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Efficient Calculation of the Negative
Thermal Expansion in ZrW2O8

Fernando D. Vila*, Scott T. Hayashi and John J. Rehr

Department of Physics, University of Washington, Seattle, WA, United States

We present a study of the origin of the negative thermal expansion (NTE) on ZrW2O8

by combining an efficient approach for computing the dynamical matrix with the

Lanczos algorithm for generating the phonon density of states in the quasi-harmonic

approximation. The simulations show that the NTE arises primarily from the motion of

the O-sublattice, and in particular, from the transverse motion of the O atoms in the

W–O and W–O–Zr bonds. In the low frequency range these combine to keep the WO4

tetrahedra rigid and induce internal distortions in the ZrO6 octahedra. The force constants

associated with these distortions become stronger with expansion, resulting in negative

Grüneisen parameters and NTE from the low frequency modes that dominate the positive

contributions from the high frequency modes. This leads us to propose an anharmonic,

two-frequency Einstein model that quantitatively captures the NTE behavior.

Keywords: zirconium tungstate, NTE, DFT, quasi-harmonic approximation, phonon density of states

1. INTRODUCTION

There has been considerable interest in recent years in developing materials with electronic and
structural properties tuned toward specific applications. Likewise, there is broad interest in pre-
screening potential materials using theoretical simulations in an effort tominimize their complexity
and simplify their synthesis. Although great progress has been made in the prediction of many
properties (Jain et al., 2013) such as band gaps, electronic properties, equilibrium structures, and
spectra, thermal properties depend on additional calculations of vibrational properties and often
remain difficult for first principles computational methods. This is typically due to the complexity
of the materials under consideration. For example, complex ceramics like ZrW2O8 with large unit
cells have heretofore been too demanding for routine screening using first principles calculations
of both electronic and vibrational properties with conventional electronic structure codes. On the
other hand, efficient calculations of many vibrational properties are now possible. For example, we
have previously shown (Poiarkova and Rehr, 2001; Krappe and Rossner, 2002; Vila et al., 2007) that
an efficient Lanczos algorithm for the projected phonon density of states (PDOS) obtained from
standard density functional theory (DFT) calculations (Lee and Gonze, 1995; Rignanese et al., 1996;
Baroni et al., 2001) of the dynamical matrix (DM) and the quasi-harmonic approximation (Allen
and De Wette, 1969; Boyer, 1979) can produce accurate Debye-Waller factors for EXAFS and x-
ray crystallography. Here we develop an extension of this approach for efficient calculations of
the thermal properties of ZrW2O8, a quintessential example of negative thermal expansion (NTE)
ceramics, in which the NTE is large over a broad range of temperatures.

The origin of the NTE in ZrW2O8 is controversial, having been previously attributed to a variety
of mechanisms. For instance, the Rigid Unit Mode (RUM) model (Hammonds et al., 1996; Pryde
et al., 1996, 1997; Hancock et al., 2004; Tucker et al., 2005, 2007) suggests that the tetrahedra and
octahedra that make up the structure are mostly unaffected by the active modes. In contrast, other
works (Cao et al., 2002, 2003; Bridges et al., 2014) have suggested that these units are distorted
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while the Zr-W distance remains more or less unchanged. Yet
another alternative (Mary et al., 1996; Gupta et al., 2013; Sanson,
2014) suggests that the Zr–O–W bonds bend, pulling the Zr
and W atoms closer and thus causing the NTE. In this paper
we take advantage of the local nature of the PDOS to study the
origin of the NTE. This procedure allows us to partition the
contributions to the Helmholtz free energy from different atomic
sites and deduce the origin of NTE from the shifts in the local
free energy minima. In a second study in this collection (Vila
et al., under review) we apply these methods to study the effects
of the NTE on the EXAFS properties of the system, such as the
EXAFS mean square relative displacements for relevant single-
and multiple-scattering paths (Cao et al., 2003), as well as the
anisotropic behavior of the crystallographic mean square atomic
displacements. The following sections present a brief summary
of the Lanczos algorithm for the PDOS, show how we compute
the dynamical matrix efficiently, give a detailed discussion of the
volume and temperature effects on the force constants, potentials
and PDOS, and present a simple two-frequency model that
reproduces the observed NTE quite accurately.

2. METHODS

2.1. Helmholtz Free Energy
The quasi-harmonic approximation (QHA) (Allen andDeWette,
1969; Boyer, 1979) has been widely used to study thermal effects
on the structural properties of both crystalline (Erba et al.,
2015) and molecular solids (Erba et al., 2016; Brandenburg
et al., 2017). QHA simulations usually rely on the full
diagonalization of the force constant matrix obtained with
density functional perturbation theory (DFPT) or other analytic
derivative approaches (Baroni et al., 2010; Erba, 2014). We
have previously shown (Vila et al., 2007) that it can also be
combined with the Lanczos algorithm in order to avoid the full
diagonalization and efficiently compute many thermal properties
of materials. Briefly, the lattice thermal expansion a(T) can be
obtained by minimizing the Helmholtz free energy A(a,T) at a
given T,

∂A(a,T)

∂a

∣

∣

∣

a=a(T)
= 0. (1)

Within the quasi-harmonic approximation A(a,T) is given by

A(a,T) = U(a)+ F(a,T), (2)

where U(a) is the internal energy of the electronic system in
its ground state, and F(a,T) is the total vibrational free energy
(VFE) of the system in the Born-Oppenheimer approximation.
For convenience we define F(a,T) = F0(a)+FT(a,T). Here F0(a)
and FT(a,T) are the zero-point and temperature-dependent
components, respectively. They can be calculated in terms of the
density of vibrational modes of the lattice ρ(a,ω) at a given a,

F0(a) =
h̄

2

∫ ∞

0
ω ρ(a,ω)dω, (3a)

FT(a,T) =kBT

∫ ∞

0
ln[1− e−h̄ω/kBT] ρ(a,ω) dω, (3b)

where

ρ(a,ω) =
∑

iα

ρiα(a,ω) (4)

is the total PDOS, and ρiα(a,ω) is the PDOS projected onto the
α = {x, y, z} coordinate of atom i. For simplicity we assume in
this work that the system contracts isotropically with a cubic unit
cell of lattice constant a and ignore equilibrium distortions.

2.2. Projected Phonon Density of States
Although highly simplified phenomenological approaches like
the Einstein and Debye models based on empirical data can
be quite useful, they are generally inadequate to treat complex
materials (Dimakis and Bunker, 1998; Poiarkova and Rehr,
1999). As an alternative which overcomes many of these
limitations Poiarkova and Rehr (1999, 2001) introduced a
method for EXAFS calculations in which the unit-normalized
PDOS, projected onto a simple bond or arbitrary multiple-
scattering path, is calculated from the imaginary part of the
lattice dynamical Green’s function. Vila et al. (2007) introduced
an extension of the method to compute the PDOS projected onto
atomic displacements ρiα(a,ω),

ρiα(a,ω) = −
2ω

π
Im

〈

iα
∣

∣

∣

1

ω2 −D(a)+ iǫ

∣

∣

∣
iα

〉

. (5)

Here |iα〉 is a Lanczos seed vector representing a normalized,
mass-weighted displacement of atom i along the Cartesian
direction α such that the position of the center of mass of the cell
is not changed, and D(a) is the dynamical matrix (DM) of force
constants computed at lattice constant a,

Djlα,j′l′β (a) =
(

MjMj′
)−1/2 ∂2U(a)

∂ujlα∂uj′l′β
, (6)

where ujlα is the displacement of atom j in unit cell l along
the direction α, and Mj is the mass of atom j. As described
below, D(a(T)) can be interpolated from D(a), which makes
the force constants depend parametrically on the temperature
and thus includes the dominant effects of anharmonicity.
Efficient calculations of the lattice dynamical Green’s function
can be accomplished using a continued fraction representation,
with parameters obtained with the iterative Lanczos algorithm
(Deuflhard and Hohmann, 1995). This approach yields an
efficient many-pole representation for the PDOS; since the pole
locations can be interpreted as Gaussian quadrature points
(Haydock, 1980), the method is well suited for accurate spectral
integrations, as needed for example in the calculation of the
VFE. The first iteration of the Lanczos algorithm corresponds
to a correlated Einstein model for the |iα〉 displacement such
that ρiα(a,ω) = δ(ω − ωE) with an Einstein frequency ω2

E =

〈iα|D(a)|iα〉. Poiarkova et al. showed that a second tier continued
fraction gave about 10% errors for EXAFS Debye-Waller factors,
while Krappe and Rossner (2002) later showed that six iterations
are needed to achieve convergence to within 1%. We have found
(Vila et al., 2007) that 16 or more iterations may be needed
to achieve the same precision for ρiα(a,ω). Nevertheless, this
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algorithm avoids the explicit calculations of phonon-spectra and
hence permits highly efficient calculations.

2.3. Dynamical Matrix
The main computational bottleneck to using this approach for
many complex materials of industrial or technological interest
then lies in obtaining sufficiently accurate DMs. Although
empirical or model potential estimates of the interatomic
force constants are sometimes available, they are not useful in
screening a broad range of potential new materials. Moreover,
their temperature dependence usually limits their accuracy and
generality. Nevertheless, we have previously shown (Vila et al.,
2007) that ab initioDMs obtained from density functional theory
(DFT) calculations provide accurate force constants that can be
used to compute both EXAFS Debye-Waller factors and thermal
expansion. In that study we restricted our attention to simple
periodic systems using themethodology implemented in ABINIT
(Gonze et al., 2002), described in detail in Gonze and Lee (1997).
This method computes D̃jαj′β

(

a, q
)

, the dynamical matrix in
reciprocal space:

D̃jαj′β

(

a, q
)

=
∑

l′

Dj0α,j′l′β (a)e
iq·

(

Rj′ l′−Rj0

)

, (7)

and then Fourier transforms it back into real space. This
approach is efficient for systems with simple unit cells of just a few
atoms and high symmetry. In this paper we extend this method
by using our recently developed parallelization scheme (Vila
et al., Submitted) for the efficient computation of the DM inmore
complex unit cells based on first principles DFT calculations. This
method computes the real space DM in Equation (6) directly
using finite differences in supercells, taking advantage of the
real space efficiency of codes like VASP (Kresse and Hafner,
1993, 1994; Kresse and Furthmüller, 1996a,b; Kresse and Joubert,
1999). This real space approach is particularly well suited for
large unit cells with low symmetry such as those in supercell
simulations of supported nanoparticles. In such cases the use
of analytic methods such as DFPT results in very demanding
calculations both in computing time and memory. A similar
approach has recently been described for molecular systems (Liu
et al., 2017) that suggest that the high availability of commodity
processors can be used to take advantage of the parallelization
of the finite differences. Similarly, our approach also relies on
the parallel computation of complete rows of the DM, directly
from the analytical DFT forces in VASP as a function of the lattice
constant:

∂2U(a)

∂ujlα∂uj′l′β
=

∂Fjlα(a)

∂uj′l′β
, (8)

where Fjlα is the force on atom j in unit cell l along the
direction α. For the case of ZrW2O8 treated here we use
centered finite differences with displacements of 0.015 Å, which
provide sufficiently accurate force constants. The most efficient
row partition of the DM depends on the configuration of the
computing system used. Details for the partition used here are
presented in section 2.5.

2.4. Other Considerations
As discussed in section 2.1, the temperature-dependence of
the lattice constant a(T) is obtained by minimizing the free
energy A(a,T) in Equation (2) with respect to a at a given
temperature T. The temperature dependence can be obtained
quite efficiently since it only requires the recomputation of the
integral in Equation (3) given a PDOS ρiα(a,ω) at a certain
lattice constant. The variation with lattice constant, however,
requires the recomputation of ρiα(a,ω), and thus of D(a), which
is the most computationally demanding step. In previous work
(Vila et al., 2007) we solved this issue for simple materials by
computing A(a,T) in a lattice constant grid that can be fitted or
interpolated to find the minimum lattice constant as a function
of temperature. To improve efficiency we took advantage of two
properties of these simple systems: (i) we assumed that the shape
of A(a,T) can be accurately described using a Morse potential
form as a function of lattice constant; and (ii) we reduced the
number of calculations of D(a) by taking advantage of the nearly
linear behavior of D(a) as a function of lattice constant near
equilibrium,

D(a) = D2 +D3(a− a0) (9)

whereD2 is the constant harmonic DM at a0, the lattice constant
of minimum internal energy, and D3 is the constant matrix
of anharmonic constants. This parametrization assumes that
anharmonic contributions of order higher than cubic are small,
and allows us to compute the DM for only two lattice constants
that can be used to determineD2 andD3. This approach typically
cuts the computational time by a factor of about 2/3 or more.
Given the complexity of some of the systems in the present study
and the importance of having reliable efficiency enhancements
for computational screening of materials, here we have opted
to verify that this approximation is still valid by computing the
DMs over a more complete grid of lattice constants. We have also
changed the form used to fit A(a,T) to a simple polynomial.

2.5. Computational Details
All structural optimizations andDMcalculations were performed
with VASP (Kresse and Hafner, 1993, 1994; Kresse and
Furthmüller, 1996a,b; Kresse and Joubert, 1999) using PAW
potentials (Kresse and Joubert, 1999) and the PBEsol exchange-
correlation functional (Perdew et al., 2008). An 8 × 8 × 8 k-
point grid was used in all calculations, which was sufficient to
achieve converged results. To reduce the effect of Pulay stress, the
planewave energy cutoff was set at 350 eV. The finite difference
force calculations used a three point centered stencil with 0.015 Å
displacements. To obtain the variation of the DM with respect
to lattice constant, we start by optimizing the size of unit cell
and the reduced positions of the atoms in it while preserving its
symmetry. This produces an optimized unit cell expanded by 1%
from the experimental value. Given that the reduced positions do
not change with volume until the phase transition at about 430 K
(Evans et al., 1999), we freeze them and expand/contract around
the optimal lattice size. We compute the DM at expansions of
0.0, 0.5, 1.0, 1.5, and 2.0% with respect to the experimental lattice
constant, which correspond to contractions of 0.5 and 1.0%, and
expansions of 0.5 and 1.0% with respect to the optimal lattice
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contant. This procedure provides an adequate number of points
for the interpolation of both the energies and components of
the DM. For this material and taking into consideration the
computing system being used, we partitioned the DM into 44
independent blocks, one per atom in the simulation cell, each
using 512 processors for a total of 22,528. This procedure reduced
the computing time from 33 h/core to 0.8 h/core. Equivalent
simulations using DFPT in ABINIT would require on the order
of 30–40 h/core, with a maximum number of processors of about
200–300.

3. RESULTS AND DISCUSSION

3.1. Structure
Figure 1 shows the structure of the unit cell of ZrW2O8 used
here. The cell is composed of four ZrO6 octahedra linked to
eight WO4 tetrahedra. The ZrO6 units are all equivalent, with
three short and three long Zr–O bonds, each connecting to a
WO4 unit (Figure 2A). The WO4 units have three long W–O
bonds, connecting to the ZrO6 units, and a short one that is
essentially free (Figure 2B). Unlike the ZrO6 units, there are two
types of WO4 units depending on the direction of the free W–
O bond: Four of them point toward a ZrO6 unit and have a
truly free W–O bond, while the other four point to another WO4

unit and have a more restricted W–O bond. These two types of
tetrahedra are paired (Figure 2B). Here we label the different
types of atoms in the cell as follows: OSL and OLS are O atoms
bridging WO4 and ZrO6 units, with short W–O and long Zr–
O bonds, and vice versa. They correspond, respectively, to the
O2 and O1 atoms in the more traditional notation (Mary et al.,
1996). The OFF and OFR are O atoms in truly free and somewhat
restricted W–O bonds, respectively. They correspond to the O4

and O3 atoms in the traditional notation (Mary et al., 1996).
Finally, the W atoms bonded to OFF and OFR center are similarly
labeled WFF and WFR, and correspond to the W1 and W2

atoms in the traditional notation (Mary et al., 1996), respectively.
Table 1 presents a comparison between the experimental (Auray
et al., 1995) and optimized structural parameters obtained in
the PBEsol optimization. The changes in internal structure are
minimal except for the overall expansion of the cell of 1%
predicted by PBEsol.

3.2. Bond Force Constants
Figure 3 shows the lattice constant dependence of the mean force
constants for the parallel stretch and perpendicular scissoring
displacements for the different bond types in ZrW2O8 (The
numerical data for this and all other plots in this work can
be found in Supplementary Data Sheet 1). The parallel force
constants were obtained by rotating the 6 × 6 (jl, j′l′)α,β blocks
of the DM formed by jl and j′l′ near-neighbor atoms into a local
coordinate system along the bond. The scissors force constants
were obtained similarly by rotating the 3 × 3 (jl, jl)α,β block
for O atom jl into coordinates parallel and perpendicular to the
W–O bond. For the WFF–OFF and WFR–OFR bonds, motion of
the O atoms orthogonal to the bonds is nearly equivalent in all
directions. For the WFF–OLS and WFR–OSL bonds, we average

FIGURE 1 | Structure of the ZrW2O8 cell. The cell is composed of four

equivalent Zr atoms (magenta), eight W atoms, of type WFF (blue) and WFR

(green), and 32 O atoms of type OLS (yellow), OSL (red), OFR (orange) and OFF

(black). Examples of the different types of O and W atoms are highlighted, and

the coordination tetrahedra and octahedra are also included for clarity. The

WFF, WFR, OLS, OSL, OFR, and OFF atoms correspond, respectively, to the

W1, W2, O1, O2, O3, and O4 in the traditional notation (Mary et al., 1996).

over the in-plane and out-of-plane directions defined by the W–
O–Zr plane. These directions are also nearly equivalent, with
anisotropies of at most 20%.

We find that of all the elements of the DM, only
those associated with the O atoms exhibit the positive
anharmonicity essential to observe NTE. Indeed, only the
deviations perpendicular to the bonds have positive slope
(Figure 3, bottom). The force constants associated with the
perpendicular O distortions are also much weaker than the
parallel ones, and are therefore activated at much lower
temperature. The strength of the parallel bond distortions follows
closely the trends in the bond distances shown in Table 1,
with the shorter WFF–OFF and WFR–OFR bonds having the
largest force constants, followed by the slightly longer WFF–
OLS and WFR–OSL bonds. As discussed in section 2.4, the
components of the dynamical matrix should vary mostly linearly
with cell expansion in simple systems. Given the large NTE
observed for ZrW2O8, which implies the existence of significant
anharmonicity, it is worth examining the accuracy of the linear
approximation. Figure 3 shows that the linearity of the bond-
parallel force constants is excellent for small displacements, while
the transverse ones show a slight curvature. The mean absolute
errors from a linear approximation are ± 3 N/m for the strong
parallel displacements and only ± 0.4 N/m for the transverse
ones. Consequently, the linear approximation can be used to
estimate the the lattice dependence of the dynamical matrix to
high accuracy.
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FIGURE 2 | Local structure of ZrW2O8 around the Zr octahedra (A) and W tetrahedra (B). The color key is the same as in Figure 1. Examples of the different types of

O and W atoms are highlighted. The bottom figure shows the pairing of the two types of W atoms. The WFF, WFR, OLS, OSL, OFR, and OFF atoms correspond,

respectively, to the W1, W2, O1, O2, O3, and O4 in the traditional notation (Mary et al., 1996).

TABLE 1 | Experimental and theoretical structural parameters for the ZrW2O8 cell

used in this work.

Parameter Expt. PBEsol

Lattice 9.155 9.246

Bonds WFR–OFR 1.736 1.751

WFR–OSL 1.785 1.797

WFF–OFF 1.712 1.728

WFF–OLS 1.799 1.826

Zr–OSL 2.092 2.119

Zr–OLS 2.051 2.062

Zr–WFR 3.867 3.909

Zr–WFF 3.751 3.795

Angles Zr-OSL–WFR 171.5 173.2

Zr-OLS–WFF 153.9 155.0

All distances in Å and angles in deg. The experimental values are taken from Auray et al.
(1995). See text and Figure 1 for an explanation on the labels.

3.3. Helmholtz and Vibrational Free
Energies
Figure 4 (top) shows the variation with lattice constant and
temperature of the internal energy U(a), total vibrational free
energy F(a,T), and Helmholtz free energy A(a,T), together with
the optimal lattice constant as a function of temperature obtained
by fitting A(a,T) to a 5th-order polynomial and minimizing
numerically. The NTE clearly arises from the lower relative VFE
at smaller lattice constants. To help understand the origin of this
behavior, the bottom of Figure 4 also shows a decomposition of
the VFE at low and high temperature, obtained by partitioning
the sum over atoms in Equation (3) into its O, W, and Zr
components. This decomposition reveals that the W and Zr
contributions to the VFE are virtually constant with variations in
lattice constant; consequently the variation of total VFE closely

follows the variation of only the O component. This further
substantiates our finding that the perpendicular O distortions are
the primary origin of NTE in ZrW2O8.

3.4. Negative Thermal Expansion
The relative thermal expansion obtained by minimizing A(a,T)
with respect to lattice constant is shown in Figure 5. The
agreement with experiment is clearly very good except at very
low temperatures, where the theoretical curve shows the expected
flattening due to zero-point effects, which does not appear to be
pronounced in the experiment (Evans et al., 1996). Figure 5 also
shows the NTE that would be obtained by only considering the
components of the VFE arising from the O,W, and Zr lattices. As
expected from the previous discussion, the NTE arises exclusively
from the O component. The Zr and W contributions have a
minimal effect on the system, in contrast with the hypothesis
(Mary et al., 1996; Gupta et al., 2013; Sanson, 2014) that the
bending of the Zr–O–W bonds causes the NTE by pulling the
Zr and W atoms together.

3.5. Total and Projected Phonon Densities
of States
Figure 6 shows a comparison between the theoretical total
density of states at 0 K and experiment (Ernst et al., 1998)
obtained from inelastic neutron scattering at 300 K. The PDOS
can be roughly divided into three regions: high frequency range
(above 20 THz), associated with bond stretching modes, middle
range (between 5 and 13 THz), corresponding mostly to bond
bending modes, and low frequency range (below 5 THz), which
are thought to correspond to librational and translational modes
(Chaplot, 2005). The overall agreement is excellent; the small
discrepancy at the lowest frequencies around 1 THz, where the
Lanczos approach yields a single peak, is likely due to the size of
the 44-atom unit cell used in the calculations.
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FIGURE 3 | Mean force constants for the parallel OW and OZr stretch (Top)

and perpendicular OW scissoring (Bottom) displacements in ZrW2O8. The

perpendicular force constants are averaged over two directions in the plane

orthogonal to the W–O bond for the WFF–OFF and WFR–OFR bonds, and over

the in-plane and out-of-plane directions for the WFF–OLS and WFR–OSL

bonds. See text for further details.

To understand the physical origin of the NTE more
completely, we consider the behavior of the projected phonon
density of states, or PDOS. Figure 7 shows the PDOS projected
onto the O, W, and Zr sites. The high frequency PDOS only
has significant weight on the O sites. The W and Zr sites have
most of their weight in the low andmedium regions, respectively.
The variation of the PDOS with lattice constant depends greatly
on the projection site as shown by the Grüneisen parameters
γ = d lnω/d lnV of the different sites and frequency ranges: The
middle range is essentially independent of lattice constant with a
γ = − 0.3 ± 0.3, except for the Zr sites which show a very small
decrease of the frequencies with expansion and γ = 2.0. This
positive γ results in the very small tendency to normal behavior
seen in the Zr component of the thermal expansion shown in
Figure 5. The high frequency range, found only on the O sites,
also contributes to positive thermal expansion with a γ = 1.9 ±
0.2. These high frequencies result from the strong parallel force
constants discussed in section 3.2, as demonstrated in Figure 8,
which shows that the DOS projected onto the longitudinal (i.e.,
along the O–W or Zr–O–W direction) motion of the O atoms
only has weight in the high frequency range. These stretch modes
become weaker as the system expands, and would result in net
positive thermal expansion if not countered by the low frequency

FIGURE 4 | (Top) Internal energy U(a), total vibrational free energy F (a, T ) and
Helmholtz free energy A(a,T ) as a function of lattice constant and temperature.

The potentials are interpolated using a 5th-order polynomial. The black dots

indicate the optimal lattice constant as a function of temperature. (Bottom)

Total F (a, T ) and contributions from the O, W, and Zr sites.

region. In fact, if the high frequency range is neglected, the
relative NTE at 0 K is overestimated by about 30%. The low
frequency region exhibits a large negative γ = − 11 ± 2 for the
O sites, and about γ = − 3 ± 1 for the W sites, in agreement
with our finding that the W sites have a small contribution to the
NTE, while the O sites account for most of it. For the overall low
frequency range we estimate the same γ of− 8± 4, as in previous
theoretical estimates, (Gupta et al., 2013) which is in reasonable
agreement with experimental estimates ranging from− 7 to− 20
(Hancock et al., 2004). Figure 8 also shows the projection onto
the transverse motion of the O atoms, which is localized in the
medium and low frequency ranges, as expected for bending and
librational modes, respectively.

To explore the role of the rigid WO4 units on the NTE,
we have also projected the PDOS onto rotational linear
combinations of the transverse in-plane and out-of-plane
distortions described above, with axes along the different W–O
bonds (Figures 9, 10). These projections eliminate all the internal
O–W–O bending contributions seen in the 5–12 THz range of
Figure 8, with only features associated with O–Zr–O bending
remaining in that range. All these PDOS features show the
expected negative Grüneisen parameters γ , and point to the need
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FIGURE 5 | Total, O, W, and Zr components, and results from our two-pole

model (see text) of relative thermal expansion in ZrW2O8 as a function of

temperature. The experimental results are taken from Evans et al. (1996).

FIGURE 6 | Comparison of the theoretical (0 K) and experimental (Ernst et al.,

1998) (300 K) total phonon density of states (DOS) in ZrW2O8. The

experimental result has been vertically shifted for clarity.

for a mixed model that is neither purely rigid (Hammonds et al.,
1996; Pryde et al., 1996, 1997; Hancock et al., 2004; Tucker et al.,
2005, 2007) nor fully distorted (Cao et al., 2002, 2003; Bridges
et al., 2014) but one in which the NTE arises from the rigid
motion of WO4 units and the internal distortion of the ZrO6

ones.

3.6. Simple NTE Model
Based on the results discussed in the previous sections, we are led
to formulate a simple anharmonic two-frequency Einstein model
to describe the NTE. This model is based on approximations to
the different contributions to A(a,T) and F(a,T) in Equations
(2) and (3). Near equilibrium the internal energy U(a) can be
approximated accurately with a harmonic potential U(a) =

(1/2)KU(1a)2, and 1a ≡ a − a0. The VFE F(a,T) can be
simplified by analyzing the different contributions arising from

FIGURE 7 | Variation of the projected phonon density of states (PDOS) as a

function of lattice constant in ZrW2O8. The partial PDOS projected onto O , W,

and Zr sites are shown in the top, middle and lower panels, respectively. The

curves for different lattice constants have been vertically shifted for clarity.

the PDOS of Figure 7: We have found that the total O-PDOS can
be reduced to a very good approximation to just two constant
weight poles representing the active regions of the O-PDOS: one
for the low frequency (L) region below 5.4 THz with a negative
Grüneisen coefficient, and a second high frequency (H) pole for
the modes above 20 THz with a positive Grüneisen coefficient.
The intermediate region of the O, Zr, and W PDOS do not
contribute to the NTE since they are nearly constant with 1a.
The contribution from the H pole can be further simplified by
noticing that the H modes only contribute to F0(a) since at the
temperatures relevant here theHmodes are inactive. We can also
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FIGURE 8 | Variation of the O-sites phonon density of states (PDOS) as a

function of lattice constant in ZrW2O8, projected onto longitudinal (along the

O–W or Zr–O–W direction), and transverse in-plane (ip) and out of plane (op)

displacements. The curves for different lattice constants have been vertically

shifted for clarity.

take advantage of the linear behavior of the force constants as
a function of 1a as discussed in section 2.4: For a given pole ν

with effective force constant kν , we can write kν = k2ν + 6k3ν1a
(Frenkel and Rehr, 1993; Vila et al., 2007), where k2ν and k3ν are,
respectively, the effective quasi-harmonic and anharmonic force
constants. Thus, the frequency ων associated with this pole can
be approximated as

ων =

√

kν

µν

=

√

k2ν + 6k3ν1a

µν

≃ ω0
ν + ω′

ν1a, (10)

FIGURE 9 | Variation of the ZrW2O8 phonon density of states (PDOS)

projected onto rotational coordinates around the WFF–OFF and WFF–OLS

axes, as a function of the lattice constant. The curves for different lattice

constants have been vertically shifted for clarity.

where we define ω0
ν =

√

k2ν/µν , ω′
ν = 3k2ν/ω0

νk3ν , and µν is
the reduced mass associated with this pole. The linear behavior
of the pole frequencies around a0 can be seen in the PDOS of
Figure 7, from which the ω0

ν and ω′
ν parameters can be obtained.

The poles weights wL and wH are taken at 1a = 0. With these
approximations the Helmholtz free energy from Equation (2) can
be written as:

A(a,T) =
1

2
KU(1a)2 +

∑

ν = L,H

Fν
0 (a)+ FLT(a,T), (11)

where Fν
0 (a) and Fν

T(a,T) are, respectively, the zero-point and
temperature components of F(a,T) for ν = {L,H}. We can now
find a(T) by applying the minimum condition in Equation (1) to
the above A(a,T):

0 =
∂A(a,T)

∂a

∣

∣

∣

a(T)
= (12)

= KU1a+
h̄

2

∑

ν=L,H

wνω
′
ν +

∂FLT(a,T)

∂a

∣

∣

∣

a(T)
, (13)

The last term in this expression can be further simplified by
noticing in Figure 4 (bottom) the nearly linear behavior of
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FIGURE 10 | Variation of the ZrW2O8 phonon density of states (PDOS)

projected onto rotational coordinates around the WFR–OFR and WFR–OSL

axes, as a function of lattice constant. The curves for different lattice constants

have been vertically shifted for clarity.

F(a,T) around a0, and expanding FLT(a,T) to first order in a.
After this, we can calculate a(T) simply as:

a(T) ≃ a0 −
h̄

KU

∑

ν=L,H

wνω
′
ν +

h̄wLω
′
L

KU[1− eh̄ω
0
L/kBT]

, (14)

using the internal energy minimum and constant a0 = 9.246 Å
and KU = 85.82 eV/Å2, respectively, weights wL = 21.1 and
wH = 30.0, harmonic frequency ω0

L = 20.31 THz, and effective
anharmonic constants ω′

L = 81.90 THz/Å and ω′
H = −104.39

THz/Å. Our results are presented in Figure 5; they clearly show
that this simplified two-pole Einstein model yields a quantitative
description of the observed NTE. Of these contributions the L
pole dominates but overestimates the NTE, while the H pole
provides a 30% correction.

4. CONCLUSIONS

We have performed calculations of the thermal expansion of
ZrW2O8 using an efficient approach for obtaining the variation
of the dynamical matrix as a function of the lattice constant.
The anomalous NTE arises almost exclusively from the transverse
contributions of the O-atoms, as demonstrated by a partition
of the vibrational free energy over the O, W, and Zr sites.
This behavior results from the interplay between the normal
positive Grüneisen parameter and hence PTE of the O-projected
high frequency modes, and the anomalous negative-Grüneisen
parameter driving the NTE from the low frequency modes.
The low-frequency modes overestimate the effect of NTE, while
the high-frequency modes provide a 30% correction. These low
frequency modes are associated with distortions at the O sites
transverse to the W–O or W–O–Zr bonds. More precisely,
the rotational linear combination of these transverse distortions
results in nearly rigid rotations of the WO4 tetrahedra and
internal distortions of the ZrO6 octahedra. The mixed character
of the low frequency modes is consistent with the variety of
models previously proposed to account for the NTE. We have
simplified this complex behavior by proposing a two-frequency
anharmonic Einstein model of the O-PDOS which captures
both the dominant negative- and weak positive-contributions to
thermal expansion.
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