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ABSTRACT
Background: Chronic inadequate sleep and frequent daytime napping may inflict deleterious health effects including weight gain, cardiometabolic
and psychiatric diseases, and cancer. It is plausible that these relations may be partly influenced by the consumption of suboptimal diets.
Objectives: The study aimed to identify potential causal links of genetically proxied longer habitual sleep duration and more frequent daytime
napping on 61 dietary variables derived from an FFQ. In addition, the study aimed to assess potential bidirectional causal links between habitual
sleep duration or daytime napping and macronutrient composition.
Methods: Genetic variants robustly associated with habitual sleep duration and daytime napping from published genome-wide association
analyses were used. Outcomes included 61 dietary variables estimated from FFQs in the UK Biobank (n = 361,194). For bidirectional associations
with macronutrient composition, genetic variants associated with percentage of energy from carbohydrate, fat, and protein were used. Two-sample
Mendelian randomization (MR) effects were estimated with inverse-variance weighted (IVW) analysis.
Results: In 2-sample MR, genetically proxied longer sleep duration was associated with a 0.068 (95% CI: 0.034, 0.103) category increase in
salad/raw vegetable intake [Pfalse discovery rate (FDR) = 0.006] per hour of sleep and with “no major dietary changes in the past 5 years”
(PFDR = 0.043). No associations were evident for daytime napping on dietary variables (all PFDR > 0.05). In addition, there were no bidirectional
associations between habitual sleep duration or daytime napping with the relative intake of carbohydrate, fat, and protein (all PIVW > 0.05).
Conclusions: In this MR study, there was modest evidence for associations between habitual sleep duration with dietary intake and no evidence for
associations between daytime napping frequency with dietary intake. These preliminary findings suggest that changes to habitual sleep duration or
daytime napping frequency may have limited impact on long-term changes in dietary intake. Curr Dev Nutr 2021;5:nzab019.
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Introduction

Sleep is an unconscious state of decreased motor function and height-
ened body restoration mechanistically regulated by homeostatic sleep
pressure and the circadian clock (1, 2). Daytime napping is a short sleep
episode occurring midday conserved across species (3, 4). Studies have
shown that chronic inadequate sleep and frequent daytime napping may
inflict deleterious health effects, including weight gain, cardiometabolic
and psychiatric diseases, and cancer (5–16). It is plausible that the re-
lation between habitual sleep duration or daytime napping and disease
outcomes may be partly influenced by the consumption of suboptimal
diets (17).

Differences in habitual sleep duration and frequency of daytime
napping have been related to dietary intake in epidemiological stud-
ies. Both short and long sleep duration show associations with var-
ious nutrients and foods (17–20). Among these are associations be-
tween lower carbohydrate intake with longer sleep duration (18, 20)
and higher fruit and vegetable intake with the recommended sleep du-
ration of 7–9 h/night (21). Studies investigating the link between ha-
bitual daytime napping and dietary intake are relatively fewer. Among
women, self-reported daytime napping is found to correlate with higher
intakes of fats and proteins and lower intakes of caffeine and water (22).
In adolescents, cross-sectional associations are evident between day-
time napping and higher food cravings (23). Causal relations between
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sleep duration and daytime napping with dietary intake remain to be
evaluated.

Potential causal links between habitual sleep duration and daytime
napping with dietary intake may be established in Mendelian random-
ization (MR). MR uses genetic variants robustly associated with a trait
of interest to uncover potential causal effects on outcomes of interest
with limited susceptibility to measurement error, confounding, and
reverse causation (23). Habitual self-reported sleep duration and day-
time napping have established genetic components [for sleep duration:
single nucleotide polymorphism (SNP)–based heritability = 9.8% and
twin- and family-based heritability = ≤45%; for daytime napping:
SNP-based heritability = 11.9% and twin-based heritability = ≤65%]
(7, 16). A total of 78 and 123 genetic variants robustly associate with
sleep duration and daytime napping, respectively (7, 16). Through
MR, we previously demonstrated potential causal links of genetically
proxied morning diurnal preference on increased intake of fresh fruit
and cereal and decreased intake of beer plus cider and processed
meat (24). Here, using a comparable analytical pipeline and leveraging
recent genetic findings for sleep habits, we aimed to identify potential
causal links of genetically proxied longer habitual sleep duration
and more frequent daytime napping on 61 dietary variables derived
from an FFQ. In addition, we aimed to assess potential bidirectional
causal links between sleep duration or daytime napping and macronu-
trient composition (% of total energy from carbohydrate, fat, and
protein).

Methods

UK Biobank
The UK Biobank is a population-based cohort of >500,000 partici-
pants aimed at determining the relation between genetic and lifestyle
exposures and a range of health outcomes (25). Participants are adults
aged 37–73 y (mean ± SD = 56.5 ± 8.09 y) who lived in the United
Kingdom between 2006 and 2010 (26). The present analysis was lim-
ited to participants of European ancestry with sleep, dietary, and ge-
netic data and was conducted using public data from repositories or
publications. Previous studies have provided in-depth descriptions of
population structure, sample quality control, and genetic quality control
and imputation (27, 28). Briefly, the UK Biobank used 2 different geno-
typing arrays: the UK BiLEVE Axiom Array (Affymetrix) and the UK
Biobank Axiom Array (Applied Biosystems) . Variants were imputed
using a combined reference panel of UK10K, 1000 Genomes panel, and
the Haplotype Reference Consortium panel. Consistency of genotype
calling was verified by testing for batch effects, plate effects, departures
from Hardy-Weinberg equilibrium (P < 1 × 10−12, chi-square; 1 df),
sex effects, array effects, and discordance across control replicates. Par-
ticipants of European ancestry were identified from clustering partici-
pants into 4 ancestry clusters using K-means clustering on the principal
components.

Genetic variants used to proxy habitual sleep duration and
daytime napping
For MR, SNPs were selected from genome-wide association studies
(GWASs) for habitual sleep duration (n = 446,118) and daytime nap-
ping (n = 452,633) (7, 16). In the UK Biobank, participants were asked

“How many hours sleep do you get in every 24 h? (please include naps),”
with responses in hourly increments, and “Do you have a nap during the
day?” with the following responses: Never/rarely, Sometimes, Usually,
and Prefer not to answer. A total of 78 and 123 SNPs were associated
at genome-wide significance (P < 5 × 10−8) with habitual sleep du-
ration and daytime napping, respectively. The identified variants were
partly replicated in independent samples from the Cohorts for Heart
and Aging Research in Genomic Epidemiology (CHARGE) cohorts
(n = 47,180) and the Mass General Brigham (MGB) Biobank (formerly
Partners Biobank; n = 7155) for sleep duration and the 23andMe cohort
(n = 541,333) for daytime napping, using similar assessment methods
(7, 29).

Dietary variables via FFQ
In the UK Biobank, a total of 61 dietary variables were used to reflect
average intake over the past year for a range of food items as measured
by a 29-item touchscreen FFQ (24). Briefly, dietary variables included
alcohol intake, cooked vegetables, and skimmed milk and are described
in detail in Supplemental Table 1. Additionally, the following 3 non–
food-item-related questions were included: “Have you made any major
changes to your diet in the last 5 years?” with response options of No,
Yes, because of illness, and Yes, because of other reason; “How do you
like your hot drinks? (such as coffee or tea)” with response options of
Very hot, Hot, Warm, and Do not drink hot drinks; and “Does your diet
vary much from week to week?” with response options of Never/Rarely,
Sometimes, and Often. Categorical variables were converted to binary
variables denoting intake of a specific food within that corresponding
category. For example, composition of bread (with response options of
White, Brown, Wholemeal or whole grain, or Other type of bread) was
converted to 4 binary variables indicating intake or nonintake of each
bread type (i.e., white bread = yes/no; brown bread = yes/no; whole-
meal or whole-grain bread = yes/no; other type of bread = yes/no). For
binary variables, cases refer to consumers (e.g., “Other type of bread”
consumers) and controls refer to nonconsumers (e.g., “Other type of
bread” nonconsumers).

Publicly available summary statistics for the 61 outcome dietary
variables were derived from the “round 2” version of the UK Biobank
GWAS release published by the Neale Lab (30). Each GWAS included
a subset of ∼361,194 unrelated participants of European ancestry and
included adjustments for the following covariates: age, age-squared, sex,
age × sex, age-squared × sex, and principal components 1–20. In ad-
dition, genetic correlations between habitual sleep duration and day-
time napping with dietary variables in the UK Biobank were extracted
from the UKBB Genetic Correlation browser (https://ukbb-rg.hail.is/)
and were estimated using linkage disequilibrium (LD) score regression
(31). To account for multiple comparison, we present false discovery
rate (FDR)–corrected genetic correlation P values (PFDR values).

MR for habitual sleep duration and daytime napping on
dietary variables
To conduct 2-sample MR, published effect estimates were derived
from replication cohorts (CHARGE cohorts and MGB Biobank for
sleep duration; 23andMe cohort for daytime napping) (Figure 1). To
maximize statistical power, effect estimates for the 78 variants for
sleep duration from the CHARGE cohorts and MGB Biobank were
meta-analyzed (total n = 54,335) using METAL by weighting effect
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FIGURE 1 Overall framework of the present 2-sample Mendelian randomization study. CHARGE, Cohorts for Heart and Aging Research
in Genomic Epidemiology; MGB, Mass General Brigham; SNP, single nucleotide polymorphism.

size estimates using the inverse of the corresponding standard errors
squared (version released 25 March 2011) (Supplemental Table 2)
(32).

Two-sample MR analyses were conducted using the “TwoSam-
pleMR” R package (version 0.5.4) (33). To assess potential causal links
of habitual sleep duration and daytime napping on dietary variables, the
exposure comprised 78 SNPs associated with sleep duration with ef-
fect estimates from the meta-analysis of CHARGE cohorts and MGB
Biobank (sample 1) representing genetically proxied longer habitual
sleep duration (Supplemental Table 3) or 123 SNPs associated with
daytime napping with effect estimates from the 23andMe cohort (sam-
ple 1) representing genetically proxied more frequent daytime napping
(Supplemental Table 4), respectively. The units of the exposure SNPs
are in minutes per day for sleep duration and log-odds of increased fre-
quency of daytime napping. The outcome comprised associations of the
78 or 123 SNPs with dietary variables in unrelated participants of Eu-
ropean ancestry in the UK Biobank (sample 2). For each exposure, we
harmonized the exposure and outcome effects to the same effect allele
(i.e., allele associated with longer sleep duration or more frequent day-
time napping). For sleep duration, of the 78 genetic variants, 4 variants
were excluded as a result of linkage disequilibrium (r2 at a threshold of
0.8) with other variants, absence from reference panel, or low imputa-
tion quality (INFO score < 0.80) in the outcome sample (Supplemental
Table 5). A total of 4 palindromic SNPs (i.e., SNPs whose alleles cor-
respond to nucleotides that pair in forward and reverse coding, such
as A/T or C/G alleles) with minor allele frequencies close to 0.50 (e.g.,
0.42 and 0.49) in the exposure dataset were also excluded as it was not
possible to reconcile ambiguities (Supplemental Table 5), whereas the
remaining palindromic SNPs were aligned based on their minor allele
frequency. For daytime napping, of the 123 genetic variants 14 variants

were excluded for missing effect estimates from the 23andMe cohort,
11 were excluded as a result of linkage disequilibrium (r2 at a thresh-
old of 0.8) with other variants or absence from the reference panel,
and 4 palindromic SNPs were further excluded (Supplemental Table
5). Thus, the genetic instruments for sleep duration and daytime nap-
ping comprised 70 (F-statistic = 3.1) and 94 (F-statistic = 23.4) SNPs,
respectively.

When conducting MR, 3 assumptions are necessary to establish
valid causal inference: 1) strong association between the genetic instru-
ment and the exposure of interest (which is accounted for by including
SNPs in MR analysis associated with the exposure at genome-wide sig-
nificance; P < 5 × 10−8), 2) the genetic instrument and the outcome of
interest are not associated with confounders (which is accounted for by
using genetic variants randomized at gametogenesis, and by controlling
for population stratification), and 3) the genetic instrument influences
the outcome only through the exposure of interest (i.e., no horizontal
pleiotropy) (34).

The primary method of analyzing the causal effect of habitual sleep
duration or daytime napping on dietary intake was inverse-variance
weighted (IVW) (34). The SNP–outcome associations were regressed
on the SNP–exposure associations using the inverse of the standard
error of the SNP outcome to weight the effects under a random-
effects model. The IVW method provides unbiased estimation of the
effect assuming the absence of horizontal pleiotropy or when horizon-
tal pleiotropy is balanced to the null (34). To validate this assumption
was met, Cochran’s Q for heterogeneity was calculated, which tests the
null hypothesis that the causal effects estimated by each variant are
equivalent. To address potential unbalanced horizontal pleiotropy, ad-
ditional sensitivity analyses of MR-Egger (35) and weighted median (36)
were conducted. MR-Egger assumes an independent association of each
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genetic variant with the exposure from the pleiotropic effect of the
variant. The MR-Egger intercept indicates directional pleiotropy with
a nonzero intercept suggesting that the genetic instrument may be in-
fluencing the outcome through a pathway other than the exposure (35).
The weighted median method provides consistent MR estimates with
≤50% of the instrument variables being invalid (36). Consistent effects
across IVW and both sensitivity analyses strengthen causal evidence.

For interpretation purposes, MR causal effect estimates for sleep du-
ration were multiplied by 60 in order to represent effects per hour of
sleep. To account for 61 outcome variables, we present FDR-corrected
IVW P values (PFDR values). PFDR values <0.05 from the IVW analysis
were considered significant.

Genetic variants used to proxy macronutrient composition
To investigate potential bidirectional causal links between the 2 sleep
variables and macronutrient composition (% of energy from carbohy-
drate, fat, and protein), we leveraged genetic variants associated with
macronutrient composition in GWASs in >235,000 adults of European
ancestry (37). A total of 7, 4, and 5 SNPs were identified to associate
with percentage of energy intake from carbohydrate, fat, and protein,
respectively (37).

Bidirectional MR for habitual sleep duration and daytime
napping with macronutrient composition
To conduct 2-sample MR, effect estimates were retrieved from an
independent macronutrient GWAS meta-analysis from the CHARGE
cohorts (n = 91,114) (Figure 1) (Supplemental Table 6) (38). In the
CHARGE cohorts, macronutrient composition was estimated using
cohort-specific FFQs. Only 6 of the 7 SNPs for carbohydrate were
finally included to represent genetically proxied higher percentage
of energy from carbohydrate due to the absence of a robust proxy
for rs7502280 (F-statistic = 14.6), whereas 4 (F-statistic = 12.1)
and 5 (F-statistic = 16.1) SNPs were included to represent
genetically proxied higher percentage of energy from fat and pro-
tein, respectively.

To evaluate potential causal links of habitual sleep duration and day-
time napping on macronutrient composition, the exposure (sample 1)
composed of 78 SNPs associated with sleep duration (Supplemental Ta-
ble 3) or 123 SNPs associated with daytime napping (Supplemental Ta-
ble 4) with effect estimates derived from the UK Biobank (7, 16). The
outcome (sample 2) comprised associations of the 78 or 123 SNPs with
the percentage of energy from carbohydrate, fat, and protein with effect
estimates from the CHARGE cohorts GWAS meta-analysis (38). For
each sleep exposure, we harmonized the exposure and outcome effects
to the same effect allele. Of the 78 SNPs for sleep duration, 5 variants
were excluded as a result of linkage disequilibrium (r2 at a threshold of
0.8) with other variants or absence from the reference panel, and 4 palin-
dromic SNPs were excluded (Supplemental Table 5). Of the 123 SNPs
for daytime napping, 15 variants were excluded as a result of linkage
disequilibrium (r2 at a threshold of 0.8) with other variants or absence
from the reference panel, 2 variants for carbohydrate and protein and
3 variants for fat were excluded due to missing data in the CHARGE
cohorts, and 4 palindromic SNPs were excluded (Supplemental Table
5). Thus for macronutrient composition, genetic instruments for sleep
duration and daytime napping comprised 69 (F-statistic = 28.8) and
102 (F-statistic = 45.3) SNPs, respectively. Units of the exposure SNPs

were in minutes per day for sleep duration and log-odds of increased
frequency of daytime napping, and units of the outcome SNPs were in
percentage of energy.

Next, to evaluate potential reverse causal links of macronutrient
composition on habitual sleep duration or daytime napping, the ex-
posure (sample 1) composed of SNPs associated with percentage of
energy from carbohydrate, fat, and protein with effect estimates de-
rived from the CHARGE cohorts (Supplemental Table 6). The out-
come (sample 2) comprised associations of the SNPs with habitual sleep
duration or daytime napping with effect estimates from the respec-
tive UK Biobank GWASs retrieved from the Sleep Disorder Knowl-
edge Portal (https://sleep.hugeamp.org/) (7, 16). Units of the exposure
SNPs were in percentage of energy and units of the outcome SNPs
were in minutes per day for sleep duration and log-odds of increased
frequency of daytime napping. IVW was used for the primary anal-
ysis and MR-Egger and weighted medians were used as sensitivity
analyses.

For interpretation purposes, all MR causal effect estimates for ha-
bitual sleep duration were scaled to represent effects per hour of sleep.
For the bidirectional MR between sleep habits and macronutrient
composition, P values <0.05 from the IVW analysis were considered
significant.

Results

Genome-wide genetic correlations (rg) between habitual sleep duration
or daytime napping and dietary variables, traits with established un-
derlying heritable components (39), ranged from −0.3 to 0.3, and thus
are generally modest (Figure 2). For sleep duration, correlations ranged
from −0.22 (rg) for semi-skimmed milk to 0.20 (rg) for never have milk
(40), and for daytime napping correlations ranged from −0.11 (rg) for
wholemeal or whole-grain bread to 0.15 (rg) for alcohol intake (40).

First, we conducted 2-sample MR between genetically proxied
longer habitual sleep duration and 61 dietary variables from an FFQ
in the UK Biobank (Supplemental Table 7). We found evidence
(PFDR < 0.05) that genetically proxied longer sleep duration was associ-
ated with a 0.068 (95% CI: 0.034, 0.103) category increase in salad/raw
vegetable intake (PFDR = 0.006) per hour of sleep (Figure 3). In ad-
dition, we found evidence that genetically proxied longer sleep dura-
tion was associated with “no major dietary changes in the past 5 years”
(PFDR = 0.043). Effects for both dietary variables remained robust in
sensitivity analyses (Supplemental Table 7). An additional 10 associa-
tions were evident at PIVW < 0.05, including the intake of muesli, alco-
hol, decaffeinated coffee, and cheese (Table 1).

Next, we conducted 2-sample MR between genetically proxied more
frequent habitual daytime napping and 61 dietary variables from an
FFQ in the UK Biobank (Supplemental Table 8). Overall, we found
no significant evidence that suggests causal links of daytime napping
on dietary variables at PFDR < 0.05 and 7 associations at PIVW < 0.05
(Table 2, Supplemental Table 8). Notably, the 2 strongest, albeit non-
significant, associations were related to variables assessing major di-
etary changes within the last 5 y. The strongest positive association was
observed for “major dietary change due to illness” (PFDR = 0.13), and
the strongest negative association was observed for “no major dietary
change in the last 5 years” (PFDR = 0.13).
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FIGURE 2 Genetic correlations between habitual sleep duration and daytime napping with dietary variables in the UK Biobank.
Correlation estimates were estimated using LD score regression and were extracted from the UKBB Genetic Correlation browser
(https://ukbb-rg.hail.is/). Only correlations with PFDR < 0.05 accounting for 61 dietary variables are shown; full correlation results for all
dietary variables are shown in Supplemental Table 1. Correlation values >0 (e.g., rg > 0) indicate positive relations between longer habitual
sleep duration or more frequent daytime napping and dietary variable, whereas correlation values <0 (e.g., rg < 0) indicate negative
relations between longer habitual sleep duration or more frequent daytime napping and dietary variable. In the UK Biobank, habitual
sleep duration and daytime napping were self-reported and dietary variables were derived from a modified FFQ. A detailed description of
dietary variables can be found in Supplemental Table 1. FDR, false discovery rate; irnt, rank-normalized; LD, linkage disequilibrium.

Last, we conducted bidirectional 2-sample MR between habitual
sleep duration or daytime napping and macronutrient composition (%
of energy from carbohydrate, protein, and fat) (Figure 4, Supplemen-
tal Table 9). Overall, we found no evidence for causal links of sleep du-
ration or daytime napping on the relative intakes of carbohydrate, fat,
and protein (all PIVW > 0.05) and no evidence (PIVW < 0.05) for causal
links of macronutrient composition on habitual sleep duration or day-
time napping.

Discussion

In this study we investigated the relations between habitual sleep dura-
tion and daytime napping with dietary variables through 2-sample MR.
We identified associations of genetically proxied longer habitual sleep
duration with increased intake of salad/raw vegetables and an increased
effect on “no major dietary change in the past 5 years.” In addition,
we observed no evidence of associations between genetically proxied
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FIGURE 3 Potential causal effects of genetically proxied longer habitual sleep duration on dietary variables. Only significant results with
PFDR < 0.05 are shown; full results and sensitivity analyses are presented in Supplemental Table 7. The effect of the habitual sleep duration
genetic instrument (n = 70) on each dietary variable was calculated using random-effects IVW regression. The exposure was scaled to
represent a 1-h longer habitual sleep duration. A positive B (beta) represents per 1-h longer sleep duration increase per category (for
ordinal variables: salad/raw vegetables) or log-odds (for binary variables: no major dietary change). To account for 61 outcome variables,
we present FDR-corrected IVW P values (PFDR). PFDR values <0.05 from the IVW analysis were considered significant. Detailed description
of dietary variables can be found in Supplemental Table 1. FDR, false discovery rate; IVW, inverse-variance weighted.

daytime napping frequency and dietary variables and no bidirectional
associations between habitual sleep duration or daytime napping and
macronutrient composition (% of energy from carbohydrate, fat, and
protein).

While our findings provide some evidence that longer sleep dura-
tion potentially increases intake of some foods, overall these relations
were few. We observed a higher intake of salad/raw vegetables with
longer sleep duration, extending epidemiological evidence (21). In ad-
dition, we observed that genetically proxied longer sleep duration in-
creases “no major dietary change in the past 5 years,” suggesting that
longer sleep duration prevents substantial changes in diet. An analy-
sis of the UK Biobank identified that participants reporting major di-
etary changes were more likely to have diabetes and cardiovascular dis-
ease (41). Epidemiological studies also suggested associations between
short sleep duration and irregular eating behaviors, aspects that may re-
flect inconsistent dietary habits (17). Thus, it is possible that consistent
dietary intake associated with longer sleep duration reflects aspects of
an overall healthy lifestyle. Notably, none of the dietary variables that
genetically correlated with sleep duration, with the exception of no ma-
jor dietary change in the past 5 y, showed evidence of causal effects,
suggesting that genetic correlations should not be used to prioritize
subsequent MR analyses. However, results for sleep duration should
be considered preliminary considering the modest F-statistic (i.e.,
<10) and thus the potential for weak instrument bias (42). Follow-up
2-sample MR analyses are necessary as larger replication cohorts with
sleep-duration data become available.

We observed no evidence of associations of daytime napping on di-
etary variables and macronutrient composition. Few epidemiological
studies have suggested associations between daytime napping and di-
etary intake. The largest is a study of 423 women from the Women’s
Health Initiative that investigated the relation between actigraphic and
subjective daytime napping and 88 dietary nutrient variables estimated
from a semi-quantitative FFQ. Partial correlations were only evident
for subjective daytime napping after adjusting for confounders and in-
cluded positive correlations with various fats and amino acids and neg-
ative correlations with caffeine and water (22). Contrary to those find-
ings, our MR study does not support associations between the frequency
of daytime napping and the intake of caffeinated beverages, water, rel-
ative fat, and protein compositions in the diet. It is possible that the
correlations identified in the Women’s Health Initiative study may be

confounded by daytime sleepiness or fatigue. In another study of 85
adolescents, longer durations of daytime napping were associated with
increased food cravings (23). As our analysis was restricted to variables
derived from an FFQ, we were unable to investigate causal links with
hunger and satiety. The continued evaluation of potential relations with
dietary patterns, hunger, and satiety and daytime napping duration is
warranted.

Because of the expected soporific effects of some foods and the as-
sociation of some macronutrients with sleep architecture (43), we ex-
amined in MR whether macronutrient composition directly influences
habitual sleep duration or daytime napping. Overall, we found no asso-
ciations between the relative composition of carbohydrate, fat, and pro-
tein in the diet on either habitual sleep duration or daytime napping.
Earlier short-term experimental studies found that high-carbohydrate
diets are associated with higher sleep quality and high-fat diets are asso-
ciated with lower sleep quality (43). Our findings, however, suggest that
increasing or decreasing the percentage of carbohydrate, fat, or protein
in the diet has no direct impact on the long-term duration of sleep or
the long-term frequency of daytime napping. Future MR analyses ex-
amining other dimensions of sleep beyond duration, such as quality,
and investigating specific sleep-promoting foods, such as milk, fatty fish,
cherries, and kiwifruit, are warranted (43).

It is worth mentioning that our analytical approach was limited to
habitual sleep habits. So far, GWASs have focused primarily on unravel-
ing the genetic architecture of habitual sleep habits, such as usual sleep
duration and usual daytime napping (7, 16). However, short-term ex-
perimental sleep trials in adults, including sleep-restriction and sleep-
extension studies, indicate sizable effects of sleep duration on dietary
intake. For example, a meta-analysis of sleep-restriction trials (∼1 wk
of restriction to 3.5–5.5 h/night) identified that partial sleep deprivation
was associated with an ∼400-kcal increase in total energy intake (44).
Other sleep-restriction trials have identified similar increases in the in-
take of total fats, carbohydrate-rich snacks, and dessert (17). Conversely,
a 1- to 1.5-h/night sleep extension for 28 d in free-living adults showed
a decrease in free sugar intake (45). As our MR evaluated habitual sleep
architecture, our findings suggest that changes observed in short-term
controlled experiments are possibly not sustained over the long term in
free-living conditions.

Several limitations need to be considered in the interpretation of
these MR results. First, the genetic variants are derived from GWASs for
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FIGURE 4 Potential bidirectional causal effects between habitual sleep duration or daytime napping and macronutrient composition (%
of energy from carbohydrate, fat, and protein). Effects were calculated using random-effects IVW regression. Sensitivity analyses are
presented in Supplemental Table 9. The effect of the sleep duration genetic instrument represents a 1-h increase in sleep duration. The
effect of the daytime napping genetic instrument represents a 1-unit category increase in daytime napping. The effect of the
macronutrient genetic instrument represents the percentage of energy increase in carbohydrate, fat, or protein. FDR, false discovery rate;
IVW, inverse-variance weighted; SNP, single nucleotide polymorphism.

continuous sleep duration in minutes per day and ordinal categories for
daytime napping preference and thus assumes linear relations between
sleep habits and dietary intake. Considering the limited number of dis-
tinct genetic variants for short and long sleep duration, we restricted
our MR to continuous sleep duration, but future MR analyses of short
and long sleep duration should be considered as more robust genetic
instruments are identified for these traits. In addition, although the ge-
netic variants for self-reported sleep duration and daytime napping have
been partly validated with accelerometer-derived sleep estimates, vari-
ance explained by these variants is modest (e.g., <5%) (7, 16). Future
studies should also consider variants identified from GWASs for objec-
tive sleep measures, which so far have a too limited number of variants
and modest sample sizes in their replication cohorts to allow 2-sample
MR (46). Second, our analysis was restricted to 61 dietary variables de-
rived from a modified FFQ in the UK Biobank (47). Despite validation
of responses from this modified questionnaire against 24-h dietary re-
calls in the UK Biobank (48), validation of non–food-related questions,
including major dietary changes, remains missing. Findings pertaining
to nonfood items are liable to recall bias and should be interpreted cau-
tiously. In addition, associations may exist for other food items or di-
etary patterns that show association effects in epidemiological studies,
such as fiber, but are not adequately captured by the UK Biobank di-
etary assessment tool. Third, our analyses were restricted to generally
healthy older adults (ages 37–73 y) of European ancestry from the UK
Biobank, which limits generalizability, particularly to other age groups
and ancestries with different sleep architecture and dietary patterns
(7, 16). Despite evidence of replication of sleep duration and daytime

napping genetic signals in independent studies with different demo-
graphic characteristics, the MR effects reported here may still be biased
(49). Therefore, continued evaluation in other demographics, including
younger age groups (50, 51), is necessary.

Strengths of the present study include our 2-sample MR approach,
which provides several advantages in comparison to epidemiological
studies. Epidemiological studies cannot address causality or direction-
ality in their assessment of the relation between sleep and dietary vari-
ables. Thus, our use of robust genetic instruments associated with habit-
ual sleep duration and daytime napping derived from large GWASs with
signals validated against accelerometer-derived objective measures of
sleep (16, 36) and with acceptable levels of relative bias (42) (except for
sleep duration on dietary variables) allowed us to directly assess causal
links of sleep habits on dietary intake. Compared with epidemiologi-
cal studies, this 2-sample MR approach has decreased susceptibility to
confounding, as demonstrated previously (7, 9, 11, 16), measurement
error, and reverse causation, but does not inform mechanisms mediat-
ing these effects. While signals for sleep duration were directionally con-
cordant in the independent datasets used in the present analysis and the
UK Biobank (binomial P = 0.048), findings pertaining to sleep duration
should be considered preliminary and later re-evaluated as larger inde-
pendent datasets (e.g., n > 54,335) become available for more robust
2-sample MR analyses.

Overall, we provide some evidence for associations of habitual sleep
duration with dietary intake and no evidence for associations of day-
time napping frequency with dietary intake. Thus, our MR findings
suggest that changes to habitual sleep duration or daytime napping

CURRENT DEVELOPMENTS IN NUTRITION
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Sleep duration, daytime napping, and dietary intake 9

frequency may have limited impact on long-term changes in dietary
intake.
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