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Abstract 

We here present AutoGrow4, an open-source program for semi-automated computer-aided drug discovery. Auto-
Grow4 uses a genetic algorithm to evolve predicted ligands on demand and so is not limited to a virtual library of 
pre-enumerated compounds. It is a useful tool for generating entirely novel drug-like molecules and for optimizing 
preexisting ligands. By leveraging recent computational and cheminformatics advancements, AutoGrow4 is faster, 
more stable, and more modular than previous versions. It implements new docking-program compatibility, chemi-
cal filters, multithreading options, and selection methods to support a wide range of user needs. To illustrate both de 
novo design and lead optimization, we here apply AutoGrow4 to the catalytic domain of poly(ADP-ribose) polymer-
ase 1 (PARP-1), a well characterized DNA-damage-recognition protein. AutoGrow4 produces drug-like compounds 
with better predicted binding affinities than FDA-approved PARP-1 inhibitors (positive controls). The predicted bind-
ing modes of the AutoGrow4 compounds mimic those of the known inhibitors, even when AutoGrow4 is seeded 
with random small molecules. AutoGrow4 is available under the terms of the Apache License, Version 2.0. A copy can 
be downloaded free of charge from http://durra​ntlab​.com/autog​row4.
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Introduction
Computer-aided drug discovery (CADD), a critical com-
ponent of many pharmaceutical pipelines, is a power-
ful tool that complements the expertise of medicinal 
chemists and biologists. Given that there are 1020–1023 
synthesizable drug-like molecules [1–3], no method—
experimental or computational—can hope to explore 
even a small subset of drug space. But CADD enables in 
silico experiments at scales much larger than are possi-
ble ex silico [1–5] and so can prioritize which candidate 
ligands warrant further testing in enzymatic or biophysi-
cal assays. CADD has been successfully applied to hit 
discovery, lead optimization, and compound synthesis 
[4–7].

CADD can be broadly divided into two categories: 
ligand-based drug design (LBDD) and structure-based 
drug design (SBDD) [6, 8]. To predict ligand binding, 
LBDD considers the physiochemical properties of known 
ligands without regard for the atomic structure of the tar-
get macromolecular receptor (e.g., protein). In contrast, 
SBDD predicts binding based on the receptor structure 
[6, 8]. SBDD can be further divided into screening and de 
novo approaches. Screening considers a finite database 
of pre-enumerated compounds, and de novo approaches 
generate new compounds in silico using algorithms that 
explore a wider range of chemistry space [4–6, 9].

We here describe AutoGrow4, a free Python-based 
open-source program for de novo SBDD CADD. Auto-
Grow4 uses a genetic algorithm (GA) to create new pre-
dicted ligands. It draws on an initial population of seed 
molecules to create a new population (i.e., a genera-
tion) of potential solutions (ligands). It then docks these 
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compounds into a user-specified target protein and 
ranks each by its calculated fitness. New generations are 
seeded with the top-scoring molecules of the previous 
generation.

AutoGrow4 expands on the approach used in previ-
ous versions of the algorithm. The original AutoGrow, 
released in 2009, was one of the first de novo CADD pro-
grams to use fully flexible docking and was one of only 
a few free open-source programs for de novo CADD [4, 
5]. More recent advances in docking software, chemin-
formatics libraries, and multithreading approaches [10, 
11] have now enabled further improvements. AutoGrow4 
has an entirely rewritten codebase that is designed to 
be faster, more stable, and more modular than previous 
versions.

To demonstrate utility, we show how AutoGrow4 can 
be used both to design entirely novel drug-like molecules 
and to optimize preexisting inhibitors. In both cases, 
we apply AutoGrow4 to poly(ADP-ribose) polymerase 1 
(PARP-1), a well-characterized DNA-damage recognition 
protein. We chose PARP-1 because (1) the many known 
PARP-1 inhibitors (PARPi) serve as positive controls and 
leads to optimize [12–15]; (2) PARPi are effective treat-
ments for many cancers with defects in the Breast Cancer 
(BRCA) 1 and 2 genes [16, 17]; and (3) the PARP-1 cata-
lytic domain has a well-characterized druggable pocket 
[18–20].

AutoGrow4 will be a useful tool for the CADD commu-
nity. We release it under the terms of the Apache License, 
Version 2.0. A copy can be downloaded free of charge 
from http://durra​ntlab​.com/autog​row4.

Methods
AutoGrow4 design and implementation
AutoGrow4 starts with an initial (input) population of 
compounds. This source population, called generation 
0, consists of a set of chemically diverse molecular frag-
ments (for de novo design) or known ligands (for lead 
optimization). AutoGrow4 creates the first generation by 
applying three operations to the source population: elit-
ism, mutation, and crossover (Fig.  1). Subsequent gen-
erations are created similarly from the compounds of the 
immediately preceding generation.

Population generation via elitism
The elitism operator progresses a sub-population of the 
fittest compounds from one generation to the next with-
out alterations. The AutoGrow4 elitism operator is simi-
lar to that of previous AutoGrow implementations, with 
two notable improvements. First, users can now option-
ally choose to regenerate and redock elite compounds. 
Many docking programs (e.g., AutoDock Vina [21]) are 
stochastic, so users may get slightly different poses each 

Fig. 1  A process-flow diagram of the AutoGrow4 algorithm. Three independent seed pools are formed from the high-scoring and diverse 
compounds of generation n - 1. These are used to create the next generation of compounds (n) via elitism, mutation, and crossover. Compounds 
are converted to 3D using Gypsum-DL, converted to a dockable file format (e.g., PDBQT), docked, (re)scored, and ranked according to the fitness 
function

http://durrantlab.com/autogrow4
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time. Reassessment may identify better poses than previ-
ous attempts.

Second, AutoGrow4 decouples the elitism operator 
from seed-population selection. In previous AutoGrow 
versions, the compounds that advanced via elitism were 
the same compounds used to seed the mutation and 
crossover operators (see below). With these two pro-
cesses now decoupled, the user can independently con-
trol the number of compounds that advance via elitism 
vs. other operators.

Population generation via mutation
The mutation operator performs an in silico chemical 
reaction to generate an altered child compound derived 
from a parent (Fig. 2b). AutoGrow4’s file-naming scheme 
allows the user to easily trace any mutant compound’s 
lineage.

The AutoGrow4 mutation operator is improved over 
previous versions of AutoGrow. AutoGrow 3.1.3 used 
AutoClickChem [22] to perform in silico reactions on 3D 
compound models, which required an extensive custom 
codebase to perform substructure searches, molecular 
alignments, and in silico reactions [5, 22]. In contrast, 
AutoGrow4 uses SMARTS-reaction notation, together 
with RDKit, to perform chemical mutations much faster.

This improved approach allowed us to easily add new 
reaction sets. Aside from the 36 click-chemistry reac-
tions that were already possible with AutoClickChem 
(the AutoClickChemRxn set), AutoGrow4 also draws on 
a second library of 58 reactions published by Hartenfeller 
et al. (the RobustRxn set) [23]. We merged these two sets 
to form a third with 94 reactions (the AllRxn set). All sets 
were manually inspected, extensively unit tested, and 
adjusted where chemical modifications were necessary. 
The tutorial included with the AutoGrow4 download 
describes how users can create and incorporate their own 
custom reaction sets.

Seventy-nine of AutoGrow4’s 94 default reactions 
require two reactants. In these cases, one of the reac-
tants is taken from a previous generation, and the other 
is taken from one of AutoGrow4’s complementary 
molecular-fragment libraries. To create these libraries, 

Fig. 2  Compound lineages from a lead-optimization run seeded 
with PARPi fragments, chosen to illustrate crossover and mutation 
operations. QVina2 was used for docking. To simplify presentation, 
we omit some intermediate steps such as changes in protonation 
states. a Olaparib recreated via crossover from two source fragments. 
The largest commonly shared substructure is highlighted in purple. 
b A high-scoring compound derived from a E7449 (known inhibitor) 
fragment illustrates the mutation operator

▸
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we downloaded a set of 19,274,338 commercially avail-
able small molecules from the Zinc15 database [24] on 
December 19, 2019. Each compound had a molecular 
weight (MW) less than 250 Da and a predicted octanol–
water partition coefficient (logP) less than 5.0. We further 
filtered the compounds using the Lipinski* filter, which 
allows for no violations (Table 1). To ensure that all com-
pounds could participate in at least one of AutoGrow4’s 
default in silico reactions, we discarded those molecules 
that did not possess any appropriate functional groups. 
We then divided the remaining compounds into func-
tional-group categories. For each category, we retained 
at most the 5000 compounds with the lowest MW. These 
complementary libraries are included in the AutoGrow4 
download in the SMILES (SMI) format. A customization 
option also allows users to provide their own comple-
mentary molecule libraries.

Population generation via crossover
The crossover operator merges two compounds from 
previous generations into a new compound. Like the pre-
vious version of AutoGrow (3.1.3) [5], the AutoGrow4 
crossover operator finds the largest substructure that the 
two parent compounds share and generates a child by 
randomly combining their decorating moieties (Fig. 2a). 
AutoGrow4 embeds information about the lineage of 
each crossover in the compound file name, allowing users 
to easily examine any compound’s evolution.

AutoGrow 3.1.3 used LigMerge [25] to perform cross-
overs. LigMerge requires computationally expensive 
geometric calculations to merge 3D molecular models. 
In contrast, AutoGrow4 uses the RDKit Python library 
[26] to generate child compounds from SMILES strings 
of the parents. This change dramatically reduces the 

computational cost of compound generation and greatly 
simplifies the AutoGrow4 codebase.

Molecular filtration
AutoGrow4 uses common molecular filters to remove 
generated compounds with undesirable physical and 
chemical properties (e.g., poor predicted solubility, high 
biological reactivity, etc.). These compounds are elimi-
nated before docking to avoid wasting computational 
resources (Fig.  1). If too few compounds pass the user-
specified filter(s), AutoGrow4 automatically returns to 
the mutation and crossover operators to generate more 
candidate molecules (Fig. 1).

AutoGrow4 includes the nine predefined molecular 
filters shown in Table 1. Users can combine any of these 
filters in series. The new modular codebase also makes it 
easy for users to add their own custom filters that assess 
other molecular properties.

Conversion of SMILES to 3D PDB
AutoGrow4 uses the open-source program Gypsum-DL 
[11] to convert the SMILES representations of all new 
molecules into 3D models for docking. For each input 
SMILES, Gypsum-DL generates one or more 3D models 
with alternate ionization, tautomeric, chiral, cis/trans iso-
meric, and ring-conformational forms [11, 27]. The user 
can specify the pH range to use for protonation as well as 
the maximum number of molecular forms (variants) that 
Gypsum-DL should produce per input SMILES.

Assessing fitness
AutoGrow4 uses two metrics to assess the fitness of each 
solution. These fitness scores are used to select seeds 
for the next generation (see below). The primary fitness 

Table 1  The default AutoGrow4 molecular filters

Lipinski allows for one violation. Lipinski* is a stricter version that allows for no violations. Ghose* is a more lenient version of Ghose that allows compounds with 
molecular weights up to 500 Da

HD hydrogen-bond donor; HA hydrogen-bond acceptor; MW molecular weight (Da); MR molar refractivity (m3 mol-1); Atoms atom count; RotB rotatable bonds; R rings; 
N, O, and X nitrogen, oxygen, and halogen atoms, respectively; PSA polar surface area (Å2); Sub substructure searching

Name logP HD; HA MW MR Atoms RotB R N; O; X PSA Sub

Lipinski [72] ≤ 5.0 ≤ 5; ≤ 10 ≤ 500

Lipinski* [5] ≤ 5.0 ≤ 5; ≤ 10 ≤ 500

Ghose [54] -0.4 to 5.6 160–480 40–130 20–70

Ghose* [5] -0.4 to 5.6 160–500 40–130 20–70

VandeWaterbeemd [107] < 450 < 90

Mozziconacci [108] ≤ 15 ≤ 6 ≥ 1; ≥ 1; ≤ 7

BRENK [56] +
NIH [109, 110] +
PAINS [111] +
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metric assesses how well each compound is predicted to 
bind the target receptor. By default, AutoGrow4 uses the 
docking score of the top-scoring pose. AutoGrow4 has 
broader docking-program support than previous ver-
sions. It supports not only AutoDock Vina [21] but also 
QuickVina 2.1 (QVina2) [10], a Vina-based program that 
runs about twofold faster. AutoGrow4 can also rescore 
docked poses using the NNScore1 and NNScore2 scoring 
functions [28, 29]. The score associated with each com-
pound can optionally be divided by the number of non-
hydrogen ligand atoms, a metric called ligand efficiency 
[30]. AutoGrow4’s modular, plugin-based architecture 
also enables long-term expandability and user customi-
zation. With the appropriate plugin code, virtually any 
method for docking and/or reassessing ligand binding 
can be integrated into AutoGrow4, including quantita-
tive structure–activity relationship (QSAR) approaches, 
ligand-similarity evaluations, etc.

Aside from this primary fitness metric, AutoGrow4 
also calculates a secondary fitness metric called the 
diversity score. The diversity score is optionally used to 
select seed compounds that are structurally unique com-
pared to those of the previous generation. By seeding a 
new generation with a population comprised of mole-
cules separately selected for target binding and molecu-
lar diversity, AutoGrow4 delays population convergence 
while still refining for the desired binding affinity.

To determine the diversity score, AutoGrow4 uses 
RDKit [26, 31, 32] to calculate the Morgan fingerprint of 
each population compound after successful docking. The 
similarity s of two compounds molA and molB is given by

where FA and FB are the fingerprint bit-strings of molA 
and molB, respectively. The value of s ranges from 0.0 
(completely different) to 1.0 (perfectly matched). The 
diversity score d of a given molecule molM measures its 
uniqueness relative to the other molecules in its genera-
tion. The score is calculated by

where the summation is over all molN within the genera-
tion except molM.

Compound ranking and seed selection
AutoGrow4 implements Ranking, Roulette, and Tour-
nament selection strategies [33] to choose which com-
pounds will seed the next generation. Each strategy has 
its advantages and disadvantages. A Ranking selector 
simply chooses the best-scoring solutions. It quickly 

(1)s(FA, FB) =
2|FA ∩ FB|

|FA| + |FB|

(2)d(molM) =

n∑

N �=M

s(FM , FN )

identifies local optima but often produces inbred popula-
tions of highly similar compounds [33]. In extreme cases, 
population convergence can cause AutoGrow4 to perpet-
ually recreate very similar compounds each generation, 
without substantial improvement in fitness. A Roulette 
selector assigns each solution to a metaphorical roulette 
wheel, where the size of each area is weighted by fitness. 
By incorporating randomness into each generation, Rou-
lette selection reduces the chances of becoming trapped 
in local optimum. But it gives all potential solutions—
even the most unfit—an opportunity to advance [33]. 
Lastly, a Tournament selector randomly chooses a sub-
population of solutions and then selects the fittest solu-
tions from that subpopulation. A Tournament selector 
incorporates more randomness than a Ranking selector 
while reducing the risk of selecting unfit solutions [33].

AutoGrow4 performs three subselections per gen-
eration, one for elitism, mutation, and crossover opera-
tions, respectively (Fig. 1). When using a stochastic (i.e., 
Roulette or Tournament) selector, these subselections 
are independent (i.e., each subselection picks a different 
but potentially overlapping set of compounds). When 
using a deterministic (i.e., Ranking) selector, the three 
subselections are identical. In all cases, each subselec-
tion separately selects compounds based on their pri-
mary (binding) and/or secondary (diversity) scores. The 
user can also specify the number of compounds selected 
based on each score type.

Benchmark AutoGrow runs
Protein preparation
We tested AutoGrow4 against the PARP-1 catalytic 
domain. We first obtained the 4R6E structure from the 
Protein Data Bank (PDB) [18, 34] and removed all atoms 
but those of the chain A protein (4R6E:A). We used the 
PDB2PQR server (2.1.1, default settings) [35, 36] to add 
hydrogen atoms and optimize the hydrogen-bond net-
work (pH 7). We then converted the resulting PQR file 
back to the PDB format using OpenBabel (2.3.1) [37].

To define the location of the binding pocket, we 
selected five protein residues that flank the bound, crys-
tallographic niraparib ligand: E763, I872, G888, T907, 
and E988. We used the Scoria Python library [38] to 
calculate a bounding box that encompasses these resi-
dues. We expanded the width, length, and height of this 
box by a few Å to ensure that it entirely surrounded the 
pocket. The docking box ultimately had dimensions 25.0 
Å × 16.0 Å × 25.0 Å, centered on the binding pocket. We 
used this PARP-1 PDB file and docking box for all Auto-
Grow runs (see published tutorial).
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Comparison benchmark runs
AutoGrow 3.1.3 provides a set of 117 PDB-formatted 
small molecules with naphthalene substructures as 
source compounds [5]. To compare AutoGrow4 and 
AutoGrow 3.1.3, we converted these compounds to 
SMILES using OpenBabel 2.3.1 [37] and RDKit [26]. They 
are included as an SMI file in the AutoGrow4 download.

We ran the AutoGrow4 and AutoGrow 3.1.3 bench-
marks on the same hardware: 12-core Xeon E5-2643v4 
3.40 GHz Broadwell nodes with 512 GB RAM, provided 
by the University of Pittsburgh’s Center for Research 
Computing (CRC). We also closely matched the Auto-
Grow4 and AutoGrow 3.1.3 settings in terms of proces-
sor counts, population sizes, mutation reaction sets, seed 
molecules, and population-size/seed-size ratios. In all 
cases, we subjected the evolving molecules to the Ghose* 
and Lipinski* filters (Table 1). The complete settings are 
provided in Additional file 1: JSON 1 and 2.

AutoGrow 3.1.3 has some notable limitations, requir-
ing several additional considerations. AutoGrow 3.1.3 is 
not Python 3 compatible, so we ran these benchmarks in 
a Python 2.7 environment. We also limited AutoGrow4 
to one molecular variant per input SMILES, Vina 1.1.2 
docking, the Ranking selector, and symmetric multiproc-
essing (SMP) because AutoGrow 3.1.3 does not consider 
alternate molecular forms, cannot use QVina2, does not 
implement the Roulette or Tournament selectors, and 
does not support message passing interface (MPI) mul-
tiprocessing [5].

All benchmark AutoGrow4 and AutoGrow 3.1.3 runs 
were repeated independently 24 times.

Large‑scale de novo PARPi run
We generated a sizable, chemically diverse source library 
for general use when performing de novo AutoGrow4 
runs. We started with the same large set of Lipinski*-
filtered Zinc15 molecules described above, which was 
previously used to generate the default complementary 
small-molecule libraries required for the mutation opera-
tor. We discarded those compounds that lacked func-
tional groups capable of participating in at least one of 
AutoGrow4’s 94 default reactions. The remaining com-
pounds were grouped by MW ( ≤ 100 Da, 100 Da < MW 
≤ 150 Da, 150 Da < MW ≤ 200 Da, and 200 Da < MW 
≤ 250 Da). To keep the source library reasonably sized 
while maintaining chemical diversity, we randomly dis-
carded excess compounds in each MW category that had 
overrepresented functional groups. Ultimately, at most 
100 compounds remained for each functional group in 
each weight range. These four source-library sets, which 
collectively comprise 24,595 molecules, are included in 
the AutoGrow4 download.

The large-scale de novo run described in "Results and 
discussion" was seeded with small molecules from the 
100 Da < MW ≤ 150 Da category. This run used MPI 
multiprocessing, QVina2 docking, and the Ranking selec-
tor in a Python 3.7 environment. It ran for thirty gen-
erations on ten MPI-enabled CRC computer nodes with 
28-core Broadwell Processors and 64 GB RAM/node, 
networked with Intel’s Omni-Path communication archi-
tecture. Evolving molecules were subjected to the Ghose, 
Lipinski*, and PAINS filters (Table 1). In the first genera-
tion, AutoGrow4 generated 40, 500, and 500 compounds 
via elitism, mutation, and crossover, respectively. In sub-
sequent generations, it generated 500, 2500, and 2500 
compounds via elitism, mutation, and crossover, respec-
tively. The complete settings are provided in Additional 
file 1: JSON 3. We used BlendMol [39] to generate figures 
of representative docked molecules.

PARPi lead‑optimization runs
To show how AutoGrow4 can be used for lead optimi-
zation, we generated a focused source library of 94 seed 
molecules. This library includes eleven known PARPi, 
identified using http://www.clini​caltr​ials.gov. It also 
includes 83 PARPi molecular fragments derived from 
those eleven via Breaking of Retrosynthetically Interest-
ing Chemical Substructures (BRICS) decomposition [7].

We used AutoGrow4 with this small source library to 
predict new PARP-1 ligands similar to known inhibitors. 
To focus computational effort on the chemistry space 
near known PARPi, we ran AutoGrow4 for only five gen-
erations, but with demanding docking-exhaustiveness, 
variant-per-molecule, and population-size settings. 
Evolving molecules were subjected to the Ghose, Lipin-
ski*, and PAINS filters (Table  1). The complete settings 
are provided in Additional file 1: JSON 4. The settings of 
the first generation were conservative because the small 
source library had a limited number of reactive func-
tional groups. We thus limited the first generation’s size 
to 40, 500, and 500 molecules derived using the elitism, 
mutation, and crossover operators, respectively. Subse-
quent generations were larger. They included 250, 2500, 
and 2500 molecules derived using the elitism, mutation, 
and crossover operators, respectively.

These lead-optimization runs were repeated six inde-
pendent times using Python 3.7 on the same MPI-ena-
bled nodes available through the CRC. We again used 
BlendMol [39] to generate figures of representative 
docked molecules.

PARPi‑like compounds: AutoGrow4 optimization vs. 
similarity‑based screening
To compare AutoGrow4 lead optimization to a more tra-
ditional similarity-based virtual screening (VS) approach 

http://www.clinicaltrials.gov
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[40, 41], we generated a library of small molecules that 
are structurally similar to known PARPi. We down-
loaded the structures of ~2200  known PARPi from the 
BindingDB database [42, 43] on March 14, 2020. Many 
of these compounds were close analogues, so we used 
a  Tanimoto-based clustering  algorithm [44] (Tanimoto 
cutoff: 0.65) to group the compounds into 40 clusters. 
We then selected one molecule per cluster to construct a 
set of structurally unique known PARPi.

For each of these PARPi, we next downloaded at 
most 250 compounds from PubChem [45] with corre-
sponding Tanimoto coefficients greater than 0.80 (8444 
unique molecules). To maximize structural diversity 
and reduce the number of compounds, we again applied 
the clustering  algorithm (Tanimoto cutoff: 0.2), yield-
ing a set of 4631 PARPi-like molecules that (1) were not 
in the original PARPi set  and (2) could be docked into 
PARP-1 with QVina2.

Results and discussion
Poly(ADP‑ribose) polymerase 1
We used PARP-1, a protein critical for DNA repair, as a 
test system to demonstrate AutoGrow4 utility. DNA is 
under constant threat of damage by ionizing radiation, 
UV radiation, and reactive oxygen species [16, 46]. Base 
excision repair (BER) is a crucial pathway for repairing 
single-strand DNA (ssDNA) breaks, and non-homolo-
gous end joining (NHEJ) and homologous recombination 
(HR) are critical pathways for repairing double-strand 

DNA (dsDNA) breaks [16, 46–49]. When PARP-1 rec-
ognizes sites of DNA damage, it begins to convert 
NAD+ molecules into a negatively charged network of 
poly(ADP-ribose) (PAR) chains [16]. These PAR chains 
are covalently attached to nearby proteins, including 
PARP-1 itself, through a process known as PARylation 
[16]. This PARylation signal recruits DNA repair proteins 
(e.g., NHEJ and BER) [16, 50].

Defects in the BRCA 1 and 2 genes, prevalent in breast 
and ovarian cancers, cause loss of HR repair function 
[16]. HR-defective cancer cells rely heavily on NHEJ 
and BER to compensate, so much so that further loss of 
NHEJ and BER is lethal [16]. PARPi capable of disrupting 
BER and NHEJ signaling are thus potential therapeutics 
for treating HR-defective breast-cancer cells [16, 17]. In 
contrast, non-cancerous cells survive PARPi exposure 
because their HR-repair mechanisms are intact [16, 17]. 
HR is also most active during the S to M transition, so 
actively dividing tumor cells are especially vulnerable [16, 
51, 52]. Four PARPi are FDA approved (olaparib, ruca-
parib, niraparib, and talazoparib), and several more are in 
clinical trials [12–15].

Comparison Benchmark runs
To compare AutoGrow4 and its predecessor AutoGrow 
3.1.3, we ran both programs 24 times using similar set-
tings. On average, AutoGrow4 completes five generations 

Fig. 3  Benchmark AutoGrow runs. Bar heights show the mean times required to complete five generations, averaged over 24 runs. Error bars 
represent standard errors. a A comparison of AutoGrow 3.1.3 and AutoGrow4, when run using similar settings (see "Methods"). b AutoGrow4 runs 
when generating at most one, three, and five variants per input compound, using Vina docking. c AutoGrow4 runs when generating at most one, 
three, and five variants per input compound, using QVina2 docking
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1.21 times faster than AutoGrow 3.1.3 (59.64 vs 49.34 
min/run, see Fig. 3a).

We also compared AutoGrow4 performance under dif-
ferent user-parameter conditions. AutoGrow4 has been 
outfitted with many new features not available in previ-
ous versions. Of note, it uses Gypsum-DL [11] to gen-
erate alternate ionization, tautomeric, chiral, cis/trans 
isomeric, and ring-conformational variants of each input 
SMILES string. Figure  3b shows that AutoGrow4 run 
times vary roughly linearly with the specified maximum 
number of variants per input molecule (Additional file 1: 
JSON 2). It is worth noting that in practice Gypsum-
DL often produces fewer variants than the maximum 
specified. In these benchmarks, specifying a maximum 
of three and five produced 2.5 and 3.9 variants per 
compound.

Finally, we assessed AutoGrow4 performance when 
docking with QVina2 (Fig.  3c). Compared to the other 
steps in our algorithm, docking is particularly time con-
suming. AutoGrow4’s ability to dock with QVina2 in 
addition to Vina is a notable improvement over previous 
versions. When set to generate at most five variants per 
compound, AutoGrow4 runs 1.6 times faster when dock-
ing with QVina2 vs. Vina (125.04 vs. 203.52 min/run, 
respectively; Fig. 3b, c).

Large‑scale de novo PARPi run
Predicted ligands
We performed an extensive PARP-1 run to show how 
AutoGrow4’s parallelization and multiprocessing capa-
bilities enable large-scale de novo design. These runs 
used a large, diverse library of seed molecules and frag-
ments to produce high-scoring compounds such as 
Compound 4, which has a QVina2-predicted binding 
affinity of -16.7 kcal/mol (Fig.  4). This predicted ligand 
has a 1H-naphtho[2,3-d][1,2,3]triazole substructure that 
forms π–π stacking interactions with the PARP-1 Y907, 
H862, and Y896 residues. Interestingly, two of these resi-
dues (H862 and Y896) belong to the PARP-1 catalytic 
triad, which is conserved in PARP-1 through PARP-6 
[53]. Additional hydrogen bonds form between the com-
pound’s cyclic nitrogen atoms and the backbone atoms 
of G863, R865, and R878. An electrostatic interaction 
with D766 is also possible, depending on the protona-
tion states of D766 and the compound tetrazolidine 
substructure.

A caution regarding chemical properties
Though longer AutoGrow4 runs can produce compounds 
with remarkable scores, we generally recommend mul-
tiple independent runs with fewer generations. Longer 
runs have several disadvantages. First, the evolving com-
pounds increasingly take on chemical properties that 

are artefactually favored by the fitness function and/or 
ligand-creation operations. For example, Compound 4 
(Fig.  4b), one of the best-scoring compounds produced 
by the extensive PARP-1 de novo run, has a molecular 
weight (MW) near the 480 Da maximum that the applied 
Ghose filter permits (478.1 Da) [54]. The Vina scoring 
function is known to favor larger molecules [55], perhaps 
explaining in part this apparent evolutionary tendency 
towards increased MW. Filters that place tighter restric-
tions on MW, as well as ligand-efficiency rescoring [30], 
can mitigate this bias.

Second, longer runs can lead to the accumulation of 
undesirable moieties. The 24th-generation compound 
shown in Additional file 1: Figure S1, one of the highest 
scoring compounds from our large-scale de novo run, 
provides a good example. This compound possesses azo 
and ethyne moieties, which belong to a broad category 
of substructures thought to be mutagenic, pharmacoki-
netically unfavorable, reactive, and/or likely to interfere 
with typical high-throughput screening approaches [56]. 
This challenge, typical of longer runs, can be mitigated by 

Fig. 4  Results of a large-scale de novo run. a QVina2 scores per 
generation. The average score of all compounds per generation 
is shown in blue. The average scores of the top 50, 20, 10, and 1 
compounds are shown in cyan, purple, green, and red, respectively. 
The QVina2 scores of known ligands are shown as dashed lines. b The 
AutoGrow4-generated compound with the best QVina2 score (30th 
generation). The PARP-1 catalytic domain was used for docking (PDB 
ID: 4R6E:A, shown in blue ribbon). Select protein residues are shown 
in colored sticks representation
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applying the appropriate filter(s) (e.g., the BRENK filter 
[56]).

Third, compound synthesizability, also a critical chemi-
cal property, similarly tends to diminish in later gen-
erations as the accumulation of mutation and crossover 
events causes the population to drift from the source 
molecules.

A caution regarding homogeneity and convergence
Long runs also suffer from population homogeneity 
and premature convergence. In this scenario, the fit-
ness scores of existing molecules are so good that new 
compounds generated via mutation and crossover can 
rarely outcompete them [57]. Compound fitness thus 
tends to improve quickly in the earliest generations but 
stalls in later generations despite consuming compara-
ble computational resources. For example, the average 
docking score of the top 50 molecules in our large-scale 
de novo run improved -6.09 kcal/mol from generation 
zero to five (-7.36 kcal/mol to -13.45 kcal/mol, respec-
tively), but it only improved another -2.99 kcal/mol by 
generation 30 (-16.44 kcal/mol). The populations began 
to converge by generation 20, with only minor subse-
quent improvements in fitness (Fig. 4a).

AutoGrow4 uses several strategies to avoid popula-
tion convergence and homogeneity. First, its sizable 
libraries of diverse seed molecules encourage the explo-
ration of a large subset of chemistry space, at least in 
early generations. Second, it considers both primary 
(binding) and secondary (diversity) scores when select-
ing molecules for elitism, mutation, and crossover 
operations (Fig.  1). By seeding each generation with a 
combination of well docked and unique compounds, 
AutoGrow4 aims to search more of chemistry space 
while still maintaining a selective pressure for reason-
able predicted ligands. Finally, AutoGrow4 provides 
different selection strategies (e.g., Roulette and Tourna-
ment) that may delay convergence. Despite these meas-
ures, multiple independent runs of fewer generations 
are typically more computationally efficient.

PARPi lead‑optimization runs
AutoGrow4 applied to lead optimization
We performed six short PARP-1 runs to show how 
AutoGrow4 is a useful tool for lead optimization. These 
runs used 94 known PARPi and PARPi fragments as 
seeds rather than a large library of diverse molecular 
fragments. Our ultimate goal was to evolve molecules 

Fig. 5  Example ligand poses and structures. Select protein residues are shown in colored sticks representation (top row). Common substructures 
are highlighted in blue, yellow, and pink (bottom row). a The crystallographic olaparib pose (PDB: 5DS3), aligned and superimposed on the 4R6E:A 
structure for comparison’s sake (blue ribbon). b CEP-9722 docked into the 4R6E:A structure. c Compound 5, derived from olaparib and CEP-9722 
fragments, docked into the 4R6E:A structure
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that are chemically similar to known ligands, but with 
improved docking scores. To perform a narrow but thor-
ough search of the chemistry space centered around the 
initial leads, we ran each AutoGrow4 run for only five 
generations. But we used large population sizes (see 
"Methods") and increased the QVina2 exhaustiveness 
parameter to 25 to improve the chances of finding opti-
mal docked poses.

By the third generation, the average QVina2 score 
of the top-20 compounds across all six runs (the grand 
mean) already matched the score of the best-scoring 
known PARPi, olaparib (-13.6 kcal/mol, AstraZeneca). 
By the fifth generation, the grand mean of the top-50 
compounds (-14.0 kcal/mol) was better than the olaparib 
score (Additional file 1: Figure S2).

Of all the molecules generated during the six PARPi 
lead-optimization runs, compound 5 had one of  the 
best QVina2 scores (Fig.  5 and Additional file  1: Figure 
S3, -14.7 kcal/mol). We focused subsequent analysis on 
this molecule rather than the best-scoring compound 
(Fig.  2b) because compound 5 was derived from two 
source-library PARPi fragments (OlaparibFrag3 and CEP-
9722Frag1), the result of a crossover in the first generation 
(Additional file 1: Figure S3). It thus provides an excellent 
example of AutoGrow4-guided lead optimization.

Compound 5 participates in π–π stacking interactions 
with the PARP-1 Y907 and Y896 residues. One of its car-
bonyl oxygen atoms also forms a hydrogen bond with 
G863 (Fig. 5c). These interactions are typical of the bind-
ing modes of known PARPi [18–20, 58–66] such as the 
crystallographic olaparib pose (Fig. 5a) [19] and a docked 
CEP-9722 pose (Cephalon, Fig. 5b).

In constructing compound 5, AutoGrow4 attached an 
olaparib-derived piperazine moiety at a different position 
than the CEP-9722 piperazine, but the docked poses of 
both compounds orient their respective piperazines simi-
larly. Interestingly, this orientation differs from that of the 
olaparib piperazine (Fig.  5). We note that the crystallo-
graphic poses of several other PARPis position piperazine 
moieties at alternate locations [19, 66–68]. For example, 
the crystal structure of the potent PARPi EB47 [69, 70] 
bound to PARP16 (PDB ID: 6HXR) places a piperazine 
substructure near that of our compound 5 docked pose. 
Notably, EB47 was not among the source-library com-
pounds used for the PARP-1 lead-optimization runs.

AutoGrow4 vs. other docking techniques for lead 
optimization
Similarity-based virtual screening (VS) is a popular tech-
nique for in silico ligand optimization [40, 41]. One first 
generates a library of compounds that are chemically 
similar to known ligands. VS is then used to prioritize the 
compounds in hopes of ultimately identifying molecules 

that bind with better predicted affinities than those of the 
known ligands. Two methods for identifying chemically 
similar compounds are common: substructure and simi-
larity searching.

In the substructure scheme, the compound library 
consists of molecules that share substructures in com-
mon with known ligands. The generation-1 compounds 
of each AutoGrow4 lead-optimization run form such 
a library because (1) they are derived from the PARPi 
fragments/molecules of generation 0, and (2) both the 
mutation and crossover operators generate compounds 
that share substructures in common with parent mol-
ecules. The progress made from generation 1 to genera-
tion 5 thus illustrates how AutoGrow4 optimization can 
improve scores beyond substructure-based VS alone. As 
shown in Additional file  1: Figure S2, the grand-mean 
docking score of the top 50 compounds from generation 
1 ( ∼ 1% of all compounds screened that generation) was 
-12.3 kcal/mol. Following five generations of AutoGrow4 
optimization, that grand-mean score improved to -14.0 
kcal/mol.

In the similarity-searching scheme, the compound 
library consists of molecules that are structurally similar 
in their entirety to known ligands, per a whole-molecule 
metric such as the Tanimoto coefficient [71]. To compare 
this in silico optimization method to our GA approach, 
we generated a library of  4631 PARPi-like molecules. 
These compounds were processed with Gypsum-DL 
[11] and docked into PARP-1 with QVina2 [10] using the 
same parameters used in the AutoGrow4 lead-optimiza-
tion runs.

The average docking score of the top-50 compounds 
from this similarity library ( ∼ 1% of all unique com-
pounds docked) was -12.7 kcal/mol. In contrast, five 
generations of AutoGrow4 optimization produced com-
pound sets with top-50 average scores around -14.0 
kcal/mol. This comparison of course has its limitations. 
Generating the similarity library using stricter Tanimoto 
cutoffs would have likely improved the average scores, 
though at the expense of structural diversity. In contrast, 
had we run the AutoGrow4 lead-optimization runs for 
additional generations, our GA method would have likely 
identified compounds with improved docking scores. But 
the comparison nevertheless contextualizes the Auto-
Grow4 approach.

AutoGrow4 operators and molecular weight
In evaluating AutoGrow4, we also carefully studied the 
program’s tendency to evolve compounds with increasing 
MW. The AutoGrow4 mutation and crossover operators 
could in theory drive this tendency. On the other hand, 
larger ligands often form more molecular interactions 
with their targets, so the observed MW increases over 
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time may reflect physiochemical reality. The Vina scoring 
function may also explain the tendency towards greater 
MW, given its known bias in favor of larger molecules 
[55].

To determine the role AutoGrow4 operators play in the 
observed tendency, we first explored the impact of the 
mutation operator on MW. From among all the opera-
tions performed during the six PARPi lead-optimization 
runs, we identified 55,683 mutation events involving an 
AutoGrow4-generated reactant. On average, each of 
these operations increased MW by 28% (66.0 Da). But in 
11% of cases, the MW decreased. To illustrate how this 
is possible, consider the transesterification of phenyl ben-
zoate and methanol. The resulting products (methyl ben-
zoate and phenol) both have MWs less than the phenyl 
benzoate reactant.

We next explored the impact of the crossover opera-
tor on MW. We identified 50,169 crossover events from 
the six PARPi lead-optimization runs that involved two 
AutoGrow4-generated parent compounds. On average, 
the MW of the resulting child compound was only 5% 
larger (11.5 Da) than the average MW of the two parents. 
In 43% of cases, the MW decreased because the child 
molecule inherited a low-weight set of decorating moie-
ties from the parents.

These results show that the mutation and crossover 
operators may promote some compound growth, but 
they often reduce compound size as well. Users who wish 
to limit AutoGrow’s tendency towards larger-MW mol-
ecules may be interested in the included molecular filters 
that place tighter restrictions on MW (e.g., Lipinski [72], 
Ghosh [54]). We also recommend source (generation 0) 
populations comprised of small molecular fragments 
to maximize the number productive AutoGrow4 gen-
erations executed before running into MW filter cutoffs. 
Increasing the number of crossover operations per gen-
eration may also effectively control MW, given that cross-
overs are more likely to reduce MW than are mutations. 
Finally, users can instruct AutoGrow4 to rescore docked 
molecules by ligand efficiency [30], which normalizes 
docking scores by the number of compound heavy atoms 
and so penalizes larger molecules.

Identifying critical protein–ligand interactions
Beyond de novo generation and lead optimization, Auto-
Grow4 provides a systematic way of identifying phar-
macologically important protein–ligand interactions. 
Cataloguing the most common interactions among top-
scoring AutoGrow4-generated compounds can inform 
subsequent experiments ranging from QSAR drug design 
to site-directed mutagenesis.

The large-scale de novo run provides many useful 
examples of compounds with high predicted affinities. 
We identified the 100 compounds with the best docking 
scores from among the hundreds of thousands of dock-
ing events performed over 30 generations of evolution. 
We then used the BINANA 1.1.2 algorithm [73] to auto-
matically characterize the protein–ligand interactions of 
each best-docked pose. Four interactions were present in 
all 100 docked poses: two separate π–π stacking interac-
tions with Y907 and H862, an electrostatic interaction 
with D766, and a hydrogen-bond interaction with G863 
(Table  2). Several other interactions were prevalent, 
though not universal: an electrostatic interaction with 
D770 (41%), a hydrogen-bond interaction with R865 
(56%), and electrostatic and hydrogen-bond interactions 
with R878 (9% and 47%, respectively) (Table 2). The crys-
tallographic poses of known PARPi (e.g., olaparib) par-
ticipate in many of the same interactions seen among 
the top AutoGrow4 compounds [19]. Our large-scale de 
novo run—which was seeded with random molecular 
fragments not necessarily related to known PARPi—thus 
serves as a blind-study validation of AutoGrow4’s ability 
to identify pharmacologically important catalytic-pocket 
interactions.

Given that many of the AutoGrow4 generated com-
pounds have better docking scores than known PARPi, 
the in silico compounds provide insight into future opti-
mization strategies. For example, all 100 of the top-scor-
ing AutoGrow4-generated compounds (large-scale de 
novo run) form electrostatic interactions with D766, but 
olaparib does not. Adding a positively charged moiety to 
the olaparib piperazine might enable an additional inter-
action with D766.

Table 2  The protein–ligand interactions of  the  100 best-docked compounds from  the  large-scale de novo run, 
per BINANA

Infrequent interactions (< 10%) are excluded. Values are given as percents

D766 D770 H862 G863 R865 R878 Y907

Cation-π 0 0 98 0 0 0 0

Hydrogen bond 3 0 1 100 56 47 1

Electrostatic 100 41 3 0 0 9 0

T-stacking 0 0 71 0 0 0 0

π–π 0 0 100 0 0 0 100
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These results reinforce the critical role Y907 plays in 
high-affinity binding. Many known co-crystallized PARPi 
participate in a π–π stacking interaction with Y907 
[18–20, 58–66]. The top-100 compounds (per the dock-
ing score) produced in both the large-scale de novo and 
lead-optimization runs are all predicted to interact with 
Y907, suggesting that this interaction may be broadly 
critical regardless of the chemical scaffold. Unfortunately, 
interactions with Y907 also raise concerns for the future 
of orthosteric PARPi. When the receptor tyrosine kinase 
c-Met phosphorylates Y907, PARP-1 catalytic activity 
increases and PARPi binding affinity weakens [74]. c-Met 
phosphorylation thus provides a potential mechanism for 
PARPi resistance [74]. Consequently, there is a need for 
improved PARPi that do not rely on any interaction with 
Y907. Based on our AutoGrow4 results, we hypothesize 
that developing catalytic-pocket inhibitors that do not 
interact with Y907 will be difficult. A better strategy may 
be to target other (allosteric) pockets or to pursue cock-
tail treatments that inhibit both PARP-1 and c-Met.

Comparison with other programs
Over the years, a number of programs have been devel-
oped to assist with de novo drug design [75–91]. A com-
prehensive review is beyond the scope of this article, but 
a few programs, summarized in Table 3, warrant specific 
mention. MoleGear is a recently published algorithm 
that also takes an evolutionary approach to de novo drug 
design [92]. It provides a graphical user interface and 
allows users to dock compounds with either AutoDock 
[93] or AutoDock Vina [21]. But despite its recent pub-
lication, MoleGear does not appear to be publicly avail-
able, and the program is closed source.

In contrast, de novo DOCK [94] is an open-source 
algorithm that is integrated into the DOCK6 docking 
program itself [95]. To produce novel compounds, it 
uses an iterative fragment-growth method that is based 
on the DOCK6 anchor-and-grow search algorithm [94]. 
The method first identifies core components of a given 

compound, referred to as anchors, and then expands 
that anchor layer by layer via fragment addition. Though 
de novo DOCK is a powerful program, AutoGrow4 has 
several advantages. First, AutoGrow4 is not tied to a 
specific docking program. Users can choose between 
Vina and QVina2 docking by default, and AutoGrow4’s 
plugin-based architecture makes it easy to incorporate 
other docking programs as well. Second, AutoGrow4 
uses high-yielding in silico chemical reactions to gener-
ate compounds via mutation. In contrast, de novo DOCK 
does not provide a reaction-based mutation operator.

The free and open-source program GANDI takes a 
different approach to de novo design [96]. It first docks 
and scores molecular fragments using the DAIM [97], 
SEED [98], and FFLD [99] programs. It then joins prom-
ising fragments via a molecular linker taken from a pre-
defined look-up table. GANDI uses a GA that employs 
a parallel-model approach, often referred to as an island 
model [96]. It evolves multiple populations separately, 
only occasionally swapping molecules between them. 
GANDI’s fragment-and-linker approach, though effec-
tive, does limit the search space to compounds that can 
be generated using a pre-defined set of linkers. In con-
trast, AutoGrow4 effectively allows any linker regions to 
evolve with the rest of the compound.

Recent efforts have also used machine learning for 
de novo design. For example, the open-source program 
REINVENT [100] uses recurrent neural networks and 
reinforcement learning to generate de novo compounds. 
LigDream, another example, uses a convolutional neu-
ral network [101] and focuses training instead on the 3D 
shapes of known ligands. Machine-learning approaches 
such as these are effective, but they must often be trained 
on preexisting ligands. In contrast, AutoGrow4 can gen-
erate compounds in the absence of known inhibitors (see 
the large-scale de novo run above).

Table 3  A comparison of several de novo design programs

FOSS stands for “free and open source software”

Program FOSS Docking options MPI enabled OS

AutoGrow4 Yes Vina/QVina2/customizable Yes Linux/macOS/
Windows (via 
Docker)

MoleGear [92] No Autodock and Vina Yes Unspecified

GANDI [96] Yes DAIM/SEED/FFLD Yes Linux

de novo DOCK [94] Yes DOCK Yes Linux/macOS

REINVENT [100] Yes N/A Unspecified Linux/macOS

LigDream [101] Yes N/A Unspecified Unspecified
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Conclusions
AutoGrow4 is a powerful program for hit discovery and 
lead optimization, particularly when paired with expert 
knowledge about the target pocket and any known 
ligands. We view AutoGrow4 as an open-source tool 
for hypothesis generation. It effectively narrows the vast 
scope of all possible compounds to a subset of candidate 
ligands. Expert users must then apply their own biologi-
cal and chemical understanding to properly interpret the 
results and to ensure that the generated compounds are 
chemically feasible.

AutoGrow4 is available free of charge under the terms 
of the open-source Apache License, version 2.0. A copy 
of the latest version can be downloaded from http://
durra​ntlab​.com/autog​row4, and an archived copy is pro-
vided as Additional file 2. AutoGrow4 is compatible with 
both Python 2.7 and 3.7. Users must separately install 
the following third-party Python-library dependencies: 
RDKit [26], numpy [102, 103], scipy [104], matplotlib 
[105], and func_timeout (available via pip). If the mpi4py 
Python package is installed [106], AutoGrow4 can lev-
erage multiple processors using MPI on MPI-enabled 
clusters. Finally, to convert structures from the PDB to 
the PDBQT format for use with Vina and QVina2, Auto-
Grow4 requires either AutoDock MGLTools or Open 
Babel [37, 93].

Installation instructions for AutoGrow4 and its 
dependencies are provided in the AutoGrow4 tutorial. 
AutoGrow4 runs on Linux and macOS. We strongly 
encourage use of the AutoGrow4 Docker container 
(Docker, Inc.), included in the download, which automat-
ically installs all dependencies and further enables use on 
Windows.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-020-00429​-4.

Additional file 1. The Additional file includes detailed descriptions of the 
AutoGrow 3.1.3 and AutoGrow4 parameters used in the benchmark and 
PARP-1 runs. It also includes Figures S1, S2, and S3, referenced in the text. 

Additional file 2. An archive of the AutoGrow4 source code. See http://
durra​ntlab​.com/autog​row4 for the latest version.
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