
https://doi.org/10.1177/1176934317734220

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 13: 1–7
© The Author(s) 2017
Reprints and permissions: 
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934317734220

Introduction
In the past decades, biologists have used phylogenetic trees to 
observe the meaningful insight into biology. A phylogenetic tree 
is capable of showing the evolutionary relationships among a 
variety of organisms based on similarities between their physical 
or genetic residues. The computational algorithms to construct 
phylogenetic trees can be mainly classified into 2 categories: the 
distance-based ones and the character-based ones. The distance-
based methods construct a phylogenetic tree by calculating pair-
wise genetic distances between taxa. Different from the 
distance-based methods, the concept of the character-based 
methods is to construct the tree by aligning sequences of nucleo-
tide or amino acid residues. In both categories, the similarity of 
each pair individuals usually will be represented by a distance 
matrix. The clusters of organisms are grouped by similarity of 
multiple genome sequences called operational taxonomic units 
(OTUs).1 Operational taxonomic units show different taxonomic 
levels of species and have been frequently used in microbial clas-
sification such as 16S or 18S ribosomal RNA sequence analysis.

Two commonly used distance-based approaches, namely, 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA) and Neighbor Joining (NJ), have been used in 
many biological research works, and they are also integrated 
into many multiple sequence alignment tools. In general, the 
time complexity of original UPGMA algorithm is O(n3),2 and 

the improved UPGMA is able to be optimally reduced to 
O(n2).3 For original NJ algorithm, the time complexity is 
O(n4), and the complexity of improved algorithm, named 
FastNJ,4 is able to reach O(n2) in the best cases.

Due to the time complexities of UPGMA and NJ, the number 
of sequences is critical to the computational performance. The 
execution time of the transitional UPGMA is more than 4000 sec-
onds when the number of OTU is more than 1000 seconds.5 Due 
to next-generation sequencing (NGS) technologies,6 the sequenc-
ing data have been increasing faster than computers can keep up. 
The size of sequence data has increased recently from 1 GB to 
1 TB in a single sequencing run. The computational performance 
of analyzing such huge amount data is unacceptable. The NGS 
has forced researchers to develop new software to enhance the 
performance. For constructing a phylogenetic tree from such huge 
amount of data set, the methodologies, such as caching and paral-
lelization, have been proposed to satisfy this requirement. These 
methods are introduced to optimize throughput. Message Passing 
Interface (MPI)7 is a specification of message-passing libraries 
which address the message-passing parallel programming model 
for parallel computation on cluster systems connected by net-
works. pNJtree8 is a parallel program that implements NJ using 
MPI. It approximately takes 3000 seconds to construct a NJ tree 
from 10 000 sequences while executing on 32 processors within its 

MGUPGMA: A Fast UPGMA Algorithm With  
Multiple Graphics Processing Units Using NCCL

Guan-Jie Hua1, Che-Lun Hung2, Chun-Yuan Lin3, Fu-Che Wu4,  
Yu-Wei Chan5 and Chuan Yi Tang1,6

1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.  
2Big Data Research Center, Department of Computer Science and Communication Engineering, 
Providence University, Taichung, Taiwan. 3Department of Computer Science and Information 
Engineering, Chang Gung University, Taoyuan, Taiwan. 4Department of Computer Science and 
Communication Engineering, Providence University, Taichung, Taiwan. 5College of Computing 
and Informatics, Providence University, Taichung, Taiwan. 6Department of Computer Science and 
Information Engineering, Providence University, Taichung, Taiwan.

ABSTRACT: A phylogenetic tree is a visual diagram of the relationship between a set of biological species. The scientists usually use it to 
analyze many characteristics of the species. The distance-matrix methods, such as Unweighted Pair Group Method with Arithmetic Mean 
and Neighbor Joining, construct a phylogenetic tree by calculating pairwise genetic distances between taxa. These methods have the 
computational performance issue. Although several new methods with high-performance hardware and frameworks have been proposed, the 
issue still exists. In this work, a novel parallel Unweighted Pair Group Method with Arithmetic Mean approach on multiple Graphics Processing 
Units is proposed to construct a phylogenetic tree from extremely large set of sequences. The experimental results present that the proposed 
approach on a DGX-1 server with 8 NVIDIA P100 graphic cards achieves approximately 3-fold to 7-fold speedup over the implementation of 
Unweighted Pair Group Method with Arithmetic Mean on a modern CPU and a single GPU, respectively.

KeyWoRdS: Phylogenetic tree, UPGMA, GPU, parallel computing, multiple GPUs

ReCeIVed: May 8, 2017. ACCePTed: September 6, 2017.

PeeR ReVIeW: Two peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 599 words, excluding any confidential comments to the academic editor.

TyPe: Review

FUNdING: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This research was partially 

supported by the Ministry of Science and Technology under grant MOST103-2632-E-126-
001-MY3 and MOST106-3114-E-029-001.

deCLARATIoN oF CoNFLICTING INTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CoRReSPoNdING AUTHoR: Che-Lun Hung, Big Data Research Center, Department of 
Computer Science and Communication Engineering, Providence University, Taichung 
43301, Taiwan.  Email: clhung@pu.edu.tw

734220 EVB0010.1177/1176934317734220Evolutionary BioinformaticsHua et al
research-article2017

https://uk.sagepub.com/en-gb/journals-permissions
mailto:clhung@pu.edu.tw


2 Evolutionary Bioinformatics 

application in ClustalW. An MPI-based multiple sequence align-
ment tool, ClustalW-MPI,9 has been proposed to align multiple 
protein sequences by leveraging the computing power of cluster 
system. ClustalW-MPI simultaneously aligns multiple sequences 
according to the order of branches of a guide tree constructed by 
NJ algorithm. The experimental result in ClustalW-MPI shows 
that a tree from 10 000 sequences is constructed in 25 418 seconds 
using 32 processors.

Nowadays, most of the current systems contain multicore 
processor. A multicore processor has 2 or more processors which 
are used to process multiple tasks in parallel. Open Multi-
Processing (OpenMP)10 is an application programming inter-
face that allows multicore CPU to launch multiple threads and 
supports shared memory model. FastTree11 is an implement of 
sequential programming model to build phylogenetic trees by 
sequentially aligning nucleotide/protein sequences. FastTree is 
100 to 1000 times faster than PhyML 3.0 or RAxML 7. 
FastTreeMP is an implement of parallel model of FastTree using 
OpenMP, and its computational performance on 3 CPUs is 1.5 
to 1.7 times faster than sequential version of FastTree.

Recently, Graphics Processing Units (GPUs), which possess 
thousands of small but efficient cores, have become an important 
role to accelerate the computational applications in many scien-
tific domains and achieve a better performance than original 
applications. CUDA (Compute Unified Device Architecture) is 
a programming model proposed by NVIDIA in 2006, which can 
be written in C, C++, and Fortran. CUDA adheres to the single 
instruction, multiple threads execution model, it exploits GPU 
to run many threads independently and simultaneously, and it 
even allows divergent instruction streams. Till today, there have 
already been many powerful graphic cards supporting CUDA, 
thus CUDA programs can be run on those GPUs. Liu et al12 
proposed a parallel algorithm to construct NJ tree executing on a 
single GPU. This superior algorithm is able to achieve 26-fold 
speedup over the original NJ algorithm on CPU to construct a 
tree from 10 000 sequences. The GPU-UPGMA5 is a highly 
computation-efficient method to generate a phylogenetic tree 
based on GPU architecture. It can achieve 95 times faster than 
the sequential UPGMA algorithm executing on CPU.

People start to combine multiple GPUs to handle the rapid 
growth of data as GPU has such a powerful parallel computation 
ability and as it becomes cheaper than CPU. In the beginning, 
one computer can only be equipped at most with 2 graphic cards 
by some techniques such as SLI (Scalable Link Interface) of 
NVIDIA and CrossFire of ATI to get an enhancement of 1.4× 
to 1.6× speedup of performance. It was nevertheless unable to 
cope with intensive computation request with big data. Message 
Passing Interface has then become a solution which may connect 
multiple computers with 1 or 2 graphic cards installed, enabling 
them to send and receive messages to/from each other through 
Ethernet. Hung et al13 proposed an MPI version implementa-
tion of UPGMA on multiple computers equipped with GPUs. 
However, the bottleneck of the MPI version implementation is 
the slow response over Ethernet. Today, one computer is able to 

accommodate 2 to 8 GPUs, and these GPUs can communicate 
with each other through PCIe bus. Thus, the response time is 
much less than Ethernet. Furthermore, a new communication 
technique, called NVLink, was proposed by NVIDIA to enable 
ultrafast communication between CPU and GPU or among 
GPUs. NVIDIA claimed that this technology can accelerate 
data transfer rate to 5 to 12 times faster than PCIe bus. It means 
that GPUs can access data from each other at the speed of 
accessing local data from themselves. But in the programming 
level, it is usually complicated to write a program involving the 
communication among multiple GPUs. Fortunately, there is a 
library called NCCL (NVIDIA Collective Communications 
Library), which provides a communication model that is very 
similar to MPI. This tool provides 3 major and simple data col-
lective communication primitives, namely, All-Reduce, All-
Gather, and Broadcast, to ease the management of data 
communication among multi-GPUs. Not only it is familiar to 
users who are used to the MPI but NCCL also optimizes the 
data transfer efficiency in a few ways, which we will discuss later 
in this article and take on in the “Method” section.

Nowadays, the cost of sequencing is decreasing drastically due 
to the development of NGS, being capable of producing huge 
amount of genome sequences for environmental sampling. To 
construct a phylogenetic tree by UPGMA with such data set, the 
computational performance of existing UPGMA algorithms will 
certainly be unsatisfied. Therefore, we propose a novel parallel 
UPGMA algorithm based on multiple GPU devices to accelerate 
the tree construction process with large-scale sequence data.

In this article, we design a parallel algorithm of UPGMA, 
which is suitable to run on multiple GPUs. NVIDIA Collective 
Communications Library is used to connect these multiples 
GPU devices together and control the communication among 
them. The input data, a distance matrix, are split and spread to 
all available GPUs. Each GPU works with parts of data in par-
allel, partial results are then synchronized between iterations. It 
is obvious by experiments’ results that the proposed algorithm 
on multiple GPUs can effectively enhance the performance of 
previously existing UPGMA algorithms.

Method
Unweighted Pair Group Method with Arithmetic 
Mean

The UPGMA algorithm constructs a phylogenetic tree from 
the pairwise similarity matrix, also known as distance matrix, 
which describes similarities between all possible pairs of given 
OTUs. The UPGMA algorithm contains 3 steps.

Step 1: Initializing the distance matrix. In this step, the distance 
matrix is initialized by filling in its entries with distance values 
between corresponding sequence pairs; a smaller value means a 
closer relationship, thus more similar. Figure 1 shows an example 
of the distance matrix. Distance between the ith sequence i and 
the jth sequence j will be written into the entry of ith row and jth 



Hua et al 3

column of the matrix. Hence, each element in the matrix records, 
respectively, a distance value between 2 sequences.

Step 2: Grouping OTUs. In this step, the element currently 
recording the minimal distance value will be selected. If there is 
more than 1 element that records the minimum value, then a 
random one among them will be selected. The corresponding 
OTUs are then grouped together, and they form a new branch 
in the phylogenetic tree.

Step 3: Updating the distance matrix. The distance matrix must 
be updated after the pair of OTUs with minimum distance has 
been grouped into a new branch. Rows and columns of the 
grouped OTUs are removed from the distance matrix, but before 
that another row and column recording the new distances 
between the newly formed OTU group and the rest OTUs that 
are calculated based on the removed ones will be added.

Steps 2 and 3 are run consistently until all OTUs are merged 
into one group, and then a phylogenetic tree is completely con-
structed at the same time.

UPGMA based on GPU

It is noticed in literature5 that most part of the computational 
time of UPGMA is dedicated to find the minimum and update 
the distance matrix. Therefore, these steps should be ported to 
GPU to leverage the computing power of GPU. The GPU-
UPGMA is the GPU implementation of UPGMA on CUDA; 
it contains 3 stages to reduce the computational cost of manipu-
lating the distance matrix. These stages are described as follows.

Stage 1. In this stage, the minimum distance value in the matrix 
will be found in 2 hierarchical steps. In the first one, the matrix is 
split into small slices, and then lots of thread blocks are dispatched 
simultaneously for these slices, one for each. Finally, a local mini-
mum value in each slice is found by a parallel reduction process on 
GPU. All of these local minimum values are then transferred to 
the global memory of the GPU device. The second step, which is 
similar to the first one, is to find the global minimum value based 
on the set of local minimums by another reduction.

Stage 2. The distance matrix is updated in this stage. Another 
CUDA kernel function will be launched to calculate distances 
between the newly grouped OTU and the rest. Then, each 
thread is responsible for filling in an entry of the row and col-
umn to be added.

Stage 3. This stage is similar to the step 3 of UPGMA. A new 
branch is built according to the OTU pair found in the previ-
ous stages. As it is basically a sequential and simple task, this 
stage is executed on CPU.

Three stages run consistently in order until the tree is com-
pletely constructed.

UPGMA based on multiple GPUs through NCCL

“MPI is a message-passing application programmer interface, 
together with protocol and semantic specifications for how its 
features must behave in any implementation.”2 Its goals are 
high performance, scalability, and portability. Today, it remains 
the dominant model used in high-performance computing3 to 
manage multiple computing nodes, and both point-to-point 
and collective communication are supported.

Although MPI has been proved to be very useful to manage 
the data communication and parallel tasks execution, it faces a 
critical bottleneck which may be due to external conditions but 
still a fundamental one: the speed of data communication 
through Ethernet.

Recently, it is possible to equip one server with a few GPUs to 
enhance computational performance. On that single server, those 
GPUs can communicate with each other through the PCIe bus, 
and it is much faster than Ethernet. However, it is also difficult to 
handle the communication among them. There are many issues 
that need to be considered such as bandwidth efficiency and time 
delay problem. For these reasons, we use NCCL not only to ease 
communications but also to address the issues inherently.

NVIDIA Collective Communications Library was pro-
posed to enable and optimize multi-GPU collective communi-
cations. It is a library of optimized primitives implemented in 
C++ on CUDA libraries. The framework of NCCL is very 
similar to that of MPI. Therefore, many programming models 
already tested within MPI are ready to be applied in NCCL.

NVIDIA Collective Communications Library provides 3 
major kinds of data collective communication primitives: All-
Reduce, All-Gather, and Broadcast. The All-Reduce collective 
reduces data across multiple GPUs with a certain reduction 
operations. For example, suppose that there are many GPUs and 
each of them stores an array of numbers, furthermore, if the 
reduction operation is added, then All-Reduce enables every 
GPU to figure out an array of sums, which in fact is the sum over 
all elements of the same index in the arrays distributed on those 
GPUs. The “All” prefix before hyphen means that all GPUs get 
the same result in the end. The illustration of the elements of the 
same index painted by the same color is shown in Figure 2. 
Figure 3 shows how All-Gather collects data from each other 
GPUs and puts them together into each single GPU. The last 
collective method is Broadcast; it sends an array from one GPU 
to the rest; at last, every GPU will have a duplicate array stored 
in itself. The illustration of Broadcast is shown in Figure 4.

NVIDIA Collective Communications Library usually uses 
a function called GPUDirect for data transfer. This function is 

Figure 1. Pairwise distance matrix for each pair of sequences.



4 Evolutionary Bioinformatics 

widely used in direct peer-to-peer connection between 2 GPUs. 
For some reasons, the device may not support GPUDirect; in 
that case, NCCL will reserve a main memory space as a buffer, 
through which GPUs can communicate.

Practically, data transfer between GPUs relies the PCIe topol-
ogy, and a suitable choice of data transfer path that achieves high 
efficiency of communication. For example, let us say that GPU0 
needs to broadcast 1 GB data to all others; a PCIe topology is 
shown in Figure 5. Illustrations of 2 data transfer models on the 
PCIe topology are shown in Figure 6. In Figure 6A, the peer-to- 
peer data transfer from GPU0 to GPU1 is performed first, and 
then GPU0 transfer data to GPU3 and GPU1 transfer the data, 
obtained from GPU0, to GPU2 simultaneously. In this model, 
GPU0 and GPU1 will compete with each other in the bus 
between switch 1 and switch 2. Another transfer model is shown 
in Figure 6B. A data transfer from GPU0 to GPU2 is issued first, 
and then data transfer from GPU0 to GPU1 and from GPU2 to 
GPU3 is performed afterward. In this way, the PCIe bus traffic 
between 2 switches is used only for GPU0 to GPU2. Thus, the 
second model is better than the first one.

At the implementation level, a general strategy for a ring 
routing path is adopted and the algorithm just chooses the 
best outset to start. Furthermore, NCCL splits the whole data 
into many small chunks and transfer them one by one as 
streams through the ring routing path. By this way, it avoids 
that GPU devices wait a long time for data transferred from 

other GPU devices before computation. An illustration is 
shown in Figure 7.

Eventually, to construct a phylogenetic tree from a larger 
amount of sequences using GPU-UPGMA, a single GPU 

Figure 2. Illustration of NCCL All-Reduce collective function. GPUs 

indicate Graphics Processing Units; NCCL, NVIDIA Collective 

Communications Library.

Figure 3. Illustration of NCCL All-Gather collective function.

Figure 4. Illustration of NCCL Broadcast collective function. GPUs 

indicate Graphics Processing Units; NCCL, NVIDIA Collective 

Communications Library.

Figure 5. Illustration of PCIe bus topology. GPU indicates Graphics 

Processing Unit.

 (a) 

 (b) 

Figure 6. Two peer-to-peer transfer models between GPU devices across 

PCIe switches. GPU indicates Graphics Processing Unit. Figure 6(a) and 

6(b) present the peer-to-peer transmission model between GPUs crossing 

PCIe switch twice and only once, respectively.  

Figure 7. The ring-based transfer model between GPU devices in NCCL. 

GPU indicate Graphics Processing Unit; NCCL, NVIDIA Collective 

Communications Library.



Hua et al 5

device is incapable to deal with them. Therefore, we proposed 
the parallel UPGMA algorithm to build a tree by multiple 
GPU devices within one single machine. All of the GPU 
devices have to collaborate together based on this idea. 
Therefore, NCCL is chosen to achieve this goal. The flowchart 
is shown in Figure 8. The steps of the proposed algorithm are 
listed as follows.

Step 1: Initialization. In the first step, all the available GPU 
devices have to been recognized by the NCCL. The input 
sequences are thus split into a number of sequence groups cor-
responding to the number of recognized GPU devices.

Step 2: Finding the minimum value. In this step, the local mini-
mum value in a local distance matrix of each sequence group on 
a GPU will be found, and then All-Gather function is used to 
distribute all the local minimum values to each other.

Step 3: Updating the distance matrix. When All-Gather is finished, 
each GPU has a full set of local minimum values from itself and 
other GPUs, and then the global minimum value will be found 
and the distance matrix can be updated according to this value.

Steps 2 and 3 run consistently until the tree is completely 
constructed. The flowchart of these steps is shown in Figure 8.

Experiment
NVIDIA released an embedded GPU system, called NVIDIA 
DGX-1, which includes an Intel Dual 20-core E5-2698, 
2.2 GHz CPU, 8 NVIDIA Tesla P100 GPU architecture with 
3584 CUDA cores, and 512 GB DDR4 RAM. DGX-1 is 
capable of more than 170 TFLOPS (tera floating point opera-
tions per second), thanks to the NVIDIA’s NVLink intercon-
nect technique. DGX-1 also provides NCCL library for 
programmers. In this work, the proposed algorithm is imple-
mented on a DGX-1 server with multiple P100 GPU devices. 
The underlying CUDA version is 6.5. The input data are the 
initial distance matrices which are generated randomly. The 
number of sequences varies from 1000 to 10 000. Consequently, 
dimension of the input distance matrix varies from 1000 × 1000 
to 10 000 × 10 000.

Computations can be grouped into 3 parts: finding the local 
minimums, then the global minimum, and finally the matrix 
updates. Figure 9A shows the time evolution of finding the 
local minimum for different sizes of data with different num-
bers of GPUs. It is a computation-consuming step, but the fig-
ure shows that the computation work is scalable in parallel 
because it obtains more acceleration with more GPUs working 
together. Figure 9B shows the time of finding the global mini-
mum. In this step, GPUs need to communicate with each other. 

Figure 8. The flowchart of UPGMA (Unweighted Pair Group Method with Arithmetic Mean) on multiple GPU nodes. GPU indicates Graphics Processing 

Unit.



6 Evolutionary Bioinformatics 

The result shows that the computation time increases if more 
GPUs are involved in this step, and the probable reason lies in 
the increase in communication cost. Figure 9C shows the time 
needed for the matrix update, and it shows a similar behavior to 
that of Figure 9B because it involves communication too.

Although the time spent by steps 2 and 3 is increasing as 
shown in Figure 9B and C, they only contribute a very small 
part in total computation time. Figure 9D shows the total 
time evolution of a complete execution of our algorithm. 
Obviously, the proposed algorithm achieves much better per-
formance when handling a huge amount of sequences. But 
when the amount of sequences is not big enough, the pro-
posed algorithm may provide less speedup. The reason is that 
the communication time among GPUs will score a higher 
proportion in the total execution time. Figure 10 shows the 
evolution of speedup for input size varying from 1000 to 

10 000 along the number of GPUs. In an extreme case, the 
proposed algorithm may even cut down performance when 
communication dominates computation, as shown in Figure 
10, for data size of 1000. However, another interesting obser-
vation from Figure 10 is that the speedup is almost linear 
with the number of GPUs employed when treating a large 
amount of data, which suggests that our algorithm is highly 
scalable when the data size is big enough. Obviously, the pro-
posed algorithm achieves the significant speedup over 2000 
sequences. Therefore, it is suitable for building a UPGMA 
tree from huge amount of sequences.

Conclusions
In this work, we propose a novel UPGMA algorithm, based on 
GPU-UPGMA, with multiple GPUs using CUDA framework 
and NCCL to enhance the computational performance of con-
structing a phylogenetic tree from a huge amount of sequences. 
Experiments demonstrate that the proposed algorithm on mul-
tiple GPU devices is able to significantly improve the computa-
tional performance of GPU-UPGMA on a single GPU device 
when dealing with a large enough amount of data. And, in con-
trast to the MPI solution, the communication bottleneck is 
eliminated by the technique of NCCL and NVLink; hence, the 
proposed algorithm is also much faster than the MPI version of 
GPU-UPGMA.

Author Contributions
G-JH implemented the program, carried out the experiment, 
and wrote the manuscript with C-LH with support from CYT. 
C-LH provided the original idea and designed the algorithm 
with G-JH and C-YL. F-CW and Y-WC helped revise the 
manuscript.

Figure 9. The comparison of time cost between the results produced by GPU-UPGMA (Unweighted Pair Group Method with Arithmetic Mean) using 

NCCL on one DGX-1 server and the proposed algorithm on 8 Tesla P100 GPU devices with 1000 to 10 000 sequences: (a) find local minimum, (b) find 

global minimum, (c) update, and (d) total execution. The y-axis represents the execution time, and Sec. denotes seconds. The x-axis represents the 

number of GPU devices. GPU indicate Graphics Processing Unit; NCCL, NVIDIA Collective Communications Library.

Figure 10. The comparison of speedup of total execution time between 

the results produced by GPU-UPGMA (Unweighted Pair Group Method 

with Arithmetic Mean) using NCCL on one DGX-1 server and the 

proposed algorithm on 8 Tesla P100 GPU devices with 1000 to 10 000 

sequences. The y-axis represents the speedup, and the x-axis 

represents the number of GPU devices. GPU indicate Graphics 

Processing Unit; NCCL, NVIDIA Collective Communications Library.



Hua et al 7

REfEREnCEs
 1. Caron DA, Countway PD, Savai P, et al. Defining DNA-based operational 

taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol. 
2009;75:5797–5808.

 2. Sokal RR, Michener CD. A statistical method for evaluating systematic rela-
tionships. Univ Kansas Sci Bull. 1958;38:1409–1437.

 3. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and 
high throughput. Nucleic Acids Res. 2004;32:1792–1797.

 4. Li JF. A fast neighbor joining method. Genet Mol Res. 2015;31:8733–8743.
 5. Liu Y, Schmidt B, Maskell DL. Parallel reconstruction of neighbor-joining trees 

for large multiple sequence alignments using CUDA. Paper presented at: 2009 
IEEE International Symposium on Parallel & Distributed Processing; May 
23-29, 2009; Rome, Italy. http://ieeexplore.ieee.org/document/5160923/.

 6. Metzker ML. Sequencing technologies—the next generation. Nature Rev Genet. 
2010;11:31–46.

 7. Barker B. Message passing interface (mpi). Paper presented at: Workshop: 
High Performance Computing on Stampede; January 14-15, 2015;  

Ithaca, NY. https://www.cac.cornell.edu/education/training/StampedeJan2015/
Welcome.pdf.

 8. Du Z, Lin F. pNJTree: a parallel program for reconstruction of neighbor-joining 
tree and its application in ClustalW. Parallel Comput. 2006;32:441–446.

 9. Li KB. ClustalW-MPI: ClustalW analysis using distributed and parallel com-
puting. Bioinformatics. 2003;19:1585–1586.

 10. Dagum L, Menon R. OpenMP: an industry standard API for shared-memory 
programming. IEEE Comput Sci Eng. 1998;5:46–55.

 11. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolu-
tion trees with profiles instead of a distance matrix. Mol Biol Evol. 2009; 
26:1641–1650.

 12. Lin Y-S, Lin C-Y, Hung C-L, Chung Y-C, Lee K-Z. GPU-UPGMA: high-per-
formance computing for UPGMA algorithm based on graphics processing units. 
Concurr Comput Pract Exp. 2015;27:3403–3414.

 13. Hung C-L, Lin C-Y, Wu F-C, Chan Y-W. Efficient parallel UPGMA algorithm 
based on multiple GPUs. Paper presented at: 2016 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM); December 15-18, 2016; Shen-
zhen, China. http://ieeexplore.ieee.org/document/7822640/.

http://ieeexplore.ieee.org/document/5160923/
https://www.cac.cornell.edu/education/training/StampedeJan2015/Welcome.pdf
https://www.cac.cornell.edu/education/training/StampedeJan2015/Welcome.pdf
http://ieeexplore.ieee.org/document/7822640/



