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Abstract 
Background: Hypoxia is a key factor in the development of hepatocellular carcinoma (HCC), which is the most common 
primary liver cancer with poor prognosis. The current study aimed to identify the potential prognostic biomarkers of the hypoxia-
associated gene signature in patients with HCC, and to further explore the relationship between hypoxia and immune infiltration.

Methods: After the determination of differentially expressed genes (DEGs) using the HCC transcriptome data of The Cancer 
Genome Atlas database and hypoxia-related gene set, the prognosis-associated genes were identified using univariate Cox 
regression analysis. Then, the hypoxia prognosis model was established via multivariate Cox regression analysis, with functional 
annotation conducted using Gene Set Enrichment Analysis. CIBERSORT was utilized to analyze the degree of tumor immune 
invasion, and an International Cancer Genome Consortium cohort to verify the reliability of the prognosis model. Expression levels 
of hypoxia-associated genes were detected by real-time quantitative polymerase chain reaction in HCC samples.

Results: 3 genes (ENO1, SAP30, and STC2) constructed the hypoxia prognosis model. The patients were subdivided into 2 
groups based on median risk score, with a high hypoxic score indicating poor prognosis of HCC. The hypoxia signature could be 
employed as an independent prognostic factor in HCC. In addition, the proportion of macrophages was higher in the high-risk 
group.

Conclusion: The hypoxia-associated signature could be a potential prognostic marker of HCC and provides a different 
perspective for immunotherapy of HCC.

Abbreviations: AUC = the area under curve, GSEA = Gene Set Enrichment Analysis, HCC = hepatocellular carcinoma, 
HIF-1α = hypoxia inducible factor-1α,ICGC = International Cancer Genome Consortium, MSigDB = Molecular Signatures 
Database, OS = overall survival, ROC = receiver operating characteristic, TCGA = The Cancer Genome Atlas.
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1. Introduction

Liver cancer, 1 of the most common digestive system malignant 
tumors, ranks the third cause of cancer death in the world, 
causing >700,000 deaths every year.[1] Hepatocellular carci-
noma (HCC) accounts for 90% of primary liver cancer, which 
has become a global public health challenge.[1,2] Despite many 
treatment methods for HCC, its 5-year survival rate is <19%.[3] 
Low early diagnosis rate, rapid tumor progression, and high 
recurrence rate may be associated with poor prognosis of HCC 

patients. However, the mechanism of HCC progression is still 
unclear. At present, bioinformatics has become 1 of the principal 
means of cancer research, and it is of profound significance to 
look for reliable biomarkers to predict the diagnosis, progres-
sion, and prognosis of HCC for the prevention and treatment 
of HCC.

Hypoxia is 1 of the characteristics of solid tumor microen-
vironment, caused by the insufficient oxygen supply capacity 
of tumor blood vessels to meet the needs of rapid proliferation 
of cancer cells.[4] Hypoxia has a significant effect on tumor 
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growth, invasion, and metastasis.[5] Hypoxia of tumor tissue 
can induce abnormal vascular regeneration, leading to vascu-
lar dysfunction.[5–7] In addition, hypoxia affects the invasion 
and migration of cancer cells through epithelial–mesenchymal 
transition (EMT),[8] and can also lead to slow proliferation and 
cell cycle arrest of tumor cells, which reduces the sensitivity of 
tumor cells to radiotherapy and chemotherapy.[9] Studies have 
shown that high expression of hypoxia inducible factor-1α 
(HIF-1α) is related to poor prognosis of HCC patients,[10] yet the 
underlying mechanism remains unclear. Immune cells in tumor 
microenvironment are known as rather important in tumor 
development,[11] while hypoxia leads to immune resistance 
and immunosuppression, thus helping tumor cells to get rid of 
immune surveillance.[12] Moreover, tumor hypoxia can inhibit 
the maturation of T cells and rabbit cells and the production of 
cytokines.[13] Therefore, it is necessary to explore the interaction 
between tumor hypoxia and immunity, and develop a new ther-
apeutic regimen for HCC.

The Cancer Genome Atlas (TCGA) and International 
Cancer Genome Consortium (ICGC) are 2 cancer research 
projects, which contain a variety of cancer key genome change 
profiles, aiming to find potential biomarkers for cancer pre-
vention, diagnosis and treatment through genome-wide data 
analysis. In this study, TCGA and ICGC databases were used 
to analyze the genes related to hypoxia in HCC, and the prog-
nosis prediction model of HCC was established. The correla-
tion between hypoxia and immune infiltration in HCC was 
discussed as well, with a view to providing new ideas for rem-
edy in HCC.

2. Materials and Methods

2.1. Datasets and clinical samples

RNA-seq transcriptome data of 371 HCC patients and the 
corresponding clinicopathological information were obtained 
as the training set from TCGA (https://portal.gdc.cancer.gov/). 
Similarly, the data of 231 HCC patients were downloaded as 
the validation set from ICGC (https://icgc.org/). Samples with-
out complete clinical information and overall survival <90 days 
were rejected. Data collection and application conform to TCGA 
and ICGC publication guidelines and data access policies. Six 
clinical samples of HCC and adjacent tissues were collected 
from patients treated in the First Affiliated Hospital of Guangxi 
Medical University. Six adjacent tissues were taken about 1 cm 
from the tumor edge. The collected samples were stored in the 
−80°C refrigerator. The study has obtained the patients’ written 
informed consent and been approved by the ethics committee 
of First Affiliated Hospital of Guangxi Medical University. The 
research was conducted in accordance with the Declaration of 
Helsinki.

2.2. Identification of differentially expressed genes 
between HCC and adjacent tissues

Hypoxia-related genomes were extracted from the Molecular 
Signatures Database (MsigDB) v7.2 (HALLMARK_HYPOXIA 
M5891, http://www.broadinstitute.org/gsea/msigdb/index.jsp), 
which contains 200 genes up-regulated in response to hypoxia. 
Hypoxia-related differentially expressed genes (DEGs) were 
identified by limma (an R package). DEGs with |log2FC | > 1 
and false discovery rate < 0.05 were considered for further 
analysis.

2.3. Construction and validation of hypoxia model

Prognosis-related hypoxia genes were screened by univariate 
Cox regression analysis (P < .001). Then, the hypoxia risk signa-
ture was established using stepwise regression multivariate Cox 

analysis. The hypoxia risk signature formula was constructed 
as follows[14]:

risk score =
N∑
i=1

βi ∗ Ei

Ei was the expression of prognostic genes and βi was the regres-
sion coefficient of prognostic genes. According to the median 
risk score, the patients were divided into the low- and high-risk 
groups. The Kaplan–Meier (KM) curve was plotted to reflect 
the prognosis of the 2 groups, and was further validated on the 
ICGC data set.

2.4. Independent prediction analysis and nomogram 
construction

In order to judge the clinical independence of the prognostic 
model, Cox regression analysis was performed in combination 
with other clinical characteristics, such as incorporating the 
survival time and clinical data integrated into multivariate Cox 
regression analysis to determine independent prognostic risk 
factors. The variable with hazard ratio >1 was considered as an 
inferior prognostic factor. In addition, all independent prognos-
tic factors were used to establish nomograms to assess the 1-, 3-, 
and 5-year survival rates of HCC patients.

2.5. Relationship of prognostic gene characteristics, 
hypoxia, and immune cell infiltration

Two gene sets (H: hallmark gene sets; C5.BP: subset of GO) 
were selected from the Molecular Signatures Database for Gene 
Set Enrichment Analysis (GSEA) to detect different functional 
phenotypes between low- and high-risk groups. 1000 genome 
permutations were performed for each analysis. Phenotypic 
markers were used as a risk score. Tumor-infiltrating immune 
cells were estimated by TIMER2.0 data bank (https://cistrome.
shinyapps.io/timer/).[15] We downloaded the TCGA estimation 
file from TIMER database, which contains the infiltration level 
of 6 types of immune cells in different samples. Then, we com-
bined the estimation data with the risk score, and calculated the 
correlation between the risk score and immune invasion using 
the cor.test function in R. CIBERSORT (https://cibersort.stan-
ford.edu/),[16] a deconvolution algorithm based on gene expres-
sion, was used to evaluate 22 immune cell types’ proportions 
in diverse risk groups. The histogram was used to evaluate the 
distribution of immune cells in different samples, and the violin 
chart was used to show the proportion of immune cells in dif-
ferent risk groups.

2.6. Real-time quantitative PCR

According to the manufacturer’s protocol, the total RNA was 
extracted with RNAiso Plus reagent (Takara, Japan), and then 
was reverse-transcribed into complementary DNA (cDNA) 
using PrimeScriptTMRT reagent Kit (Takara, Japan). TB Green 
Premix Ex TaqTM II Kit (Takara, Japan) was used for Q-PCR in 
ABI7500 real-time polymerase chain reaction system (Applied 
Biosystems). PCR was carried out as follows: 30 seconds at 
95°C for 1 cycle, then 5 seconds at 95°C, and 34 seconds at 
60°C for 40 cycles. The primer sequence is shown in Table 1.

2.7. Statistical analysis

R (v.3.6.0) software was used for statistical analysis. 
Continuous variables were summarized as mean ± SD. 
Wilcoxon test was performed for comparing differences 
among the groups. The qualitative variable was tested by 
Pearson chi-square test. The survival curves were compared 

https://portal.gdc.cancer.gov/
https://icgc.org/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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by log-rank test. KM curve was drawn for displaying the dif-
ference of overall survival (OS).

3. Results

3.1. Identification of hypoxia-associated DEGs in 
hepatocellular carcinoma

Differentially expressed genes (|log2FC|>1, P < .05) were 
screened based on the transcriptome data of HCC and noncan-
cerous liver samples from TCGA database. In total, 200 hypoxia 
marker genes were screened via the MSigDB v7.0. Subsequently, 
72 DEGs were identified, which contained 16 down regulated 
genes and 56 up regulated genes.

3.2. Construction of hypoxia-related prognosis model

Cox regression analysis was performed on 72 differen-
tially expressed hypoxia marker genes in TCGA data set 
for the establishment of a hypoxic prognostic model of 
HCC patients. Expression profiles of DEGs were merged 
with survival data. Univariate Cox regression analysis 
was performed for revealing 10 hypoxia genes associated 
with OS. After analyzing the interaction of these genes, a 
3-mRNA (ENO1, SAP30 and STC2) model was identified 
as the best prognostic model for predicting OS by multi-
variate Cox regression analysis (Table  2). The prognostic 
model formula was as follows: risk score = (0.0015 × expres-
sion level of ENO1) + (0.0960  ×  expression level of 
SAP30) + (0.0282 × expression level of STC2). Analysis of the 
differential expression of 3 genes in the TCGA cohort showed 
that all genes were highly expressed in tumor, and the same 
was true in the ICGC cohort.

3.3. Prognostic value of hypoxia signature in hepatocellular 
carcinoma

Since hypoxia often promotes the malignant phenotype of 
tumors, we analyzed the relationship between hypoxia signa-
ture and the prognosis of tumors. In TCGA and ICGC data-
bases, the risk score of 0.846 divided patients into high- and 
low-risk groups (Figure S1, Supplemental Digital Content 1, 
http://links.lww.com/MD/H325). The survival rate of the high-
risk group was significantly lower. The data also showed that 

the expression of 3 hypoxia-related genes increased with the 
increase of the risk score, which means that high-risk patients 
tend to form hypoxia microenvironment. In addition, the KM 
curve displayed prognostic effect of the risk model in HCC. In 
the TCGA cohort, a high hypoxia score had correlation with 
poor overall survival (Fig. 1A), which was further confirmed by 
the ICGC cohort.

3.4. Prognosis evaluation of hypoxic risk signature

To assess the predictive capability of hypoxia signature in 1-, 3-, 
and 5-year survival rates, receiver operating characteristic curve 
was performed using data from TCGA and ICGC datasets. The 
area under the receiver operating characteristic curve is 0.773 in 
1 year, 0.66 in 3 years, and 0.625 in 5 years (Fig. 1B), indicating 
that the model had good sensitivity and specificity, which is fur-
ther validated by the ICGC data set.

The prognostic independence of hypoxia signature in HCC 
was verified by Cox regression analysis. Univariate analy-
sis demonstrated that histological grade (P = .019), patho-
logical stage (P = .001), vascular tumor invasion (P = .032) 
and 3-mRNA hypoxia signature (P < .001) were significantly 
correlated with overall survival. After multivariate analysis, 
hypoxia signature (P < .001) was still an independent factor 
related to overall survival (Table 3), which confirmed the reli-
ability of our model. All these have been verified by ICGC data-
base (Table 4). Independent prognostic factors were included in 
nomogram analysis (Fig. 1C), contributing to a more intuitive 
understanding of the predictive capability of hypoxia signature. 
Different independent factors were matched with the corre-
sponding points, and the total points were obtained by adding 
them. Finally, the 1-, 3-, and 5-year survival probabilities of each 
patient were obtained. A higher total point indicates a worse 
prognosis in the nomogram.

3.5. Correlation between hypoxia gene expression and 
clinicopathological features of HCC

Given the pathophysiological significance of hypoxia in tum-
origenesis and invasion, the relationship between 3 hypoxia 
genes and the clinicopathological characteristics of HCC was 
analyzed, including pathological stage, histological grade and 
vascular tumor invasion. Based on the analysis of TCGA and 
ICGC data sets, the expression levels of ENO1 and SAP30 
increased gradually in later pathological stage (Fig.  2), and 
the expression level of ENO1 was significantly higher in HCC 
with more advanced histological grade and vascular tumor 
invasion.

3.6. Hypoxia-related signal pathways

GSEA was performed for identifying pathways that were signifi-
cantly enriched in the high-risk group. We discovered that some 
pathways promoting tumor progression and inhibiting apopto-
sis were significantly enriched in the high-risk group, like DNA 
repair, hypoxia and PI3K-Akt-mTOR signaling (Fig.  3A). This 
indicated that a high hypoxia score was beneficial to boost the 
biological characteristics of tumor cells. These are further verified 
in ICGC database (Fig. 3B). The schematic diagram of hypox-
ia-related signaling pathway is shown in Figure S2, Supplemental 
Digital Content 2, http://links.lww.com/MD/H326,

3.7. Immune landscape of patients with low and high risk 
of hypoxia in HCC

We also predicted the relation of hypoxia and immune-asso-
ciated prognostic models and the degree of immune cell infil-
tration in TCGA HCC cases to test whether the risk score 
partly reflects the state of TIMER. Interestingly, the findings 

Table 1

The primer sequences of 3 hypoxia-related genes.

ENO1 F primer (5ʹ-3ʹ) AATGGCGGTTCTCATGCT 
R primer (5ʹ-3ʹ) ACCTCTGCTCCAATGCG

SAP30 F primer (5ʹ-3ʹ) CCGCTGTCTAACTTGGTGT
R primer (5ʹ-3ʹ) GAAGCCGTTCATGTCTCC

STC2 F primer (5ʹ-3ʹ) AACTGGGGAAGCCTGTG
R primer (5ʹ-3ʹ) GGCTCTGGGAGGTGATG

β-Actin F primer (5ʹ-3ʹ) CTACCTCATGAAGATCCTCACCGA
R primer (5ʹ-3ʹ) TTCTCCTTAATGTCACGCACGATT

F primer = forward primer; R primer = reverse primer.

Table 2

The result of multivariate Cox regression analysis.

Ensemble ID Gene name Hazard ratio P value Coefficient 

ENSG00000074800 ENO1 1.001484 .006108 0.001
ENSG00000164105 SAP30 1.100767 .018702 0.096
ENSG00000113739 STC2 1.028639 .013638 0.028

http://links.lww.com/MD/H325
http://links.lww.com/MD/H326
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of this study showed that the levels of macrophages, neutro-
phils, CD8+ T cells and dendritic cells (DC) were significantly 
positively correlated with risk score (Fig.  4). Furthermore, 
CD4+ T cells and B cells also showed a weak relationship with 
risk score. In addition, CIBERSORT method combined with 
LM22 characteristic matrix was employed to estimate the 
invasion of 22 immune cells in different risk groups. Analysis 
outcomes of TCGA and ICGC cohorts were exhibited by bar 
chart (Fig. 5A). The TCGA cohort shows that 8 immune cell 
types (resting CD4+ memory T cells, activated CD4+ memory 
T cells, follicular helper T cells, activated NK cells, monocytes, 
M0 macrophases, resting mast cells and neutrophils) are sig-
nificantly different between high- and low-risk groups. While 
the ICGC cohort indicates significant differences in 6 immune 

cell types (naive B cells, naive CD4+ T cells, activated CD4+ 
memory T cells, regulatory T cells (Tregs), M0 macrophages 
and resting dendritic cells) between different risk groups 
(Fig. 5B). Compared with the low-risk group, the proportion 
of M0 macrophages was higher, whereas the proportion of 
activated CD4+ memory T cells was lower in the high-risk 
group.

Then, we investigated the relationship between hypoxia 
signature and immune regulation. GSEA was carried out for 
analyzing the immune-related enrichment pathways in differ-
ent risk groups. The results indicated that some negative reg-
ulatory pathways of the immune process were significantly 
enriched in the high-risk group, for instance, negative regulation 
of CD4+ αβ T cell activation, immune system process, T cell 

Figure 1.  Prognosis evaluation of hypoxic risk signature for overall survival in TCGA and ICGC cohort. (A) Kaplan–Meier curve for the low- and high-risk group. 
The difference of OS between various risk groups was evaluated via log-rank test. (B) ROC curve analysis for 1-, 3- and 5-year survival prediction. (C) The 
nomogram constructed to predict 1-, 3- and 5-year survival. ICGC = Cancer Genome Consortium, OS = overall survival, ROC = receiver operating character-
istic, TCGA = The Cancer Genome Atlas.
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Table 3

Univariate and multivariate analyses of overall survival in hepatocellular carcinoma patients of TCGA.

Variables 

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

Age 1.017 (0.995–1.039) .141 1.010 (0.987–1.033) .416
Gender 0.698 (0.397–1.227) .212 0.610 (0.323–1.151) .127
Histologic grade 1.581 (1.077–2.322) .019 1.885 (1.151–3.086) .012
Pathologic stage 1.626 (1.210–2.184) .001 1.447 (1.024–2.044) .036
Weight 1.001 (0.988–1.015) .841 1.009 (0.993–1.025) .282
Vascular invasion 1.867 (1.054–3.307) .032 1.619 (0.880–2.980) .121
AFP 0.974 (0.515–1.842) .935 0.678 (0.346–1.330) .258
Prognostic model 1.488 (1.321–1.677) <.001 1.427 (1.239–1.643) <.001

CI = confidence interval, TCGA = The Cancer Genome Atlas.

Table 4

Univariate and multivariate analyses of overall survival in hepatocellular carcinoma patients of ICGC.

Variables 

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

Age 0.999 (0.967–1.032) .952 0.992 (0.957–1.028) .673
Gender 0.416 (0.218–0.797) .008 0.304 (0.155–0.595) <.001
Pathologic stage 2.159 (1.460–3.195) <.001 2.083 (1.402–3.095) <.001
Prognostic model 5.080 (1.799–14.344) .002 4.093 (1.425–11.757) .009

CI = confidence interval, ICGC = International Cancer Genome Consortium.

Figure 2.  The relationship between 3 hypoxia-related mRNAs and clinicopathological features. Data were analyzed using the Kruskal–Wallis test. ** represents 
P < .01; *** represents P < .001. G = histological grade, Macro = macrovascular invasion, Micro = microvascular invasion.
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Figure 3.  GSEA enrichment analysis. (A) GSEA displayed prominent enrichment of tumor progression related pathways in the high-risk group based on the 
TCGA cohort. (B) These pathways were verified in the ICGC cohort. GSEA = gene set enrichment analysis, ICGC = Cancer Genome Consortium, ns = not 
significant, TCGA = The Cancer Genome Atlas.

Figure 4.  Relationships between the hypoxia-related mRNAs signature and infiltration abundance of immune cells. Data were analyzed using Pearson’s cor-
relation analysis.
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differentiation and αβ T cell activation (Figure S3, Supplemental 
Digital Content 3, http://links.lww.com/MD/H327).

Hence, targeted hypoxia could have important clinical signif-
icance in ameliorating immunotherapy.

3.8. Immunosuppressive microenvironment in the  
high-risk group

The cancer immune cycle has become an important focus of 
tumor immunotherapy. It involves a series of antitumor immune 
response procedures, from the release of tumor cell antigens to 
the killing of tumor cells by T-cell. In this study, we focused 
on genes that negatively regulate this process in different risk 
groups. The gene signature was downloaded from TIP website 
(http://biocc.hrbmu.edu.cn/TIP/index.jsp). Most of negative 
regulatory genes in tumor immune response were up-regu-
lated in the high-risk group (Figure S4A, Supplemental Digital 
Content 4, http://links.lww.com/MD/H328), which indicated 
the immune process of this group was strongly inhibited.

In view of past research that hypoxia promotes the expression 
of immunosuppressive cytokine and checkpoint, the expres-
sion of these genes in different risk groups was included in our 
study. The outcome demonstrated TIM-3, which had a positive 
correlation with the hypoxia signature, was up-regulated in 
high-risk patients (Figure S4B, Supplemental Digital Content 
4, http://links.lww.com/MD/H328). In addition, the expression 
of checkpoints (such as CTLA-4, TIGIT, and programmed cell 
death 1) was more augmented in patients with high hypoxia 
scores (Fig. 6A), as did immunosuppressive cytokines (Fig. 6B).

3.9. Clinical validation based on mRNA levels of 3 genes

We analyzed 6 pairs of HCC and para-cancerous tissues to ver-
ify the mRNA levels of 3 genes. The results showed that all 3 
mRNAs were highly expressed in tumor tissues (P < .05), which 
was consistent with our data analysis results (Fig. 6C).

4. Discussion
As a significant feature of solid malignant tumors, hypoxia 
tumor microenvironment is considered to be an independent 
prognostic factor, which is associated with poor prognosis in 

a variety of malignant tumors, including HCC.[17] Hypoxia 
was reported to be related to the infiltration and metastasis of 
HCC,[18] 1 of the most hypoxic tumor types with an average 
oxygen level of 0.8%.[19] The complexity of HCC tumor micro-
environment has a significant correlation with the development 
of HCC. Activation of immunosuppressive cells and immune 
checkpoints promotes the immune escape of HCC.[20] In addi-
tion, hypoxia can further stimulate angiogenesis and immuno-
suppressive cell expression, thus promoting the progression of 
HCC.[21,22] However, the role of hypoxia in the progression and 
prognosis of HCC has not been fully studied. In recent years, 
transcriptome sequencing has become an important means in 
biomedical exploration to identify biomarkers in predicting 
tumor prognosis.[23,24]

The HCC prognostic model established in our research con-
sists of 3 hypoxia-related genes, that is, ENO1, SAP30, and 
STC2. ENO1, a key glycolytic enzyme closely related to the 
“Warburg effect” of cancer cells,[25] has been reported to be 
overexpressed in a variety of cancers.[26] ENO1 promotes the 
proliferation, metastasis and diffusion of cancer cells by play-
ing the role of plasminogen receptor,[27,28] and can also induce 
the immune response in cancer patients.[27] STC2, as a HIF-1α 
target gene, promotes the proliferation of human breast cancer 
and ovarian cancer cells under hypoxia.[29] Some reports indi-
cate that STC2 is up-regulated in many cancers, including renal 
cell carcinoma, neuroblastoma, and HCC.[30–32] In addition, a 
significant increase in SAP30 mRNA level was observed in clear 
cell renal cell carcinoma (ccRCC).[33] We used 6 pairs of HCC 
tissues and para-cancerous tissues to test the mRNA levels of 
the 3 genes. The results showed that all 3 mRNAs were highly 
expressed in tumor tissues. Our experimental results were 
basically consistent with those of TCGA and ICGC databases, 
which also confirmed the reliability of our model.

At present, a few prognostic models composed of multiple 
genes could predict the prognosis of HCC, such as the prognos-
tic model composed of 8 immune-related mRNAs developed by 
Xu et al.[34] However, it seems that this model is not widely used 
in the study of hypoxia and immune microenvironment of HCC. 
Our results show that the risk model composed of these 3 genes 
can distinguish high-risk population from the low-risk popula-
tion, and accurately predict prognosis. We found the prognosis 
of HCC patients with high hypoxia scores was worse based on 
TCGA and ICGC data. It was worth noting that the risk model 

Figure 5.  Immune landscape of patients with low and high risk of hypoxia in HCC. (A) Proportion of immune cell infiltration in high- and low-risk groups. (B) 
Violin plot showing the differential expression of immune cells in high- and low-risk groups. The blue represents the low-risk group and the red represents the 
high-risk group. Data were analyzed using the Wilcoxon test. HCC = hepatocellular carcinoma.

http://links.lww.com/MD/H327
http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://links.lww.com/MD/H328
http://links.lww.com/MD/H328
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was an independent prognostic risk factor in HCC. Based on 
this signature, we constructed a prognostic nomogram to help 
patients formulate short-term treatment strategies. In terms of 
clinical relevance, ENO1was significantly associated with the 
pathological stage, histological grade and vascular tumor inva-
sion of HCC patients in the TCGA cohort. The same trend was 
observed in the ICGC queue, demonstrating the clinical predic-
tive value of our risk model. In the enrichment analysis, GSEA 
confirmed that there were more hypoxia-related reactions in 
the high-risk group. Therefore, this prognostic model could be 
involved in the development of HCC, and may become a reli-
able clinical biomarker.

Hypoxia plays an important role in anticancer immune 
response, including reducing the activity of effector cell like 
CD4+ cell and natural killer cell, promoting the activity of 
immunosuppressive cells such as regulatory T cell and M2 
macrophages, promoting immunosuppressive cytokine’ syn-
thesis, and heightening the expression of checkpoint inhibi-
tors to protect tumor from the influence of antitumor immune 
response.[12,35] Under hypoxia, tumor cells can promote the 
secretion of Semaphorin 3A (Sema3A) and the recruitment of 
macrophages.[36] In addition, hypoxia recruits tumor-associated 
neutrophils through chemokines CXCL1 and CXCL2.[37] The 
hypoxia signature we established was found to reveal a positive 
correlation with infiltration of macrophages and neutrophils. 
Consistent with the result of vitro experiments that hypoxia 

could inhibit the proliferation and activation of T cells,[38] it 
was found that the proportion of activated CD4+ memory T 
cells was less in patients with high hypoxic scores, while M0 
macrophages’ infiltration was more obvious by CIBERSORT. 
Tregs cells promote immunosuppression of tumor microenvi-
ronment by producing TGF-β and suppressor effector T cells. 
HIF-1α promotes Tregs recruitment in tumor microenviron-
ment by up-regulating CCL28 under hypoxia.[39,40] However, 
our study showed that only the ICGC cohort showed significant 
differences in Tregs cells between the high- and low-risk groups, 
which may be related to differences in populations from differ-
ent regions.

Cytokines are essential in adjusting tumor immunity. In 
tumor microenvironment, TGF-β inhibits the immune response 
by reducing the activity of Th1 T lymphocytes.[41] In addition, 
hypoxia can activate TGF-β and weaken the function of NK 
cells.[42] Up-regulation of IL-10 under hypoxia conditions can 
inhibit the differentiation and maturation of DC, thereby inhib-
iting the activation of T cells.[43] In our study, the expression 
of immunosuppressive cytokines increased in high-risk patients, 
further inhibiting immune response.

Cancer cells can avoid the recognition and destruction of 
the immune system through immune checkpoints. Research 
has suggested that hypoxia could up-regulate the expression of 
programmed cell death 1 (PD-L1) in DC and tumor-infiltrating 
macrophages.[42] In addition, HIF-1α promotes the expression 

Figure 6.  Immunosuppressive microenvironment in the high-risk group. (A) Expression of checkpoints in high- and low-risk groups. (B) Expression of immuno-
suppressive cytokines in high- and low-risk groups. Data were analyzed using an unpaired t test. (C) Verification of mRNA levels of 3 hypoxia prognostic genes. 
Data were analyzed using a paired t test.* represents P < .05; ** represents P < .01; *** represents P < .001. ns = not significant.
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of immune checkpoint PD-1, LAG-3, and CTLA-4 in CD8+ T 
cells, leading to T cell failure.[44,45] This was similar to our results 
that the expression of immune checkpoints like PD-L1, CTLA4, 
TIGIT, and TIM-3 was significantly enhanced in patients with 
high hypoxia scores.

The advantage of our research is that a new hypoxia signa-
ture was constructed using the TCGA cohort for predicting the 
prognosis of HCC patients, which has been verified in ICGC 
database. The model presented powerful predictive capability in 
the overall survival of HCC patients, reflecting the immune sta-
tus of HCC tumor microenvironment. However, there are still 
some limitations in this study. First of all, although the external 
database has been verified, further verification by proteomics 
and immunohistochemistry is required. Second, our retrospec-
tive analysis still needs to be verified in a prospective analysis. 
Finally, the interaction between hypoxia and immunity in tumor 
microenvironment needs to be further explored. In the future, 
the prognostic value of the 3-mRNA signatures will need to be 
further verified in larger clinical patients.

5. Conclusion
In conclusion, this study identified 72 hypoxia-related DEGs 
through differential analysis. Then, we constructed a prognostic 
model based on the expression of 3 prognostic mRNAs. This 
model can significantly distinguish the high- and low-risk groups 
of HCC patients, and the prognosis of patients in the high-risk 
group is worse. Cox regression analysis showed that the prog-
nostic model was an independent prognostic factor for HCC 
and could effectively predict the prognosis of HCC patients. In 
addition, this prognostic model is related to the clinical pro-
gression of HCC. Functional enrichment analysis showed that 
hypoxia-related pathway and PI3K-Akt-mTOR signaling path-
way were significantly correlated with the risk score, indicating 
that prognostic signature may be involved in regulating metab-
olism and proliferation of HCC cells. In addition, the outcomes 
suggested high hypoxia risk group could inhibit the immune 
microenvironment by up-regulating immunosuppressive cyto-
kines and immune checkpoints. These results will help to pro-
vide new insights for hypoxia targeted and immunotargeted 
therapy of HCC.
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