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Abstract

Protein methylation is an important Post-Translational Modification (PTMs) of proteins. Argi-

nine methylation carries out and regulates several important biological functions, including

gene regulation and signal transduction. Experimental identification of arginine methylation

site is a daunting task as it is costly as well as time and labour intensive. Hence reliable pre-

diction tools play an important task in rapid screening and identification of possible methyla-

tion sites in proteomes. Our preliminary assessment using the available prediction methods

on collected data yielded unimpressive results. This motivated us to perform a comprehen-

sive data analysis and appraisal of features relevant in the context of biological significance,

that led to the development of a prediction tool PRmePRed with better performance. The

PRmePRed perform reasonably well with an accuracy of 84.10%, 82.38% sensitivity,

83.77% specificity, and Matthew’s correlation coefficient of 66.20% in 10-fold cross-valida-

tion. PRmePRed is freely available at http://bioinfo.icgeb.res.in/PRmePRed/

Introduction

Protein arginine methylation (PRme) is an abundant post-translational modification (PTM)

which affects several major cellular processes in eukaryotes. PRme has been implicated in sev-

eral diseases and to such an extent that some eukaryotic viruses can take the liberty of host

arginine methylation machinery for their own benefit. Any biological question which aims to

investigate the role of PRme in a protein’s function, stability, localization and its interactions

initiates with steps that lead to prior identification and validation of the methylation event.

In this regard, large-scale proteomics, bolstered by recent advancements in PRme labeling,

enrichment, and mass spectrometry (MS) techniques, have contributed significantly towards

identification of experimentally verified repertoire of arginine methylated proteins. MS-based

proteomics employing in vivo metabolic labeling of methyl group (Heavy- methyl SILAC)

offers the best credible identification results as opposed to label-free approaches, which may be

fraught poor reproducibility and discovery of artifact sites. However, apart from being expen-

sive, metabolic labeling cannot be done for all biological samples such as intraerythrocytic in
vitro cell culture of intracellular parasites like P. falciparum. Additionally, it is a tedious task to

confirm each methylation site independently from the thousands of sites identified from a

label-free MS experiment. Another option is to go for high throughput screening in vitro
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enzyme assays that use recombinant protein arginine methyltransferases (PRMTs; enzymes

which catalyze arginine methylation) and protein/peptide substrates. However, any in vitro

outcome cannot be considered as a natural event unless supported by in vivo evidence. Also,

currently, one cannot perform such experiments for a very large number of arginine residues

in any organism, for example nearly more than half a million arginine residues are present

in human proteome (consisting of 20193 reviewed proteins from UniProt database [1] and

excluding their isoforms) and that too with eleven different human PRMTs (again excluding

their isoforms). Another limitation with any experiment involving a biological sample is that a

cell, at any given time, usually never carries all the PTMs it can possibly acquire during its life

cycle. Also, the specialized cell types in a multicellular organism produce their own distinct

methylation profiles. Thus, due to several technical and analytical shortcomings, one cannot

capture the entire spectrum of any particular PTM present in a cell/organism. Therefore, in

such situations where it is difficult to perform reliable large-scale experimental studies for

global PTM identification, one can use computational biology based approaches as an alterna-

tive strategy.

A computational tool called “FindMod” [2], which utilizes peptide mass fingerprinting data

of individual proteins to identify methylated peptides, has been successfully applied in yeast

proteome. However, this strategy has limited scope because it relies on peptide mass finger-

print (PMF) data of each protein which comes from single MS analysis and not tandem MS/

MS. Therefore, reliability of assigned methylation sites is limited to only the peptides with no

other PTM except methylation, and which only possess a single arginine and not any other

amino acid capable of undergoing methylation (e.g. lysine) in their sequences. Another

approach would be to find particular properties specific to methylation and use them to com-

putationally identify potential PTM sites in whole proteomes. For example, one can employ a

homology-based sequence search for evolutionarily conserved methylated sites present in evo-

lutionarily conserved protein and domains. Histone proteins are highly conserved proteins in

eukaryote kingdom; therefore, any characterized methylated arginine site in histone from one

organism will most likely be methylated in other eukaryotes. Likewise, motif-based search can

be employed if conserved motifs are known in the case of arginine methylation. In case of

mammals particularly, it has been observed that several methylated sites lay in either glycine

arginine-rich (GAR) or, arginine or proline-rich stretches. Unfortunately, there are no well-

defined universal motifs in the case of arginine methylation. Hence, in such cases, machine

learning based prediction models fits the choice of a universal method that can provide quick

probing of large evolutionarily divergent proteomes to identify potential methylation sites.

Consequently, fourteen machine-learning studies for prediction of arginine-methylated sites

have been reported till date.

The first prediction tools developed by Daily et al. [3] and Shien et al. [4] introduced most

of the key features that formed the backbone of the future methods. Subsequent tools focused

more towards refinement of feature encoding, extraction and selection methods; resolving

data imbalance and adoption of different classification approaches. The collection of arginine

methylated sites employed by all the reported prediction based studies including the most

recent ones, was restricted to few hundreds of methylation sites (about 200) which mostly

were acquired from the UniProt database. A major surge in repertoire of identified arginine

methylated sites came only post 2012 owing to several large-scale proteomic studies; however,

these sites are yet to be incorporated into UniProt. Hence, we generated a database of the

PRme data, which includes more than five thousand unique methylation sites. Of the 15

reported studies, only six provided access to user-friendly web server applications, whereas

few others offer downloadable models, which unfortunately, we were unable to operate upon.

Our preliminary assessment using each of the web server prediction application on our

An arginine methylation prediction tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0183318 August 15, 2017 2 / 12

https://doi.org/10.1371/journal.pone.0183318


collected data yielded unimpressive results. This motivated us to perform our own compre-

hensive data analysis, appraisal of feature relevance in the context of biological significance

(similar to Daily et al.) that led to the development of a prediction tool with better performance

than the rest. We have also tried to offer an in-depth insight into the current problems faced in

development PRme prediction methods, and possible areas of improvement.

Machine learning is a branch of artificial intelligence which has been successfully used for

providing solutions to classification problems related to biological datasets. Amongst several

machine learning algorithms, support vector machine (SVM), artificial neural networks

(ANN), decision trees random forest (RF) and LibD3C are have been effectively used in bioin-

formatics [5–9]. Most of the available arginine methylation site prediction methods are based

on SVMs, using different amino acid based features and feature selection methods. The train-

ing model developed in the study was trained on different machine learning algorithms for

comparison and selection of the best training model for PRmePRed server.

Methods

Datasets for classifier generation

We collected experimentally verified in vivo methylated arginine sites from literature along

with those reported in UniProt database (release 2015_06). Search terms like “arginine”,

“methylation”, “methylation sites”, were used for database and literature searches. Peptides/

proteins mentioned in the relevant publications (PubMed search performed in June-Decem-

ber 2015) were included in the study dataset only after close scrutiny. We did not consider any

in vitro reported methylated sites with no credible evidence of in vivo existence. We removed

sites/proteins with ambiguities such as those containing nonstandard amino acids, site mis-

matches, very small protein fragments (less than 30 aa) and obsolete protein entries. The

extracted dataset contains 6754 methylation sites from 2077 protein sequences. We did not

include any methylation sites from PhosphoSitePlus database [10], since it did not provide

the exact experimental source and other supporting information for verifying PTM evidence.

However, majority of our methylation data did match with the ones they reported to have

extracted from the literature.

It is assumed that local environment around methylated arginine, dictated by adjacent

flanking residues, plays a major role in substrate selectivity and catalysis by PRMTs. These

assumptions arise from the observations in which PRMT active site and certain substrate fea-

tures complement each other, though not always. For instance, in one substrate, positive flank-

ing residues were shown to affect substrate binding and catalysis by PRMT active site [11].

This is supported by the fact that the surface surrounding active site in few PRMTs have

grooves that are acidic in nature. Additionally, many of the known methylated arginine sites

hail from either glycine-arginine rich (GAR) or arginine-rich and proline/serine-rich regions,

which favor arginine methylation. In order to assess the role of flanking residues, we generated

symmetric peptide datasets of varying window lengths (7, 11, 15, 19, 23, 27, 31 and 35) all of

which were centered on methylated arginine. Since we adopted position specific feature

encoding for model building, therefore it was necessary to fill the ends of peptides which

lacked symmetry with arbitrary “X” residue that has been the generally accepted norm in some

previous prediction classifiers as well [12].

We followed the conventional practice of generating a negative set from those sites which

are not reported to be methylated in the methylated proteins. Briefly, we first created an unla-

beled class of all the arginine sites, which are not methylated from the respective methylated

proteins. We termed the set as unlabeled because they may contain potential sites, which could

be methylated but has not been established yet. Using CD-HIT-2d [13] with 40% identity cut-
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off, we created a negative set from this unlabeled set by removing sequences which were simi-

lar to positive set.

There are chances that data will contain highly similar peptide sequences (since 2/3 of data

belongs to human and mouse proteome, and also multiple adjacently placed arginine residues

are methylated in sequences which are arginine rich such as those hailing from GAR peptides).

Since most of our features are calculated position wise thus to reduce any biases especially dur-

ing feature assessment with training set, we removed similar sequences from both positive and

pseudo-negative sets using CD-HIT with 40% identity cut-off. We found that the pseudo-neg-

ative sets of window lengths 7, 11 and 15 were far lower than positive set and thus excluded

from the model-building task. Dataset information (after CD-HIT) of different residues win-

dow length, chosen for model training are given in the supporting information S1 Table.

For each window length, positive dataset was split randomly into a training set and test set

in the ratio of 4:1. We also split negative dataset into training and test set (size of the negative

test set equal to positive test set). For window length 19 onward we had a larger proportion of

negative training set with respect to a positive training set. Thus to overcome class imbalance

issue we opted for under-sampling and created equal subsets of negative training set in 1:1

ratio with a positive training set by random sampling. For computational timesaving, we

restricted the size of negative training subsets to 5 for each window length. During the course

of our work, we accumulated more instances of arginine-methylated proteins from recent

studies and separately prepared an independent dataset for final evaluation and comparison.

Feature collection, encoding, and evaluation

An extensive literature survey implicated PRme with the amino acid composition; physico-

chemical properties such as positive charge, hydrophilicity, isoelectric point; and structural

properties including ASA and disorder. We finally collected the following features:

Atchley factors [14]. Since the distinct physico-chemical properties of amino acids

reported in AAIndex [15] were too large to computationally handle in our analysis, therefore

instead we relied on the reduced and transformed AAIndex feature subsets represented by the

five Atchley factors (AF), namely, AF-I, AF-II, AF-III, AF-IV, and AF-V. Factor I represents

residue polarity, hydrophobicity, and surface accessibility. Factor II captures secondary struc-

ture information whereas factor III relates to molecular size or volume. Factor IV reflects

relative amino acid composition in various proteins and codon diversity. Factor V refers to

electrostatic charge with high coefficients on isoelectric point and net charge. The PSE-in-

One [16] features for protein are similar to AAIndex features, hence we did not consider them

separately.

AA frequency. We generated amino acid composition features from position-wise amino

acid frequency of each amino acid from the non-redundant positive peptide list. The values

were normalized and a table of 21x n was created for each window, where n denotes window

length.

ASA. ASA has been used as a feature by previous tools such as MASA [4] and PMeS [12],

using RVP-NET for prediction of ASA values for amino acid residues, based on protein

sequences. To evaluate the margin of error in these predictions, we compared the predicted

values versus actual values calculated by NACCESS from PDB structures. For the sake of con-

venience, we considered only the methylated arginine sites from those protein sequences,

which are represented by experimentally, solved PDB structures with greater than 80%

sequence coverage and 100% identity.

Disorder [17]. Predicted protein intrinsic disorder was calculated for full length methyl-

ated protein sequences, using VSL2b standalone package. The output file for each protein
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sequence contained disorder scores for each residue. The predicted results of methylated pro-

teins were compared with their respective experimental disorder information available in the

DisProt database [18].

Hydrophobicity [19]. Hydrophobicity values for amino acids were obtained from Kyte

and Doolittle hydrophobicity scales. The grand average of hydropathy (GRAVY) for a given

peptide instance was calculated as sum average of hydrophobicity value of individual amino

acids in the peptide.

Van der Waal’s volume. Van der Waal’s volume for each residue was calculated from

scale reported by Darby and Creighton [20]. The average Van der Waals volume for each pep-

tide was calculated as sum average of individual VDWV values.

Total charge and isoelectric point pI. Total charge and isoelectric point for each peptide

were calculated using pyteomics, a python package [21].

For a given peptide instance, the following features Atchley factors, ASA, disorder, hydro-

phobicity, van der waal’s volume and AA frequency were encoded for individual residues in

position wise manner whereas average VDWV, GRAVY, total charge, and pI were calculated

for the entire peptide. Thus in total, we obtained feature sizes of 194, 234, 274, 314 and 354 for

window lengths 19, 23, 27, 31 and 35 respectively.

Feature relevance assessment was performed by InfoGain (Information Gain) analysis on

training sets in WEKA [22]. InfoGain selects the feature that has the best potential to sepa-

rate the instances into individual classes. The value of InfoGain is lies between 0 and 1. A

feature with a high information gain is said to be “relevant”. InfoGain is evaluated indepen-

dently for each feature and the features with the top scores are selected as the relevant

features.

The irrelevant features with a score of 0 were removed from total feature set and thus did

not form part of feature selection. The removed features were indeed irrelevant as most of

them belonged to a zeroth position which corresponded with central arginine thus corroborat-

ing that InfoGain analysis was correct. After removing irrelevant features (having value 0)

from the total feature set, features set rearranged on the basis of relevance.

Classifier

Support Vector Machines (SVMs), developed by Vladimir Vapnik and co-workers [23], is a

useful technique for data classification. SVM is rigorously based on statistical learning theory.

For linearly separable problems SVM employs a maximum margin hyper-plane for separating

examples belonging to two different classes and for non-linearly separable problems, SVM

first transforms the data into a higher dimensional feature space and subsequently employs a

maximum margin linear hyper plane. There are four basic kernels that can be used in SVM.

Linear : Kðxi; xjÞ ¼ xT
ixj:

Polynomial : Kðxi; xjÞ ¼ ðgxi
Txj þ rÞd; g > 0:

Radial basis function ðRBFÞ : Kðxi; xjÞ ¼ expð� gjjxi � xjjj
2
Þ; g > 0:

Sigmoid : Kðxi; xjÞ ¼ tanhðgxi
Txj þ rÞ:

Where, K(xi, xj)� φ(xi)
T φ(xj) that is, the kernel function, represents a dot product of input

data points mapped into the higher dimensional feature space by transformation.

Here, γ, r, and d are kernel parameters.
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The RBF is by far the most popular choice of kernel types used in Support Vector Machines.

This is mainly because RBF kernel non-linearly maps samples into a higher dimensional space

so it, unlike the linear kernel, can handle the case when the relation between class labels and

attributes is nonlinear.

LIBSVM (A Library for Support Vector Machines) [24] is currently one of the most widely

used SVM software. A typical use of LIBSVM involves two steps: first, training a data set to

obtain a model and second, using the model to predict information of a testing data set.

Here we used C-SVC from LIBSVM package with RBF kernel to build the classifier. C

(cost) and g (gamma) optimized by grid search strategy using 10 fold cross validation with

AUCROC as an evaluation function.

Major evaluation parameters: Accuracy (Acc), Sensitivity (Sn), Specificity (Sp) and Mat-

thews Correlation Coefficient (MCC).

Sn ¼
TP

TPþ FN

Sp ¼
TN

TNþ FP

Acc ¼
TPþ TN

TPþ FNþ TNþ FP

MCC ¼
ðTP � TNÞ � ðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ ðTP þ FNÞ ðTN þ FPÞ ðTN þ FNÞ

p

where, TP represents the number of correctly predicted methylated arginine sites by the SVM-

predictor, TN represents the number of correctly predicted arginine non-methylated sites, FP

represents the incorrectly predicted methylated arginine sites, and FN represents the incor-

rectly predicted arginine non-methylated sites. Further description of the terms is available

elsewhere [25].

Results and discussion

Selection of feature subset and window size

Incremental feature selection was performed with various feature subsets in an incremental

fashion for each window length. The evaluation parameters were compared with training data

test and test set.

For the arginine methylation prediction problem, best accuracy achieved by window length

19 with a subset of 150 features (Fig 1A), best sensitivity achieved by window length 19 with

subset of 100 features (Fig 1B), best specificity achieved by window length 35 with subset of

100 features (Fig 1C) and the best MCC achieved by window length 19 with a subset of 100 fea-

tures (Fig 1D). Considering all the evaluation parameters (Acc, Sn, Sp, and MCC), window

length 19 with subsets of 100 features selected by information gain perform better (Table 1).

The details of predictive performance of model trained with different features subset for win-

dow lengths 19, 23, 27, 31 and 35 may be obtained from supporting information S2–S6 Tables,

respectively.
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Comparisons with existing methods

To further evaluate the prediction performance of the PRmePRed impartially, we made com-

parisons with other existing PRme prediction tools. Generally, to perform a comparison

between distinct machine learning prediction methods, either cross-validation experiment or

an independent dataset test is used. For cross-validation experiment, identical training dataset

is required. As described in the Methods section PRmePRed training dataset is not similar to

previous methods. Therefore, a comparison between distinct machine learning prediction

methods through cross-validation performance is irrelevant. Here, we used independent

Fig 1. The relationship between different evaluation parameters and feature subsets. A) The relationship between the

Accuracy and number of features. B) The relationship between the Sensitivity and number of features. C) The relationship between

the Specificity and number of features. D) The relationship between the MCC and number of features.

https://doi.org/10.1371/journal.pone.0183318.g001

Table 1. Comparisons with best models of different window lengths.

Window Length

(Features subset)

MCC Accuracy Sensitivity Specificity

WL_19 (100) 0.662 84.10% 82.38% 83.77%

WL_23 (150) 0.606 80.93% 80.36% 80.25%

WL_27 (150) 0.605 81.07% 80.00% 80.49%

WL_31 (200) 0.629 81.35% 80.22% 82.45%

WL_35 (250) 0.641 82.01% 80.28% 83.77%

https://doi.org/10.1371/journal.pone.0183318.t001
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dataset test to evaluate the performance of PRmePRed to compare it with other PRme predic-

tion tools.

There are three major differences between our approach and previously reported methods.

First, we used experimentally verified in vivo methylated arginine sites. Second to avoid any

biases, we used CD-HIT (40%) on peptides rather than removing redundancy in protein

sequences. Finally, rather than defining a broad range of parameters to describe the peptides,

we used most relevant parameter for the methylation process. We used independent dataset to

evaluate the performance of PRmePRed with comparison to other prediction tools (Table 2).

Table 2. Comparison of PRmePRed with other prediction methods.

Method (yr. developed) Algorithm MCC Accuracy Sensitivity Specificity

MeMo (Chen et al. 2006)[26] SVM 0.462 0.6839 0.3811 0.987

MASA (Shien et al. 2009)[4] SVM 0.411 0.6503 0.3095 0.991

BPB-PPMS (Shao et al. 2009)[27] SVM 0.253 0.5601 0.1202 1.000

PMeS (Shi et al. 2012)[12] SVM 0.159 0.5756 0.4253 0.726

iMethyl-PseAAC (2014)[28] SVM 0.302 0.5866 0.1768 0.997

PSSMe (Wen et al. 2016) [29] SVM 0.444 0.7162 0.6003 0.832

MePred-RF (Wei et al. 2017) [30] RF 0.462 0.6908 0.4095 0.972

PRmePRed (2017) SVM 0.737 0.8683 0.8709 0.866

https://doi.org/10.1371/journal.pone.0183318.t002

Fig 2. ROC curve for SVM classifier with different datasets. A) ROC curve for SVM classifier with training set. B) ROC curve for

SVM classifier with test set. C) ROC curve for SVM classifier with independent set.

https://doi.org/10.1371/journal.pone.0183318.g002
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ROC curve

ROC curve is graphical display true positive rate (sensitivity) on y-axis and false positive rate (1

–specificity) on x-axis for varying cut-off points of test values. The area under the curve (AUC)

is an effective and combined measure of sensitivity and specificity for assessing the inherent

validity of a classification test. Maximum AUC = 1 and it means classification test is perfect in

differentiating positive with negative class. This implies both sensitivity and specificity are one

and both errors—false positive and false negative—are zero. This can happen when the distri-

bution of methylated and non-methylated test values do not overlap. This is extremely unlikely

to happen in practice. ROC curve of training model represent in Fig 2A (AUC = 0.8411), ROC

curve of test data on training model represent in Fig 2B (AUC = 0.9000) and ROC curve of

independent data on training model represent in Fig 2C (AUC = 0.9299). A result of 0.8< =

AUC < = 0.95 represent excellent ability to discriminate between of methylated and non-

methylated arginine sites.

We evaluated SVM, RF, Naïve Bayes and LibD3C algorithms for PRmePRed development,

and found that SVM performs comparatively better for the same set of features (See Fig 3).

Conclusion

We have developed an arginine methylation predictor based on sequence and structure

derived features, using SVMs. Dataset used to build the predictor is not biased and has experi-

mentally verified entries only. Moreover, the PRmePRed shows better performance as com-

pared with existing tools (Table 2). We believe that PRmePRed is a useful, reliable and rapid

prediction tool for arginine methylation sites in proteins.

Fig 3. Comparisons with other classifiers based on evaluation parameters.

https://doi.org/10.1371/journal.pone.0183318.g003

An arginine methylation prediction tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0183318 August 15, 2017 9 / 12

https://doi.org/10.1371/journal.pone.0183318.g003
https://doi.org/10.1371/journal.pone.0183318


Supporting information

S1 Table. Dataset information of different residues window length.

(DOC)

S2 Table. The predictive performance of model trained with different features subset for

window length 19.

(DOC)

S3 Table. The predictive performance of model trained with different features subset for

window length 23.

(DOC)

S4 Table. The predictive performance of model trained with different features subset for

window length 27.

(DOC)

S5 Table. The predictive performance of model trained with different features subset for

window length 31.

(DOC)

S6 Table. The predictive performance of model trained with different features subset for

window length 35.

(DOC)

Acknowledgments

We acknowledge Mr. Rajan Pandey for help and suggestions regarding manuscript figures.

Author Contributions

Conceptualization: Joseph Joy, Dinesh Gupta.

Data curation: Joseph Joy.

Formal analysis: Pawan Kumar, Ashutosh Pandey.

Funding acquisition: Dinesh Gupta.

Investigation: Pawan Kumar.

Methodology: Pawan Kumar, Ashutosh Pandey, Dinesh Gupta.

Project administration: Dinesh Gupta.

Software: Pawan Kumar, Ashutosh Pandey.

Supervision: Dinesh Gupta.

Validation: Pawan Kumar.

Visualization: Pawan Kumar, Joseph Joy.

Writing – original draft: Joseph Joy, Dinesh Gupta.

Writing – review & editing: Dinesh Gupta.

References
1. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the Universal Protein

knowledgebase. Nucleic acids research. 2004; 32(Database issue):D115–9. https://doi.org/10.1093/

nar/gkh131 PMID: 14681372.

An arginine methylation prediction tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0183318 August 15, 2017 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183318.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183318.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183318.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183318.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183318.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183318.s006
https://doi.org/10.1093/nar/gkh131
https://doi.org/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372
https://doi.org/10.1371/journal.pone.0183318


2. Wilkins MR, Gasteiger E, Gooley AA, Herbert BR, Molloy MP, Binz PA, et al. High-throughput mass

spectrometric discovery of protein post-translational modifications. J Mol Biol. 1999; 289(3):645–57.

https://doi.org/10.1006/jmbi.1999.2794 PMID: 10356335.

3. Daily KM, Radivojac P, Dunker AK, editors. Intrinsic disorder and prote in modifications: building an

SVM predictor for methylation. 2005 IEEE Symposium on Computational Intelligence in Bioinformatics

and Computational Biology; 2005: IEEE.

4. Shien DM, Lee TY, Chang WC, Hsu JBK, Horng JT, Hsu PC, et al. Incorporating structural characteris-

tics for identification of protein methylation sites. Journal of computational chemistry. 2009; 30(9):1532–

43. https://doi.org/10.1002/jcc.21232 PMID: 19263424

5. Chen J, Guo M, Wang X, Liu B. A comprehensive review and comparison of different computational

methods for protein remote homology detection. Brief Bioinform. 2016. Epub 2016/11/25. https://doi.

org/10.1093/bib/bbw108 PMID: 27881430.

6. Liu B, Zhang D, Xu R, Xu J, Wang X, Chen Q, et al. Combining evolutionary information extracted from

frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics.

2014; 30(4):472–9. Epub 2013/12/10. https://doi.org/10.1093/bioinformatics/btt709 PMID: 24318998.

7. Jagga Z, Gupta D. Classification models for clear cell renal carcinoma stage progression, based on

tumor RNAseq expression trained supervised machine learning algorithms. BMC Proc. 2014; 8(Suppl 6

Proceedings of the Great Lakes Bioinformatics Confer):S2. Epub 2014/11/07. https://doi.org/10.1186/

1753-6561-8-S6-S2 PMID: 25374611.

8. Kalita MK, Nandal UK, Pattnaik A, Sivalingam A, Ramasamy G, Kumar M, et al. CyclinPred: a SVM-

based method for predicting cyclin protein sequences. PLoS One. 2008; 3(7):e2605. Epub 2008/07/04.

https://doi.org/10.1371/journal.pone.0002605 PMID: 18596929.

9. Zou Q, Wang Z, Guan X, Liu B, Wu Y, Lin Z. An approach for identifying cytokines based on a novel

ensemble classifier. Biomed Res Int. 2013; 2013:686090. Epub 2013/09/13. https://doi.org/10.1155/

2013/686090 PMID: 24027761.

10. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. PhosphoSitePlus: a

comprehensive resource for investigating the structure and function of experimentally determined post-

translational modifications in man and mouse. Nucleic acids research. 2011:gkr1122.

11. Osborne TC, Obianyo O, Zhang X, Cheng X, Thompson PR. Protein arginine methyltransferase 1: posi-

tively charged residues in substrate peptides distal to the site of methylation are important for substrate

binding and catalysis. Biochemistry. 2007; 46(46):13370–81. https://doi.org/10.1021/bi701558t PMID:

17960915

12. Shi S-P, Qiu J-D, Sun X-Y, Suo S-B, Huang S-Y, Liang R-P. PMeS: prediction of methylation sites

based on enhanced feature encoding scheme. PloS one. 2012; 7(6):e38772. https://doi.org/10.1371/

journal.pone.0038772 PMID: 22719939

13. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological

sequences. Bioinformatics. 2010; 26(5):680–2. https://doi.org/10.1093/bioinformatics/btq003 PMID:

20053844
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