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Abstract
Obesogenic diets lead to overeating and obesity by inducing the expression of genes involved in hedonic and
homeostatic responses in specific brain regions. However, how the effects on gene expression are coordinated
in the brain so far remains largely unknown. In our study, we provided mice with access to energy-dense diet,
which induced overeating and overweight, and we explored the transcriptome changes across the main regions
involved in feeding and energy balance: hypothalamus, frontal cortex, and striatum. Interestingly, we detected two
regulatory processes: a switch-like regulation with differentially expressed (DE) genes changing over 1.5-fold and
“fine-tuned” subtler changes of genes whose levels correlated with body weight and behavioral changes. We
found that genes in both categories were positioned within specific topologically associated domains (TADs),
which were often differently regulated across different brain regions. These TADs were enriched in genes relevant
for the physiological and behavioral observed changes. Our results suggest that chromatin structure coordinates
diet-dependent transcriptional regulation.
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Introduction
Overeating, leading to obesity, is a serious concern in

developed countries. Obesity is a major public health

threat leading to related diseases such as Type II diabetes
or atherosclerosis, and increasing mortality (Di Angelan-
tonio et al., 2016). The brain circuitry controlling eating in
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Significance Statement

Mice fed with free-choice access to chocolate mixture (CM) become overweight and compulsive, reca-
pitulating what happens during obesity. For the first time, we correlated these physical and behavioual
changes with the transcriptome in the frontal cortex and the striatum, involved in the hedonic “liking”
associated to eating, and the hypothalamus, involved in the homeostasic regulation of food intake. We
detected two groups of genes: some transcript were strongly deregulated in term of fold changes, while
others were only subtly deregulated but were especially correlating with measurements associated with
body weight and compulsivity. These genes were not randomly distributed but were positioned in chromatin
domains, many of which rich in genes differentially coregulated across brain areas.
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humans, and participating in obesity development, is
modulated not only by homeostatic mechanisms regulat-
ing food intake and energy expenditure but also by re-
ward, emotion/memory, attention, and cognitive systems
(Saper et al., 2002). Those mechanisms are non-
homeostatic with regard to the body’s metabolism and
energetic balance and may lead to addictive-like behav-
iors, such as compulsive overeating and inflexibility on
obesity development (Lee et al., 2012), and act as potent
drivers of food seeking (Kenny, 2011). The hypothalamus
controls the energy-driven component of feeding beha-
vior, while other regions, such as the frontal cortex and
the striatum, control reward-related aspects of food in-
take. These “metabolic” and “hedonic” brain areas need
to be coordinated to allow a proper ingestive behavior and
a balanced energy intake (Berthoud, 2012) and would be
affected by facilitated access to energy-dense and pala-
table food (Berridge et al., 2010). This coordination among
distant brain areas naturally uses multiple mechanisms,
including cell-to-cell signaling and long-range projections
among different brain regions (Atasoy et al., 2012;
Sweeney and Yang, 2017). However, it also requires co-
ordinated transcriptional regulation in various brain re-
gions (Fenselau et al., 2017). Much of the transcriptional
response associated to overeating remains to be studied,
and the relational patterns in gene expression changes
among different metabolic and hedonic-related brain re-
gions are unknown.

One possibility would be that this regulation takes place
in the context of topologically associated domains (TADs).
TADs are chromosomal domains evolutionarily conserved
across tissues and species. The genes present in TADs
usually exhibit similar expression profiles (Dixon et al.,
2012), forming coregulated clusters (Nora et al., 2012).

Thus, we propose that the TAD structure orchestrates the
gene expression changes across different brain regions,
allowing both a coordinated and region-specific response
across different brain regions.

Here, we explored the transcriptional profiles of frontal
cortex, striatum, and hypothalamus, key brain areas in-
volved in overeating, in mice fed with free choice of a high
palatable and energy-dense diet, a model for overeating
and unhealthy food consumption. We also measured
physical and behavioral parameters to correlate them with
transcriptional changes. Once we detected the genes
changing their expression levels and correlating with body
weight and behavior, we explored their distribution on
TADs across brain regions.

Materials and Methods
Animals

We used sixteen C57BL/6 (Charles River) female mice,
of five weeks of age at the beginning of the experiments.
Mice were housed in individually ventilated cages (IVCs;
Tecniplast) and PheCOMP cages (Multitake model, Pan-
lab) in the Animal Facilities of the Barcelona Biomedical
Research Park (PRBB, Barcelona, Spain) in controlled
laboratory conditions with the temperature maintained at
22 � 1°C and humidity at 55 � 10% on a 12/12 h
light/dark cycle (lights off 8 P.M.). Food and water were
available ad libitum. Animal procedures were conducted
in accordance with the local (law 32/2007) and European
regulations (EU directive n° 86/609, EU decree 2001-486)
and the Standards for Use of Laboratory Animals n°
A5388-01 (NIH).

Diet-induced weight gain
All mice were habituated to their cages for one week

provided with food and water ad libitum. Then, they were
allocated to the group receiving standard chow (SC) or
chocolate mixture (CM), balanced by body weight and
housed individually in special metabolic cages (see Feed-
ing behavior analysis). During eight weeks, SC mice had
access to SC mouse diet (Trans 23 diet, Mucedola) pro-
viding 10870 kJ/kg, and CM mice had a free choice
access to SC and to a CM consisting of an equal weight
of Mars, Bounty, Snickers, and Milka prepared as homog-
enous food pellets following a protocol previously de-
scribed (Heyne et al., 2009). The chocolate provides
20595 kJ/kg with 52% of its energy from carbohydrate,
17% from protein, and 24% from fat. The experimental
schedule is shown in Extended Data Figure 1-1.

Feeding behavior analysis
We used the PheCOMP multi-take metabolism cages

(Panlab-Harvard Instruments) to obtain fine grain data for
individualized mouse including the grams of food con-
sumed, the number of meal events and the temporal
distribution of the feeding bouts in a continuous recording
(Espinosa-Carrasco et al., 2018). The system contains
two foods dispensers. SC mice received standard rodent
chow (SC) in both, whereas CM mice had one dispenser
with SC and the other with CM. The location of each
dispenser was counterbalanced between cages. From the
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quantitative data obtained by the PheCOMP cages, we
calculated the energy intake, measured by multiplying the
known energy content (kJ/g) of individual foods by the
amount of food consumed. The eating rate (kJ/s) was
obtained using the COMPULSE software (Panlab-Harvard
Instruments).

Test battery for the study of compulsivity
Tests were performed in a set order designed to mini-

mize the effect of testing on following tests and with
sufficient intertest intervals to provide an opportunity for
the mouse to reestablish its previous feeding behavior
and relieve any test-induced stress. The free-choice diet
was suspended only during the “limited access to CM”
and “CM adulteration” tests (5 d in total). Thereafter, the
initial diet was reintroduced during 6 d, before the animals
were killed.

Temporally limited access to CM
We used limited access to CM to measure the binge-

like behavior, as readout of compulsion induced by re-
stricted access to the preferred food. SC and water were
provided ad libitum. Access to CM was restricted to 1 h/d
during the middle of the light phase for three consecutive
days (Heyne et al., 2009). SC mice were also provided
with CM during this hour. In CM mice, we compared the
CM consumed during the period of access with the CM
consumed in non-limited conditions. This value was ob-
tained as the mean of 3 d of CM intake during the previous
week of the battery of tests, at the same time (between 2
and 3 P.M.).

CM adulteration
Chocolate adulteration provides information concerning

flexibility of food intake under aversive conditions. Mice
were given a free choice between SC and a pellet of the
CM adulterated with quinine hydrochloride (Sigma-
Aldrich) 1-g/kg food to give it a bitter taste. According
to Heyne et al. (2009), flexible mice will avoid or de-
crease the intake of CM.

Nestlet shredding test and grooming behavior
Mice were given a cotton square (Ancare) in their home

cage under food-deprived conditions (water was still pro-
vided ad libitum) for 30 min during the middle of the light
phase. The cotton was weighed before and after the test
to provide a measure of nesting ability based on the
amount of material the mouse had used to nestlet (Dea-
con, 2006). The grooming behavior was recorded (Biob-
serve), and the number and length of events were
quantified by an investigator blind to the experimental
condition.

Statistical analysis of behavior
Repeated measures ANOVA was used for the compar-

ison of the body weight evolution across the experimental
weeks. Differences were considered significant at p �
0.05. All results are expressed in mean � SEM. The
statistical analysis was performed using the Statistical
Package for Social Science program SPSS 12.0 (SPSS
Inc).

Gene expression
Frontal cortex, striatum, and hypothalamus, from SC

and CM groups, were dissected on completion of an 11-d
test battery and total RNAs extracted with QIAGEN’s
RNeasy mini kit for hybridization with Agilent’s gene ex-
pression arrays (SurePrint G3 Mouse GE 8x60K array v1).

Cyanine-3 (Cy3)-labeled cRNA was prepared from 100
ng of total RNA using the LowInputQuick Amp Labeling kit
Agilent 5190-2305 according to the manufacturer’s in-
structions, followed by RNAeasy column purification (QIA-
GEN). Dye incorporation and cRNA yield were checked
with the NanoDrop ND-1000 Spectrophotometer.

After fragmentation, 600 ng of labeled cRNA from each
sample was hybridized in in situ hybridization oven (Agi-
lent) for 17 h at 65°C and washed during 1 min at room
temperature in Gene Expression Wash buffer 1 (Agilent)
and 1 min at 37°C with Gene Expression Wash buffer 2
(Agilent).

Scanned on an Agilent G2539A scanner at 3-�m reso-
lution and 100% PMT. The intensity data of each individ-
ual hybridization were extracted and the quality was
assessed with the Feature Extraction software 10.7 (Agi-
lent). The intensity data of each individual hybridization
were extracted, and the quality was assessed with the
Feature Extraction software 10.7 (Agilent).

Bioinformatic analysis
Intensity values were imported into R using the limma

function read.maimages (Ritchie et al., 2015). Samples
were background corrected and normalised using the
normexp normalization: a convolution of normal and ex-
ponential distributions is fitted to the foreground intensi-
ties using the background intensities as a covariate, and
the expected signal given the observed foreground be-
comes the corrected intensity (Shi et al., 2010). This re-
sults in a smooth monotonic transformation of the
background subtracted intensities such that all the cor-
rected intensities are positive. Background has been
computed from the 95th percentile of the intensity of the
negative control probes on each array, keeping probes
that are at least 10% higher than the negative controls on
at least four arrays (because there are four biological
replicates). Values for within-array replicate probes are
replaced with their average to have a “one value – one
gene” matrix. We fitted a linear model by using both brain
areas and diet as covariates, blocking for the mouse for
taking into consideration the same provenance of the
three brain regions. The values of the moderated t statis-
tics were corrected for multiple-testing using the Benja-
mini–Hochberg correction (Benjamini and Hochberg,
1995).

Multidimensional scaling was performed using the
limma plotMDS function. The distance between each pair
of samples is the root mean square deviation for the top
500 genes (selected for each pair of samples). Distances
on the plot can be interpreted as leading log2 fold change
(log2FC), meaning the typical (root mean square) log2FC
between the samples for the genes that distinguish those
samples (Ritchie et al., 2015).
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We used the matplotlib_venn python module and gplots
R package (Warnes et al., 2016) for drawing the overlaps,
and we assessed the significance of the overlaps with the
Fisher’s exact test.

Probes were converted to entrez identifier by using the
biomaRt package (Durinck et al., 2009) and gene ontology
and pathway analysis were performed with the cluster-
Profiler package (Yu et al., 2012).

Correlation with behavioral data
We correlated each of the gene expression microarray

intensities with body weight and the behavioral data mea-
sured in our mice. Since we were interested both in the
final body weight and in its increase, we performed a
principal component analysis (PCA) with these two vari-
ables and extracted for each mouse the resulting values
of principal component 1 to combine those variables in a
unique measurement (Extended Data Fig. 3-1C). Similarly,
we combined through PCA six other variables to have a
unique measurement of compulsivity: grooming; nesting;
the energy rate from days 1, 2, 3; and from the quinine
adulteration test (Extended Data Fig. 3-1B–F). The vari-
ables within these two sets were correlated with the gene
expression values. After this analysis, we finally selected
five parameters to correlate: two set of PC1 values, body
weight and compulsivity, and three behavioral measure-
ments inflexibility, energy intake, and eating rate. We
selected for further analyses only the correlating microar-
ray probes changing between SC and CM mice at least by
10% and whose adjusted p value on z Fisher correction
was lower than 0.05.

Testing whether the gene expression fold changes
fitted the TAD segmentation profile

We mapped genes with the Entrez identifiers using
BiomaRt (Ensembl archive May, 2017) to the TAD borders
as defined in Dixon et al. (2012) for cerebral cortex. TADs
borders were defined using a Directionality Index method
(Dixon et al., 2012). To test whether there was agreement
between the differential expression profile in the three
studied brain regions and the TAD segmentation, we
performed three types of in silico permutation testing
(Extended Data Fig. 4-1A). For the tests, we selected only
the genes that were clustered within TADs containing five
or more genes. In the first approach, genes were reas-
signed to random TADs; however, maintaining original
gene numbers in particular TADs and using only the
genes, which were within TADs in the original case. Sec-
ond type of permutation involved changing borders of
TADs by permuting the collection of pairs of TAD’s length
� distance to the next TAD downstream, maintaining the
original gene localizations on chromosomes. Each type of
permutations was made 1000 times, and each time,
Kruskal–Wallis test was performed. Finally, the H statis-
tics from original data were compared with the averaged
values from the permuted H statistics as well as com-
pared with the decreasing rank of the permuted H values.

Selecting regulated TADs
We defined as regulated TADs the TADs with a signifi-

cantly higher number of DE or correlating genes across

the three brain areas. Once mapped these genes to TADs,
we used the PowerLaw R Package to check what kind of
heavy-tail distribution the number of regulated genes per
TAD approximated. We compared Poisson, Power-law,
exponential, and log normal, finally selecting the log nor-
mal to select the TADs whose probability of finding by
chance another TAD with a higher number of regulated
genes was lower than 0.05.

Testing whether responsive genes are coregulated
within regulated TADs

To test whether the DE and correlating genes contained in
regulated TADs clustered according to their fold change
(e.g., upregulated genes in certain TADs, downregulated
genes in other TADs), we performed a permutation test. We
considered as responsive genes each gene DE or correlat-
ing. Our rationale was that in case of an equal number of
upregulated and downregulated genes, if genes were ran-
domly distributed along TADs, the difference between the
number of upregulated and the number of downregulated
genes had to be on average 0, while if the contrary were true,
we would expect both TADs with a positive difference (more
upregulated genes) and with a negative difference (more
downregulated genes). Therefore, first we computed the
absolute value of the differences between the number of
upregulated and downregulated responsive genes for each
TAD, and then we calculated the average observed devia-
tion per regulated TAD, in each brain region. We then ran-
domly shuffled 1000 times the responsive genes maintaining
the number of genes per TAD fixed and recalculated the
average deviations in each region. The p value was given by
summing how many times we observed by chance (in the
permuted datasets) a higher deviation than what observed in
our data �1, divided by the number of permutation �1.
Using only responsive genes for reassigning genes to regu-
lated TADs, we assured that our results were significantly
different from what expected by chance for a given pattern
of fold changes. For instance, if upregulated genes among
responsive were naturally more numerous, we would expect
higher deviation from zero even if these genes were ran-
domly distributed across regulated TADs, and therefore we
took into account this higher probability of reassigning an
upregulated gene in our permutations.

All the code for the bioinformatic analysis is reported as
supplementary code used in this article 1-1. Analyses
were performed with R version 3.5.0 (2018-04-23). Plat-
form: x86_64-apple-darwin15.6.0 (64-bit). Running under:
macOS High Sierra 10.13.4.

Contact map
Contact-map was created using visualization tool Diff-

TAD (Zaborowski and Wilczynski, 2016), and the chroma-
tin contacts data (TAD borders) come from the Hi-C
experiment performed by Dixon et al. (2012).

Data availability
Data have been uploaded on GEO with the reference

GSE100012. The code to reproduce the analysis is avail-
able on Bitucket at https://bitbucket.org/ilario_de_toma/
freechoice.
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Results
Free access to chocolate induces overweight and
compulsive overeating

To investigate the effect of our experimental design on
the brain transcriptome, we performed in vivo experi-
ments and took measuraments from eight mice given free
access to CM and SC (CM mice; Fig. 1A,B) and eight mice
receiving SC (SC mice). CM mice increased their body
weight on CM access (repeated measures ANOVA, F(1,14)

� 19.30; p � 0.001), whereas SC mice did not signifi-
cantly change their weight along the experiment (Fig. 1C).
There is a slight increase of body weight in both experi-
mental groups during the first weeks, possibly reflecting
the normal growth curve, but after eight weeks of free CM
access, body weight was significantly higher in the CM
group only. We also measured behavioral parameters to
correlate them with transcriptional changes. The test bat-
tery included limited access to the chocolate, quinine test,
nest building test (Fig. 1B). Moreover, we monitored in
both groups the energy intake (kJ/kg), eating rate (mg/s),
food intake during limited access and quinine test (g/kg of
body weight/h), and grams of cotton in the nest building
test, and the grooming time (s). We then checked whether
these measurements were able to separate SC from CM
mice using PCA (Fig. 1D). Interestingly, behavioral vari-
ables contributed to the separation of SC and CM mice
along PC1, as much or even more than body weight
related variables, suggesting that body weight changes in
CM mice are accompanied by strong behavioral changes.
Raw behavioral data are accessible in supplementary
code used in this article 1-1.

Transcriptional responses can be clustered by brain
region and diet

We performed a microarray experiment to assess the
effect of our experimental design on the transcriptional
profile of three brain areas: the frontal cortex, the stria-
tum, and the hypothalamus (four animals per group).
Multidimensional scaling showed that the first leading
dimension is mainly separating the hypothalamus from
the frontal cortex and the striatum, indicating that the
hypothalamic transcriptional profile diverges signifi-
cantly from that of the striatum and frontal cortex, while
the second dimension is further separating the frontal
cortex from the striatum and, less perfectly, SC from
CM mice (Fig. 2A).

When assessing the CM-SC contrast with a linear
model, we found 662 differentially expressed (DE) genes
on CM diet in the frontal cortex, 142 in the striatum, and
44 in the hypothalamus on setting specific threshold of
fold changes and adjusted p value (Fig. 2B,C). Two thirds
of the striatal and half of the hypothalamic DE genes
significantly overlapped with frontal cortex DE genes. In-
stead, we found no overlap between the striatum, part of
the reward system, and the hypothalamus, involved in
homeostatic energy intake. Volcano plots of the overall
transcriptomic changes showed that frontal cortex genes
presented the higher absolute fold changes, followed by
the striatum, while hypothalamic genes showed modest
fold changes, indicating that weight gain led to a wider

and stronger response (in term of differential expression)
in the frontal cortex (Fig. 2C). Summary tables for the
differential expression analyses are reported as Extended
Data 2-1, 2-2, 2-3.

Most of the genes highly correlating with behavioral
variables show subtle expression changes

To determine which transcriptional changes were cor-
relating with the physical/behavioral alterations, we tested
the correlation of the overall gene expression changes
(not only those DE) with the five parameters that mainly
contributed to the observed intersample variance (see
Materials and Methods). These parameters included both
composite measurements: body weight (Extended Data
Fig. 3-1A) and compulsivity (Extended Data Fig. 3-1B),
and direct measurements: inflexibility (Extended Data Fig.
3-1C), total food intake, and eating rate (Extended Data
Fig. 3-1D,E).

In each brain region, we identified sets of genes signif-
icantly correlating with specific behavioral/physical vari-
ables (Fig. 3A). The frontal cortex showed the highest
number of genes correlating with total food intake, body
weight, and inflexibility and, to a lesser extent, compul-
sivity and eating rate. In the hypothalamus, we detected a
high number of genes correlating with body weight, while
in the striatum, we found a lower number of correlating
genes, mostly correlating with inflexibility.

Most of the genes highly correlating with behavioral
variables showed subtle expression changes [average
absolute log2FC of �0.2–0.4; Fig. 3B; Extended Data
Figs. 3-2, 3-3, 3-4, 3-5, 3-6]. When plotting the log2FC as
a function of the Spearman’s �, we observed a high
correlation with phenotypic variables for genes changing
�1.5 times (� range: 0.27–0.86), and a low correlation for
genes changing �1.5 times (� range: 0–0.25).

Instead, only few DE genes were significantly correlat-
ing with behavior or body weight, as demonstrated by the
low overlaps between DE genes and correlating genes
(Fig. 3C). The most relevant overlaps were found between
hypothalamic DE genes correlating with body weight
(31%) and frontal cortex DE genes correlating with infle-
xibility (13.7% of correlating genes). Overall, 79% of fron-
tal cortex DE genes, 96% of striatum DE genes, and 66%
of hypothalamic genes were not correlating with any of
our studied variables, indicating that DE and correlating
genes are two different categories of regulated genes.

Contrary to DE genes, which were shared across brain
regions with quite high overlap (frontal cortex DE genes
with striatal and hypothalamic DE genes), genes correlat-
ing with a given phenotypic variable were not the same
across the three brain regions (Fig. 3C) with low overlaps
both intrabrain (among phenotypical variables) and inter-
brain region. This suggests the need of activation of both
common and region-specific transcriptional programs in
each brain area, for each phenotypic change to occur.
Two exceptions were the overlap of genes correlating
with total intake and inflexibility in the frontal cortex (46%)
and genes correlating with inflexibility and compulsivity in
the striatum (63%; Fig. 3C).
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Figure 1. Free-access to a CM leads to body weight gain. A, Experimental schedule showing the age of mice along the experiment.
Note that during the test battery animals continued receiving the same diet as during the weight gain phase (6–15 weeks of age). B,
Detail of the standardized testing battery used and the days of administration of each test. C, Body weight (in g) changes with time
in SC (white circles) and CM (gray squares) mice along the 10 weeks of the experiment. D, Biplot of PCA on SC and CM mice using
bodyweight and eating-related behavioral variables indicated by colored arrows (left panel). Barplot showing the contribution of the
variables to principal component 1 (right panel). Obesity was defined by the variables final body weight and percentage of body weight
gain; compulsivity was evaluated by the CM intake during the 3 d of limited CM access, nest building behavior, and grooming;
inflexibility was explained by the amount of CM consumed in the quinine test. d1: day1; d2: day2; d3: day3.
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Transcriptional changes affect both common and
region-specific molecular pathways

We then investigated the molecular pathways (Ex-
tended Data Fig. 3-7A for Reactome and 8B for KEGG)
and gene ontologies (Extended Data Fig. 3-7C ) enrich-
ment of both DE genes (changing their expression �1.5–2
times) and genes significantly correlating with phenotypic
variables (mainly showing more modest log2 FCs of 0.2–
0.4) in the three brain areas.

In the hypothalamus DE genes were mainly enriched in
Reactome’s “olfactory signaling pathways” (Extended
Data Fig. 3-7A ), KEGG’s “olfactory transduction” (Ex-
tended Data Fig. 3-7B ) and GOs “olfactory receptor

activity” and “sensory perception of smell” (Extended
Data Fig. 3-7C ). Hypothalamic genes correlating with
inflexibility were mainly enriched in the Reactome “en-
dosomal/vacuolar pathway,” and the metabolic path-
way “translocation of GLUT4 to the plasma membrane”
(Extended Data Fig. 3-7A ) categories and several GOs
related to the metabolism of fatty acids and sugars
such as lactonase, hydrolase, mannosidase, and es-
terase activity (Extended Data Fig. 3-7C ). Finally, hy-
pothalamic genes correlating with body weight showed
enrichments mainly in epigenetic/chromatin pathways,
indicating they are tightly regulated at the transcrip-
tional level.

Figure 2. Differential expression analysis reveals that different brain areas present different transcriptional profiles when comparing
SC and CM mice. A, Multidimensional scaling plot with the top 500 most variable intergroup probes. HT indicates the hypothalamic
region (green dots), ST the striatum region (red dots), FC the frontal cortex (blue dots), SC mice are represented with light colors, CM
mice are colored in dark colors. B, Venn diagram showing the overlap among DE genes used for the enrichment analysis in the three
brain areas (absolute fold change �1.5, adjusted p � 0.05 for hypothalamus, absolute fold change �2 and adjusted p � 0.01 for the
frontal cortex and the striatum). Colors represent the same brain areas as in A. Circles’ areas are proportional to the gene counts. C,
Volcano plots for the three brain areas, on the x-axis log2 (fold changes), on the y-axis the significance (-log10 of the adjusted p value).
Blue lines mark fold changes thresholds, red lines significance threshold. Each dot corresponds to a probe. Significant probes are
marked in red.
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Figure 3. A subset of moderately expressed genes highly correlates with phenotypical changes. A, Barplot showing the number of
genes correlating for each of the phenotypic variables that were detected with a false discovery rate �5%. B, Barplot showing the
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Frontal cortex DE genes, similarly to hypothalamic
ones, were also enriched in olfactory transduction and
“taste transduction” pathways (Extended Data Fig. 3-7B ),
together with olfactory receptor activity and “sensory per-
ception of chemical stimulus.” Frontal cortex genes cor-
relating with inflexibility were similarly enriched in
olfactory transduction (Extended Data Fig. 3-7B ) and
olfactory receptor activity (Extended Data Fig. 3-7C ),
consistently with the overlap between inflexibility genes
and frontal cortex DE genes (Fig. 3C). Finally, frontal
cortex genes correlating with compulsivity were enriched
in the immunity pathway “�-defensins” (Extended Data
Fig. 3-7A ). Taken together, the results indicate that genes
belonging to olfactory transduction related pathways are
commonly deregulated in both the hypothalamus and the
frontal cortex, where part of these genes is also highly
correlating with inflexibility.

Regarding the striatum, genes correlating with inflexi-
bility and compulsivity shared enriched categories, as
expected by their high overlap of 63% (Fig. 3C), suggest-
ing that compulsivity and inflexibility are connected pro-
cesses in the striatum, involving pathways such as
“alcoholism” (Extended Data Fig. 3-7B ) and chromatin
pathways mainly related to gene silencing (Extended Data
Fig. 3-7C ). Other striatal genes such as genes correlating
with eating rate were enriched in “glyoxylate and dicar-
boxylate metabolism” (Extended Data Fig. 3-7B ), while
genes correlating with body weight with GOs “mitochon-
drial membrane” (Extended Data Fig. 3-7C ). Finally,
genes correlating with total intake in the striatum were
both enriched with nuclear/transcriptional pathways and
immune pathways related with leukocytes (Extended Data
Fig. 3-7A,C ). Summary tables for the enrichment analysis
are reported as Extended Data 3-1, 3-2, 3-3.

Gene expression changes are organized within
regulatory domains

The analyses above showed that the transcriptional
responses involve both commonly regulated and brain
region-specific genes. Recently published results showed
that genes lying within the same TADs have stronger
correlation in expression than genes separated by TAD
borders (Ramírez et al., 2018) and that actively expressed
open chromatin regions are spatially separated from in-
active ones (Rennie et al., 2018). However, it has not been
shown whether changes in gene expression caused by a
stimulus such as the different diets before the test battery
in our experimental design would conform to the TAD
structure as well or would be TAD independent. Also, it
has not been shown that such changes would occur in the
mammalian brain. Therefore, to verify if such regulation

could take place, we tested whether the genes conformed
to a common regulatory domain (TAD) structure in each of
the investigated brain areas. To this purpose, we used the
segmentation of mouse chromosomes into 1519 TADs as
determined by Dixon et al. (2012) based on Hi-C experi-
ments in cortical tissue (Extended Data 4-1).

We compared the distributions of all gene expression
fold changes within TADs with the Kruskal–Wallis test.
The distributions of fold changes across TADs were sig-
nificantly different: in all brain areas, the p values of the
Kruskal–Wallis test were lower than 10	37(Extended Data
Fig. 4-1A). To assess the robustness of these significant p
values we performed two different permutation tests.
First, we reassigned in silico genes to TADs, therefore
completely changing the published topological organiza-
tion (Dixon et al., 2012). This led to a dramatic drop of the
H statistics (for instance in the hypothalamus from H �
1991, p � 6.7E	47 to average H of 1000 permutations �
1157, p � 0.5), indicating that our results were specific for
the specific TAD structure in the brain. Secondly, we
applied a subtler permutation where we reshuffled ran-
domly TAD boundaries while keeping the original gene
positions. As expected, in this case p values were less
severely affected than in the previous permutation (e.g.,
for hypothalamus, decrease from H � 1991, p � 6.7E	47

to average H statistics of the 1000 permutations H �
1665, p � 2.1E	27; Extended Data Fig. 4-1A).

We also investigated whether the distribution of the �
values for each of our phenotypical variables (body
weight, compulsivity, inflexibility, energy intake, and eat-
ing rate) agreed with the TADs segmentation pattern.
Again, the distribution of � values was not random across
TADs, indicating that the correlation values were not uni-
formly distributed but tended to cluster in agreement with
the TAD structure (e.g., for hypothalamus, eating rate, H �
2514, p � 6.23E	102, as compared to average of the 1000
permutations: H � 1154, p � 0.5; Extended Data Fig.
4-1B).

Overall, these analyses suggest that both gene expres-
sion changes between SC and CM groups and correlation
values between genes and phenotypic variables occur in
conformity with the brain TAD structure.

A high number of TADs were simultaneously
coregulated across the three brain regions

To determine whether TADs were involved in the coor-
dination of region-specific transcriptional responses, we
analyzed all the TADs containing regulated genes, both
DE and correlating, for each brain area. These TADs
overlapped widely across the three brain regions, with
502 TADs shared in at least two brain regions and 161

continued
average number of genes with an absolute � higher than 0.9 for a given bin of log2FC. The averages were calculated across all brain
areas and variables. The majority of correlating genes have log2FC within 0.2–0.4 ranges (positive correlation marked in red and
negative in blue). C, Heatmap showing the Szymkiewicz	Simpson overlap coefficient between DE genes and genes correlating with
eating-related variables. Brain region acronyms are the same as in Figure 2. Color code according to the coefficient. HT indicates the
hypothalamic region, ST the striatum region, FC the frontal cortex, and DE as differentially expressed. Extended information related
to the correlation between transcriptional changes with the physical/behavioral alterations could be found in Extended Data Figures
3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7.
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across the three brain regions (Fig. 4A). Concordant to its
higher and wider transcriptional response, the frontal cor-
tex contained the highest number of region-specific
TADs. However, when looking at the number of genes per
TADs, most of the regulated genes were contained in the
same TADs across brain areas. This held true also for the
frontal cortex, in which although we found a higher num-
ber of region-specific TADs, most of the regulated genes
mapped to common TADs (Extended Data Fig. 4-2A).

The number of regulated genes per TAD followed a
heavy-tailed distribution with hundreds of TADs contain-
ing only one or few regulated genes and a long tail with
few TADs highly enriched in regulated genes (Fig. 4B).
This tendency was significant, as verified by permutation
testing.

Considering the overall area of this distribution of TADs
as 1, we named regulated TADs (n � 37; Fig. 4B, bars on
the right of the dashed line) those in the tail on the right of
the graph (cutoff for the area of 0.05). These TADs con-
tained �10 genes coregulated either within a specific
brain region and/or among regions. Interestingly, all reg-
ulated TADs contained genes regulated in at least two
different brain areas, and �90% of them contained genes
regulated across all the three studied brain areas (Fig. 4C).

In the hypothalamus, genes correlating with body
weight were mainly localized in regulated TADs suggest-
ing that genes in these TADs are needed for body weight
regulation (Fig. 4D). In the frontal cortex, regulated TADs
showed the highest enrichments in DE genes, and in
genes correlating with inflexibility, body weight, and total
intake. In the striatum regulated TADs were also enriched
in genes correlating with inflexibility (Fig. 4D).

We detected transcriptional coregulation both within
and across brain regions. Within brain regions, many
regulated TADs contained at the same time genes corre-
lating with different phenotypical variables (e.g., regulated
TADs containing compulsivity genes and inflexibility
genes in frontal cortex). Across brain regions, regulated
TADs contained genes correlating with phenotypical vari-
ables in at least two or three brain regions (e.g., inflexibility
genes or body weight genes across the three brain re-
gions; Fig. 4E).

Since TADs would provide the epigenetic environment
for coexpression of groups of genes, upregulated and
downregulated genes may cluster separately in certain
regulated TADs. In fact, differences between upregulated
and downregulated genes per TAD often deviated from
zero (Extended Data Fig. 4-2B, left side). These deviations
were higher in frontal cortex with a group of regulated
TADs containing mainly upregulated genes and another
group containing mainly downregulated genes. In the hy-
pothalamus, almost the all regulated TADs contained
downregulated genes, while the striatum showed much
lower deviations in the number of upregulated and down-
regulated genes per TAD (Extended Data Fig. 4-2B, left
side). These deviations were significant for the frontal
cortex (mean difference per TADs between the number of
upregulated and downregulated genes of 3.78, p � 0.02),
and for the hypothalamus (mean deviation of 2, p �
0.002), but not for the striatum (mean deviation of 1.14, p

� 0.7; for a detailed explanation of the permutation test
used, see Materials and Methods). These results indicate
that in both the frontal cortex and the hypothalamus,
responsive genes distribute accordingly to their fold
change along the regulated TADs, showing intra-TAD
coregulation.

Interestingly, over 70% of regulated TADs contained
genes upregulated in the frontal cortex, and downregu-
lated in the hypothalamus, supporting the idea that in
some cases TADs are regulated differently depending on
the brain area. Each regulated TAD contained genes cor-
relating to different phenotypical variables or DE genes
(Extended Data Fig. 4-2B, right side), suggesting that
these functions could be finely regulated in space and
time thanks to the TAD organization.

One example of a TAD containing coregulated genes is
TAD 624 (Fig. 4F), with a group of genes mainly upregu-
lated in the frontal cortex, mainly downregulated in the
hypothalamus, and with less evident intra coregulation in
the striatum (clusters of blue or red bars).

Discussion
In this work, we were interested in understanding the

mechanisms of transcriptional responses comparing mice
receiving two different diet regimes, SC versus energy-
dense, free choice diet, in brain regions involved in the
homeostatic and hedonic control of feeding behavior.

The transcriptional profile in the frontal cortex, striatum,
and hypothalamus was modified consistently with the
transcriptional associated domain (TAD) segmentation
pattern. We detected two levels of transcriptional regula-
tion: a switch-like regulation with DE genes changing over
1.5-fold; and a “fine-tuned” gene regulation, with subtler
expression changes but highly correlated with body
weight gain and behavioral changes. Although the mod-
ulation of many genes was brain region specific, mapping
of the transcriptional response at the TAD level revealed
many TADs that were responsive (contained DE or corre-
lating genes) in more than one brain area. Interestingly,
the 37 TADs containing the highest number of regulated
genes were common across brain areas. In most cases,
genes in a given TAD were upregulated in one brain area
and downregulated in another, indicating the importance
of the TAD structure for achieving both a coordinated and
brain area-specific response.

We conclude that the conserved TAD structure from
Dixon et al. (2012), participates in orchestrating gene
regulation within and among brain regions controlling en-
ergy intake and reward, probably allowing a coordinated
homeostatic and hedonic response.

Different physical and behavioral parameters correlate
with transcription, suggesting a coordinated and
specific response across brain areas

Our free-choice paradigm promoted body weight gain
and meal pattern and behavioral changes in mice. In our
microarray experiment, the hypothalamus showed a re-
markably different transcriptional response compared to
the striatum and the frontal cortex as revealed by multi-
dimensional scaling. This would support the different role
of the hypothalamus, which controls the homeostatic reg-
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Figure 4. Coregulation of genes within TADs. A, Venn diagram showing the overlap among TADs containing at least one DE or
correlating gene in the three brain areas. Colors represent the same brain areas as in Figure 2A. Circles’ areas are proportional to the
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ulation, from the frontal cortex and the striatum, which
control the hedonic regulation of appetite. This first ap-
proach used classical differential gene expression analy-
ses that only consider those gene expression changes
satisfying specific criteria of fold change and within-group
variance (Phipson et al., 2016). However, thanks to our
experimental design, we could directly test the correlation
of gene expression with body weight and behavioral mea-
surements. In fact, since we collected the brain samples 6
d after the test battery, our observed gene expression
profiles might not only be the result of the diet (SC or CM)
but also of the interaction of the chronic effect of the diet
regime with the battery test performed (for example, a
gene could be DE when comparing the CM and the SC
groups but only after the two groups undergo the test
battery). Of course, our experimental design does not
allow to disentangle the respective contribution on gene
expression of the diet, the behavioral battery, or their
interaction, but that goes beyond our aim. What we can
state is that whether an interaction between the effects of
the diet and the behavioral battery occur or not, in both
cases the observed differences would be triggered by the
different diet regimes, since the test battery is performed
in the exact same way for the two groups, and therefore
would cancel out when computing the CM-SC contrast.
This original approach revealed genes highly correlated
with the phenotype, that otherwise would have been fil-
tered out for having too subtle absolute differential ex-
pression fold changes and/or too high intra-group
variability. To reduce the biases related to single vari-
ables, in the case of variables characterised by multiple
types of measurements, we correlated the first principal
component instead of single variables. For example, com-
pulsivity is a complex behavioral domain that is reflected
in increased grooming, impaired nesting behavior, in-
creased overeating (energy intake) across days, espe-
cially when access to energy-dense diet is restricted, and
inflexible behavior in the quinine adulteration test. We
speculate that genes correlating directly to a given phe-
notypical variable are responding to our experimental
design even if in a subtler way. Remarkably, the number of
correlating genes varied significantly among brain areas in
accordance with their distinct biological role in feeding
behavior regulation. For example, inflexibility correlated
with hundreds of genes in the frontal cortex and the

striatum, the brain areas that are mainly responsible for
this behavior, but not in hypothalamus, whose genes
mainly correlated with body weight. This fits with the
hypothalamic role in the homeostatic control of energy
intake (Sisley and Sandoval, 2011).

Given the importance of this finding, we included both DE
and correlating genes in our pathway analysis. Among the
most significant pathways we found GO enrichment in “ol-
factory signaling-related processes” when analyzing DE
genes in the frontal cortex and in the hypothalamus, and
genes correlating with inflexibility in frontal cortex. There are
�1000 olfactory receptor genes in the mouse genome, that
encode G-protein-coupled receptor that work as chemical
sensors in the brain (Garcia-Esparcia et al., 2013). Interest-
ingly, among the natural ligands of those olfactory receptors
are fatty acid derivatives (Sartorius et al., 2015) that would be
increased by our CM diet. Other categories found consis-
tently enriched are related to the immune response. For
instance, compulsivity genes in frontal cortex were enriched
in defensins and total intake genes in the striatum in
leukocyte-related pathways. In line with this, it is known that
obesogenic food can also induce neuroinflammation (Beil-
harz et al., 2015).

Moreover, according to the role of the striatum in reward
and addiction, we found enrichment in the alcoholism path-
way for striatal genes correlating with inflexibility and com-
pulsivity (Volkow et al., 2013). The high overlap between
striatal genes correlating with inflexibility and compulsivity
suggests that the processes leading to compulsive and
inflexible behaviors are similar in the striatum. In this region,
genes correlating with eating rate were enriched in glyoxy-
late and dicarboxylate metabolism, and genes correlating
with body weight with mitochondrial membrane. In the hy-
pothalamus, we found genes involved with inflexibility that
were enriched in pathways involved in the metabolism of
glucose and fatty acids. For example, we detected an en-
richment for the translocation of the glucose transporter
GLUT4 on the plasma membrane, a pathway normally acti-
vated by insulin to allow the uptake of glucose from the
bloodstream (Muretta and Mastick, 2009).

Finally, many categories involved in chromatin, epige-
netic, and transcriptional regulation were specifically en-
riched when looking at genes correlating with body weight
in the hypothalamus and compulsivity and inflexibility in

continued
gene counts. B, Histogram showing the number of regulated genes per regulated TADs. The dashed red line demarks the 5% area
of the distribution with TADs containing high number of regulated genes. Bars corresponding to these regulated TADs are on the right
of the dashed line. C, Barplot showing the Szymkiewicz	Simpson overlap coefficient between regulated TADs with region-specific
or coregulated TADs. Brain region acronyms are the same as in Figure 2. D, Heatmap showing the Szymkiewicz	Simpson overlap
coefficient between regulated TADs and TADs containing any of the DE or genes correlating with phenotypical variables (rows) in the
three examined regions (columns). Brain region acronyms are the same as in Figure 2. Color code according to the coefficient. E, For
each group of DE or correlating genes, we considered the subset of the 37 TADs on which the respective genes were mapping. The
heatmap shows the overlap among those regulated TADs for each DE gene list, phenotypical variable, and brain region. The color
code is proportional to the Szymkiewicz	Simpson overlap coefficient, which is also printed in cyan on the cells. F, Hi-C map of TAD
624–example of a regulated TAD. TAD 624 is located on the chromosome 7: 109600000–113000000 bp. Three heatmaps at the
bottom of the TAD represent expression of the genes localized within this TAD. Red color depicts upregulation and blue color
downregulation of the particular gene. HT indicates the hypothalamic region, ST the striatum region, FC the frontal cortex, and DE as
differentially expressed. Extended information related to the differential gene expression and correlating genes conformed within the
TADs structure could be found in Extended Data Figures 4-1, 4-2.
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the striatum. This suggests that these processes might be
epigenetically regulated in these brain areas.

TADs orchestrate the brain-area-specific response
In our dataset, some groups of genes, such as genes

DE in frontal cortex and hypothalamus, genes correlating
with inflexibility in frontal cortex, and genes correlating
with compulsivity and inflexibility in the striatum were
highly overlapping and shared biological pathways such
as olfactory transduction. However, we also detected
many region-specific genes, leading to region-specific
pathway enrichments. We wondered how region-specific
mechanisms would coexist with the need to coordinate
different responses both intrabrain and interbrain areas.

Therefore, we explored the distribution of regulated
genes along the chromosomes to identify potential regu-
latory mechanisms leading to the observed expression
profiles. We found that both DE genes and subtly regu-
lated genes correlating with phenotypic and behavioral
variables were not randomly distributed throughout the
genome but organized in genomic clusters, the TADs. The
non-random organization of genes along eukaryotic chro-
mosomes is well established and plays a role in the
coordination of gene expression and, thus, might have a
functional role at the transcriptional stage.

To detect the most relevant genomic regions respon-
sive to our experimental design in brain, we focused our

analysis on the TADs with the highest number of DE genes
or genes correlating with some specific behavioral vari-
ables across brain areas (what we named regulated
TADs). All regulated TADs contained genes responsive
across brain areas, and correlating with different pheno-
typical variables, indicating that they are important for the
regional coregulation in the brain, and for the coordination
of the different responses initiated in our two groups of
mice. Consistently with the homeostatic role of the hypo-
thalamus, we found that the majority of the regulated
TADs containing hypothalamic genes, contained genes
correlating with body weight. Similarly, the frontal cortex
or striatum genes contained in regulated TADs were cor-
related with inflexibility, in agreement with the role of
these brain regions in the hedonic responses to food.

We observed that the DE or correlating genes con-
tained in regulated TADs tended to have expression
changes of the same sign, supporting the idea that TADs
provide the epigenetic environment for coexpression of
groups of genes (Tanay and Cavalli, 2013). Interestingly,
many regulated TADs show a different direction of regu-
lation depending on the brain area (the same TAD could
contain for example genes mainly upregulated in one
brain area and mainly downregulated in another).

The fact that the same TADs contain genes coregulated
within a brain area and regulated in different directions
across brain areas might be surprising at first but is

Figure 5. TADs orchestrate the transcriptional response both within and across brain areas. Cartoon depicting the response at
the TADs level on free choice CM diet, in the nucleus of frontal cortex, striatum, or hypothalamus neurons. Differentially
coregulated TADs is simplified as a black box, with yellow arrows standing for upregulated genes, and purple ones downregu-
lated genes.
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consistent with the “epigenetic plasticity” model, for
which a permissive or “plastic” chromatin state activate
regulatory programs (Flavahan et al., 2017). Based on our
findings, we could speculate that these regulated TADs
are thus the genome regions of highest epigenetic plas-
ticity.

Conclusions, limitations, and future direction
Our results support the hypothesis that the homeostatic

and hedonic control of eating behavior could be coordi-
nated thanks to TADs inducing a specific and coordinated
transcriptional changes both intrabrain and interbrain ar-
eas (Fig. 5). Of course, we cannot discard that the test
battery itself affects the transcriptional profile; nonethe-
less the changes should affect similarly the CM group and
the SC group.

Also, we cannot rule out the possibility that our exper-
imental design could affect the TAD structure, but given
the fact that the domain structure is mainly stable (Ba-
rutcu et al., 2015), we assumed that the TAD boundaries
remained intact. Expectedly, permuting those borders just
slightly increased the p values associated with the
Kruskal–Wallis test (but statistical significance was pre-
served). Finally, brain regions contain different cell types
and we observe only the “final” averaged effect. Single-
cell RNA sequencing or separation tagged cell popula-
tions could be used to assess which are the main cell
subtype which are responding to the energy-dense diet.
Our findings warrant future studies directly aimed to de-
tect changes in the 3D genome organization on energy-
dense diet.
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