​://doi.org/10.1186/s1332​1-015-0069-3

	 33.	 Shukla A, Pandey HM, Mehrotra D (2015) Comparative review of selec-
tion techniques in genetic algorithm. In: 2015 international conference
on futuristic trends on computational analysis and knowledge manage-
ment (ABLAZE) (February), pp 515–519. https​://doi.org/10.1109/ABLAZ​
E.2015.71549​16

	 34.	 Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K,
Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravi-
chandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki
C (2002) The protein data bank. Acta Crystallogr Sect D Biol Crystallogr.
https​://doi.org/10.1107/S0907​44490​20034​51

	 35.	 Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Pdb2pqr: an
automated pipeline for the setup of Poisson-Boltzmann electrostatics
calculations. Nucl Acids Res 32(Web Server issue):665–667. https​://doi.
org/10.1093/nar/gkh38​1

	 36.	 Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker
NA (2007) Pdb2pqr: expanding and upgrading automated preparation
of biomolecular structures for molecular simulations. Nucl Acids Res
35(Web Server issue):522–525. https​://doi.org/10.1093/nar/gkm27​6

	 37.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison
GR (2011) Open babel: an open chemical toolbox. J Cheminform. https​
://doi.org/10.1186/1758-2946-3-33

	 38.	 Ropp P, Friedman A, Durrant JD (2017) Scoria: a Python module
for manipulating 3D molecular data. J Cheminform. https​://doi.
org/10.1186/s1332​1-017-0237-8

	 39.	 Durrant JD (2018) Blendmol: advanced macromolecular visualization in
blender. Bioinformatics 35(13):2323–2325. https​://doi.org/10.1093/bioin​
forma​tics/bty96​8

	 40.	 Alvesalo JK, Siiskonen A, Vainio MJ, Tammela PS, Vuorela PM (2006)
Similarity based virtual screening: a tool for targeted library design. J
Med Chem 49(7):2353–2356

	 41.	 de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães
ACR, Furnham N, Andrade CH, Silva FP Jr (2020) In silico strategies to
support fragment-to-lead optimization in drug discovery. Front Chem
8:93

	 42.	 Chen X, Lin Y, Liu M, Gilson MK (2002) The binding database: data
management and interface design. Bioinformatics 18(1):130–139. https​
://doi.org/10.1093/bioin​forma​tics/18.1.130

	 43.	 Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-
accessible database of experimentally determined protein–ligand
binding affinities. Nucl Acids Res 35(Database issue):198–201. https​://
doi.org/10.1093/nar/gkl99​9

	 44.	 Butina D (1999) Unsupervised data base clustering based on daylight’s
fingerprint and tanimoto similarity: a fast and automated way to cluster
small and large data sets. J Chem Inf Comput Sci 39(4):747–750

	 45.	 Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) Pubchem: a
public information system for analyzing bioactivities of small molecules.
Nucl Acids Res 37(Web Server issue):623–33. https​://doi.org/10.1093/
nar/gkp45​6

	 46.	 Van Houten B, Santa-Gonzalez GA, Camargo M (2018) DNA repair after
oxidative stress: current challenges. Curr Opin Toxicol 7:9–16. https​://
doi.org/10.1016/j.cotox​.2017.10.009

	 47.	 Hegde ML, Hazra TK, Mitra S (2008) Early steps in the dna base excision/
single-strand interruption repair pathway in mammalian cells. Cell Res
18(1):27

	 48.	 Hoeijmakers JH (2001) Genome maintenance mechanisms for prevent-
ing cancer. Nature 411(6835):366

	 49.	 Chang HH, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homolo-
gous DNA end joining and alternative pathways to double-strand break
repair. Nat Rev Mol Cell Biol 18(8):495

	 50.	 Couto CA-M, Wang H-Y, Green JCA, Kiely R, Siddaway R, Borer C, Pears
CJ, Lakin ND (2011) PARP regulates nonhomologous end joining
through retention of Ku at double-strand breaks. J Cell Biol 194(3):367–
375. https​://doi.org/10.1083/jcb.20101​2132

https://doi.org/10.1158/1078-0432.CCR-17-1337
https://doi.org/10.1158/1078-0432.CCR-18-0042
https://doi.org/10.1158/1078-0432.CCR-18-0042
https://doi.org/10.1007/s40265-018-1026-z
https://doi.org/10.1016/j.ygyno.2017.10.003
https://doi.org/10.1073/pnas.1013715108
https://doi.org/10.1021/acs.jmedchem.6b00990
https://doi.org/10.1016/j.molcel.2015.10.013
https://doi.org/10.1016/s0014-5793(03)01362-0
https://doi.org/10.1016/s0014-5793(03)01362-0
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1371/journal.pcbi.1002397
https://doi.org/10.1021/ci200379p
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1111/j.1747-0285.2012.01414.x
https://doi.org/10.1111/j.1747-0285.2012.01414.x
http://www.rdkit.org/
https://doi.org/10.1186/s13321-019-0336-9
https://doi.org/10.1186/s13321-019-0336-9
https://doi.org/10.1021/ci100244v
https://doi.org/10.1021/ci2003889
https://www.rdkit.org/docs/GettingStartedInPython.html
https://www.rdkit.org/docs/GettingStartedInPython.html
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1109/ABLAZE.2015.7154916
https://doi.org/10.1109/ABLAZE.2015.7154916
https://doi.org/10.1107/S0907444902003451
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1093/nar/gkm276
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/s13321-017-0237-8
https://doi.org/10.1186/s13321-017-0237-8
https://doi.org/10.1093/bioinformatics/bty968
https://doi.org/10.1093/bioinformatics/bty968
https://doi.org/10.1093/bioinformatics/18.1.130
https://doi.org/10.1093/bioinformatics/18.1.130
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1093/nar/gkp456
https://doi.org/10.1093/nar/gkp456
https://doi.org/10.1016/j.cotox.2017.10.009
https://doi.org/10.1016/j.cotox.2017.10.009
https://doi.org/10.1083/jcb.201012132

Page 15 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25 	

	 51.	 Mark M, Wendling O, Wynshaw-boris JMEA (2001) Early embryonic
lethality in PARP-1 Atm double-mutant mice suggests a functional syn-
ergy in cell proliferation during development. Microbiology 21(5):1828–
1832. https​://doi.org/10.1128/MCB.21.5.1828

	 52.	 Ira G, Pellicioll A, Balijja A, Wang X, Florani S, Carotenuto W, Liberi G,
Bressan D, Wan L, Hollingsworth NM, Haber JE, Folani M (2004) DNA
end resection, homologous recombination and DNA damage check-
point activation require CDK1. Nature 431(7011):1011–1017. https​://doi.
org/10.1038/natur​e0296​4

	 53.	 Alemasova EE, Lavrik OI (2019) Poly (ADP-ribosyl) ation by PARP1:
reaction mechanism and regulatory proteins. Nucl Acids Res
47(8):3811–3827

	 54.	 Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based
approach in designing combinatorial or medicinal chemistry libraries
for drug discovery. J Comb Chem 1(1):55–68. https​://doi.org/10.1021/
cc980​0071

	 55.	 Chang MW, Ayeni C, Breuer S, Torbett BE (2010) Virtual screening for HIV
protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS ONE.
https​://doi.org/10.1371/journ​al.pone.00119​55

	 56.	 Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt
PG (2008) Lessons learnt from assembling screening libraries for drug
discovery for neglected diseases. ChemMedChem 3(3):435–444. https​
://doi.org/10.1002/cmdc.20070​0139

	 57.	 Casas N (2015) Genetic algorithms for multimodal optimization: a
review

	 58.	 Hattori K, Kido Y, Yamamoto H, Ishida J, Kamijo K, Murano K, Ohkubo M,
Kinoshita T, Iwashita A, Mihara K, Yamazaki S, Matsuoka N, Teramura Y,
Miyake H (2004) Rational approaches to discovery of orally active and
brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymer-
ase. J Med Chem 47(17):4151–4. https​://doi.org/10.1021/jm049​9256

	 59.	 Ye N, Chen C-H, Chen T, Song Z, He J-X, Huan X-J, Song S-S, Liu Q,
Chen Y, Ding J, Xu Y, Miao Z-H, Zhang A (2013) Design, synthesis, and
biological evaluation of a series of benzo[de][1,7]naphthyridin-7(8h)-
ones bearing a functionalized longer chain appendage as novel parp1
inhibitors. J Med Chem 56(7):2885–903. https​://doi.org/10.1021/jm301​
825t

	 60.	 Lindgren AEG, Karlberg T, Thorsell A-G, Hesse M, Spjut S, Ekblad T,
Andersson CD, Pinto AF, Weigelt J, Hottiger MO, Linusson A, Elofsson
M, Schüler H (2013) PARP inhibitor with selectivity toward ADP-ribosyl-
transferase ARTD3/PARP3. ACS Chem Biol 8(8):1698–703. https​://doi.
org/10.1021/cb400​2014

	 61.	 Patel MR, Bhatt A, Steffen JD, Chergui A, Murai J, Pommier Y, Pascal JM,
Trombetta LD, Fronczek FR, Talele TT (2014) Discovery and structure-
activity relationship of novel 2,3-dihydrobenzofuran-7-carboxamide
and 2,3-dihydrobenzofuran-3(2h)-one-7-carboxamide derivatives as
poly(adp-ribose)polymerase-1 inhibitors. J Med Chem 57(13):5579–601.
https​://doi.org/10.1021/jm500​2502

	 62.	 Aoyagi-Scharber M, Gardberg AS, Yip BK, Wang B, Shen Y, Fitzpatrick PA
(2014) Structural basis for the inhibition of poly(adp-ribose) polymer-
ases 1 and 2 by bmn 673, a potent inhibitor derived from dihydro-
pyridophthalazinone. Acta Crystallogr F Struct Biol Commun 70(Pt
9):1143–9. https​://doi.org/10.1107/S2053​230X1​40150​88

	 63.	 Papeo G, Posteri H, Borghi D, Busel AA, Caprera F, Casale E, Ciomei M,
Cirla A, Corti E, D’Anello M, Fasolini M, Forte B, Galvani A, Isacchi A, Khvat
A, Krasavin MY, Lupi R, Orsini P, Perego R, Pesenti E, Pezzetta D, Rainoldi
S, Riccardi-Sirtori F, Scolaro A, Sola F, Zuccotto F, Felder ER, Donati
D, Montagnoli A (2015) Discovery of 2-[1-(4,4-difluorocyclohexyl)
piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1h-isoindole-4-carboxam-
ide (nms-p118): a potent, orally available, and highly selective PARP-1
inhibitor for cancer therapy. J Med Chem 58(17):6875–98. https​://doi.
org/10.1021/acs.jmedc​hem.5b006​80

	 64.	 Fu L, Wang S, Wang X, Wang P, Zheng Y, Yao D, Guo M, Zhang L, Ouyang
L (2016) Crystal structure-based discovery of a novel synthesized
parp1 inhibitor (ol-1) with apoptosis-inducing mechanisms in triple-
negative breast cancer. Sci Rep 6(1):3. https​://doi.org/10.1038/s4159​
8-016-0007-2

	 65.	 Chen X, Huan X, Liu Q, Wang Y, He Q, Tan C, Chen Y, Ding J, Xu Y, Miao
Z, Yang C (2018) Design and synthesis of 2-(4,5,6,7-tetrahydrothien-
opyridin-2-yl)-benzoimidazole carboxamides as novel orally effica-
cious poly(ADP-ribose)polymerase (PARP) inhibitors. Eur J Med Chem
145:389–403. https​://doi.org/10.1016/j.ejmec​h.2018.01.018

	 66.	 Velagapudi UK, Langelier M-F, Delgado-Martin C, Diolaiti ME, Bakker
S, Ashworth A, Patel BA, Shao X, Pascal JM, Talele TT (2019) Design
and synthesis of poly (ADP-ribose) polymerase inhibitors: impact of
adenosine pocket-binding motif appendage to the 3-oxo-2, 3-dihyd-
robenzofuran-7-carboxamide on potency and selectivity. J Med Chem
62:5330–5357

	 67.	 Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A,
Thorsell A-G, Pol E, Frostell Å, Ekblad T, Öncü D et al (2012) Family-wide
chemical profiling and structural analysis of PARP and tankyrase inhibi-
tors. Nat Biotechnol 30(3):283

	 68.	 Upton K, Meyers M, Thorsell A-G, Karlberg T, Holechek J, Lease R, Schey
G, Wolf E, Lucente A, Schüler H et al (2017) Design and synthesis of
potent inhibitors of the mono (ADP-ribosyl) transferase, PARP14. Bioorg
Med Chem Lett 27(13):2907–2911

	 69.	 Jagtap PG, Southan GJ, Baloglu E, Ram S, Mabley JG, Marton A, Salzman
A, Szabo C (2004) The discovery and synthesis of novel adenosine
substituted 2, 3-dihydro-1h-isoindol-1-ones: potent inhibitors of poly
(ADP-ribose) polymerase-1 (PARP-1). Bioorg Med Chem Lett 14(1):81–85

	 70.	 Jagtap P, Szabó C (2005) Poly (ADP-ribose) polymerase and the thera-
peutic effects of its inhibitors. Nat Rev Drug Discov 4(5):421

	 71.	 Tanimoto T (1957) IBM technical report series. Report
	 72.	 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental

and computational approaches to estimate solubility and permeabil-
ity in drug discovery and development settings. Adv Drug Deliv Rev
23(1–3):3–25. https​://doi.org/10.1016/S0169​-409x(96)00423​-1

	 73.	 Durrant JD, McCammon JA (2011) BINANA: a novel algorithm for
ligand-binding characterization. J Mol Graph Model 29(6):888–893.
https​://doi.org/10.1016/j.jmgm.2011.01.004

	 74.	 Du Y, Yamaguchi H, Wei Y, Hsu JL, Wang HL, Hsu YH, Lin WC, Yu WH,
Leonard PG, Lee GR, Chen MK, Nakai K, Hsu MC, Chen CT, Sun Y, Wu
Y, Chang WC, Huang WC, Liu CL, Chang YC, Chen CH, Park M, Jones
P, Hortobagyi GN, Hung MC (2016) Blocking c-Met-mediated PARP1
phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat
Med. https​://doi.org/10.1038/nm.4032

	 75.	 Wang R, Gao Y, Lai L (2000) Ligbuilder: a multi-purpose program for
structure-based drug design. J Mol Model 6(7):498

	 76.	 Yuan Y, Pei J, Lai L (2011) Ligbuilder 2: a practical de novo drug design
approach. J Chem Inform Model 51(5):1083–1091

	 77.	 Yuan Y, Pei J, Lai L (2020) Ligbuilder v3: a multi-target de novo drug
design approach. Front Chem 8:142

	 78.	 Li Y, Zhao Y, Liu Z, Wang R (2011) Automatic tailoring and transplant-
ing: a practical method that makes virtual screening more useful. ACS
Publications, Washington

	 79.	 Li Y, Zhao Z, Liu Z, Su M, Wang R (2016) Autot&t v.2: an efficient and
versatile tool for lead structure generation and optimization. J Chem
Inform Model 56(2):435–453

	 80.	 Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A (2009) E-novo: an
automated workflow for efficient structure-based lead optimization. J
Chem Inform Model 49(7):1797–1809

	 81.	 Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for
fragment-based de novo design. J Chem Inform Model 46(2):699–707

	 82.	 Schürer SC, Tyagi P, Muskal SM (2005) Prospective exploration of syn-
thetically feasible, medicinally relevant chemical space. J Chem Inform
Model 45(2):239–248

	 83.	 Moore JW (2005) Maximizing discovery efficiency with a computation-
ally driven fragment approach. Curr Opin Drug Disco Dev 8(3):355–364

	 84.	 Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based
genetic algorithm and its application to the multiobjective evolution of
median molecules. J Chem Inform Comput Sci 44(3):1079–1087

	 85.	 Pierce AC, Rao G, Bemis GW (2004) Breed: generating novel inhibitors
through hybridization of known ligands. application to CDK2, p38, and
HIV protease. J Med Chem 47(11):2768–2775

	 86.	 Stultz CM, Karplus M (2000) Dynamic ligand design and combinatorial
optimization: designing inhibitors to endothiapepsin. Proteins Struct
Funct Bioinform 40(2):258–289

	 87.	 Pearlman DA, Murcko MA (1996) Concerts: dynamic connection of
fragments as an approach to de novo ligand design. J Med Chem
39(8):1651–1663

	 88.	 Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz
B, Westhead DR (1995) Pro ligand: an approach to de novo molecular

https://doi.org/10.1128/MCB.21.5.1828
https://doi.org/10.1038/nature02964
https://doi.org/10.1038/nature02964
https://doi.org/10.1021/cc9800071
https://doi.org/10.1021/cc9800071
https://doi.org/10.1371/journal.pone.0011955
https://doi.org/10.1002/cmdc.200700139
https://doi.org/10.1002/cmdc.200700139
https://doi.org/10.1021/jm0499256
https://doi.org/10.1021/jm301825t
https://doi.org/10.1021/jm301825t
https://doi.org/10.1021/cb4002014
https://doi.org/10.1021/cb4002014
https://doi.org/10.1021/jm5002502
https://doi.org/10.1107/S2053230X14015088
https://doi.org/10.1021/acs.jmedchem.5b00680
https://doi.org/10.1021/acs.jmedchem.5b00680
https://doi.org/10.1038/s41598-016-0007-2
https://doi.org/10.1038/s41598-016-0007-2
https://doi.org/10.1016/j.ejmech.2018.01.018
https://doi.org/10.1016/S0169-409x(96)00423-1
https://doi.org/10.1016/j.jmgm.2011.01.004
https://doi.org/10.1038/nm.4032

Page 16 of 16Spiegel and Durrant ﻿J Cheminform (2020) 12:25

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

design. 1. Application to the design of organic molecules. J Comput
Aided Mol Des 9(1):13–32

	 89.	 Roe DC, Kuntz ID (1995) Builder v.2: improving the chemistry of a de
novo design strategy. J Comput Aided Mol Des 9(3):269–282

	 90.	 Bohm H-J (1992) The computer program ludi: a new method for the de
novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61

	 91.	 Bohm HJ (1992) LUDI: rule-based automatic design of new substituents
for enzyme inhibitor leads. J Comput Aided Mol Des 6(6):593–606

	 92.	 Chu He (2019) MoleGear: a java-based platform for evolutionary de
novo molecular design. Molecules 24(7):1444. https​://doi.org/10.3390/
molec​ules2​40714​44

	 93.	 Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS,
Olson AJ (2009) AutoDock4 and AutoDockTools4: automated dock-
ing with selective receptor flexibility. J Comput Chem. https​://doi.
org/10.1002/jcc.21256​

	 94.	 Allen WJ, Fochtman BC, Balius TE, Rizzo RC (2017) Customizable de
novo design strategies for DOCK: application to HIVgp41 and other
therapeutic targets. J Comput Chem 38(30):2641–2663. https​://doi.
org/10.1002/jcc.25052​

	 95.	 Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case
DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and cur-
rent docking performance. J Comput Chem 36(15):1132–1156. https​://
doi.org/10.1002/jcc.23905​

	 96.	 Dey F, Caflisch A (2008) Fragment-based de novo ligand design by
multi-objective evolutionary optimization. Supporting Information. J
Chem Inf Model 48(3):679–690

	 97.	 Kolb P, Caflisch A (2006) Automatic and efficient decomposition of
two-dimensional structures of small molecules for fragment-based
high-throughput docking. J Med Chem 49(25):7384–7392

	 98.	 Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch A (1999) Exhaus-
tive docking of molecular fragments with electrostatic solvation.
Proteins Struct Funct Bioinform 37(1):88–105

	 99.	 Budin N, Majeux N, Caflisch A (2001) Fragment-based flexible ligand
docking by evolutionary optimization. Biol Chem 382(9):1365–1372

	100.	 Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo
design through deep reinforcement learning. J Cheminform 9(1):48.
https​://doi.org/10.1186/s1332​1-017-0235-x

	101.	 Skalic M, Jiménez Luna J, Sabbadin D, De Fabritiis G (2019) Shape-based
generative modeling for de-novo drug design. J Chem Inf Model. https​
://doi.org/10.1021/acs.jcim.8b002​63

	102.	 Ascher D, Dubois PF, Hinsen K, James JH, Oliphant T (1999) Numerical
python, UCRL-MA-128569 edn. Lawrence Livermore National Labora-
tory, Livermore

	103.	 Oliphant TE (2006) Guide to NumPy. Brigham Young University, Provo
	104.	 Jones E, Oliphant T, Peterson P (2001) Others: SciPy: Open source scien-

tific tools for python. http://www.scipy​.org
	105.	 Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci

Eng 9(3):90
	106.	 Dalcin L, Paz R, Storti M, D’Elia J (2008) MPI for python: performance

improvements and MPI-2 extensions. J Parallel Distrib Comput
68(5):655–662. https​://doi.org/10.1016/j.jpdc.2007.09.005

	107.	 Van De Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky
OA (1998) Estimation of blood–brain barrier crossing of drugs using
molecular size and shape, and H-bonding descriptors. J Drug Target
6(2):151–165. https​://doi.org/10.1177/00045​63215​59543​1

	108.	 Mozziconacci J, Arnoult E, Baurin N, Marot C, Morin-Allory L (2003)
Preparation of a molecular database from a set of 2 million compounds
for virtual screening applications: gathering, structural analysis and
filtering. In: 9th electronic computational chemistry conference, World
Wide Web

	109.	 Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, Thomas
CJ, Maloney DJ, Shoichet BK, Simeonov A (2010) Quantitative analyses
of aggregation, autofluorescence, and reactivity artifacts in a screen
for inhibitors of a thiol protease. J Med Chem 53(1):37–51. https​://doi.
org/10.1021/jm901​070c

	110.	 Doveston RG, Tosatti P, Dow M, Foley DJ, Li HY, Campbell AJ, House D,
Churcher I, Marsden SP, Nelson A (2015) A unified lead-oriented synthe-
sis of over fifty molecular scaffolds. Org Biomol Chem 13(3):859–865.
https​://doi.org/10.1039/c4ob0​2287d​

	111.	 Baell JB, Holloway GA (2010) New substructure filters for removal of pan
assay interference compounds (PAINS) from screening libraries and for
their exclusion in bioassays. J Med Chem 53(7):2719–2740. https​://doi.
org/10.1021/jm901​137j

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3390/molecules24071444
https://doi.org/10.3390/molecules24071444
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.25052
https://doi.org/10.1002/jcc.25052
https://doi.org/10.1002/jcc.23905
https://doi.org/10.1002/jcc.23905
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acs.jcim.8b00263
https://doi.org/10.1021/acs.jcim.8b00263
http://www.scipy.org
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1177/0004563215595431
https://doi.org/10.1021/jm901070c
https://doi.org/10.1021/jm901070c
https://doi.org/10.1039/c4ob02287d
https://doi.org/10.1021/jm901137j
https://doi.org/10.1021/jm901137j

	AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization
	Abstract
	Introduction
	Methods
	AutoGrow4 design and implementation
	Population generation via elitism
	Population generation via mutation
	Population generation via crossover
	Molecular filtration
	Conversion of SMILES to 3D PDB
	Assessing fitness
	Compound ranking and seed selection

	Benchmark AutoGrow runs
	Protein preparation
	Comparison benchmark runs
	Large-scale de novo PARPi run
	PARPi lead-optimization runs

	PARPi-like compounds: AutoGrow4 optimization vs. similarity-based screening

	Results and discussion
	Poly(ADP-ribose) polymerase 1
	Comparison Benchmark runs
	Large-scale de novo PARPi run
	Predicted ligands
	A caution regarding chemical properties
	A caution regarding homogeneity and convergence

	PARPi lead-optimization runs
	AutoGrow4 applied to lead optimization
	AutoGrow4 vs. other docking techniques for lead optimization

	AutoGrow4 operators and molecular weight
	Identifying critical protein–ligand interactions
	Comparison with other programs

	Conclusions
	Acknowledgements
	References

