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Abstract: In this paper we examine the effects of localized air pollution measurements on the housing
prices in Oakland, CA. With high-resolution air pollution measurements for NO, NO2, and BC, we
can assess the ambient air quality on a parcel-by-parcel basis within the study domain. We combine
a spatial lag model with an instrumental variable method to consider both the spatial autocorrelation
and endogeneity effects between housing prices and air pollution concentrations. To the best of
our knowledge, this is the first work in this field that combines both spatial autocorrelation and
endogeneity effects in one model with accurate air pollution concentration measurements for each
individual parcel. We found a positive spatial autocorrelation with housing prices using Moral’s I
(value of 0.276) with the total sample number of 26,386. Somewhat surprisingly, we found a positive
relationship between air pollution and housing prices. There are several possible explanations for
this finding. Homeowners in high demand, low-stock housing areas, such as our study, may be
insensitive to air pollution when the overall ambient air quality is relatively good. It is also possible
that under clean air conditions, low variability in pollutant concentrations has little effect on property
values. These hypotheses could be verified with more high-resolution air pollution measurements
with a diversity of regions.

Keywords: air pollution; housing price; instrumental variable; spatial autocorrelation; spatial
lag model

1. Introduction

Air pollution is not only a major global risk resulting in high incidences of illness and
deaths [1,2], but can also produce external damages to different economic sectors, including
manufacturing, agriculture, transportation, and utilities [3]. In the U.S., air pollution costs
were roughly equivalent to about 5% of the yearly gross domestic product (GDP) in 2014 [4].
One sector we might expect to be highly sensitive to air quality is housing, and there are a
number of studies both nationally and globally focusing on the relationship between air
quality and housing prices.

The literature mainly relies on the construction of the hedonic price models to evaluate
the effect of air pollution on housing prices. The hedonic price model, commonly used in
economy, focuses on the relation between price and other corresponding features [5]. It
has been widely used in the housing market studies [6,7]. Some new regression methods,
such as neural network, quantile regression, and semi-log regression, have also been
applied in housing price prediction studies [8]. For the studies focusing on how air
pollution influences housing prices, we can divide the body of research based on the
approach. The first category uses an instrumental variable to address endogeneity effects
and frequently uses a variable that is not related to housing prices but directly related
to air pollution as the instrumental variable to determine the exogeneous part of the
variability from air pollution [9,10]. The endogeneity effect means correlation between
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the explanatory variable and the error term, which leads to the biased estimates using
the ordinary least square estimation method. The second group uses spatial econometric
models and hedonic price models to understand air pollution’s influence on housing
prices, accounting for spatial autocorrelation of housing prices. Spatial autocorrelation is a
term that is used to describe the systematic spatial variation in a variable. For example,
positive spatial autocorrelation, which is a more common situation, means that sites that
are located close together tend to have similar values. The most common spatial hedonic
models are the spatial lag model (SLM) [11,12], spatial error model (SEM) [11,12], spatial
Durbin model (SDM) [13], geographically weighted regression (GWR) [14,15], and quantile
regression models (QRM) [15]. The results from the literature are inconclusive: some
of the studies conclude that air pollution concentrations do not significantly influence
housing prices [11,12,16], while others find that air pollution concentrations negatively and
significantly influence housing prices [10,17–20].

Previous studies have produced inconclusive findings, in part because there were
limitations to the approaches. For example, nearly all the studies consider only spatial
autocorrelation or endogeneity effects. Most studies rely on Moran’s I to measure spatial
autocorrelation [21], and results from cities in both China and the U.S. suggest that there
are positive and significant spatial autocorrelations in housing prices [22,23]. When air
pollution is added to the mix, the endogeneity effect on housing prices results in model
estimation and causal inference biases [9,15,17]. We depart from previous studies by
constructing a hedonic price model combining both spatial autocorrelation and endogeneity
effects to examine the relationship between housing prices and air pollution. To the best
of our knowledge, this is the first study combining these two effects to comprehensively
understand how air pollution influences housing prices. We also introduce high-resolution
air pollution mapping data into housing valuation studies. Prior research relied on air
pollutant data from a limited number of stationary monitors to underpin estimation for a
large region or a city. Our high-resolution mobile-based air pollution mapping data cover
every street within the study domain, which allows us to draw on much more accurate
ambient air quality measurements for each property.

2. Materials and Methods
2.1. Study Area

Our study domain includes three major areas within Oakland, California: West
Oakland (WO), Downtown Oakland (DO), and East Oakland (EO) (Figure 1). The WO
and DO areas together cover about 15 km2, with residential, commercial, and industrial
blocks, and the EO area covers about 15 km2 with a mix of industrial and residential blocks.
The WO and DO areas have a total population of about 25,000, and the EO area has a total
population of about 58,000 [24].

2.2. Pollutant Concentration and Housing Valuation Data

Two Google street view mapping vehicles, carrying Aclima environmental intelligence
sensors, were deployed in the study area between June 2015 and May 2016. The dataset
covers the measurements of weekday daytime concentrations of black carbon (BC), nitric
oxide (NO), and nitrogen dioxide (NO2) with one second temporal resolution within the
study area (Figure 1). A mobile-based data reduction and aggregation algorithm was
developed by Apte et al. [25] to average the instantaneous measurements into median
annual weekday concentrations with 30 m resolution [26]. We used the high-resolution air
pollution concentration product from Apte et al.’s [25] supporting information as ambient
air pollution measurement in our study. Since meta-analyses have demonstrated that
the spatial extent of mobile sources is in the order of 100–400 m for particulate matter
and 200–500 m for NO2 [27,28], we selected 400 m as the buffer size and calculated the
mean air pollution concentrations within the buffer area of each property to represent
the ambient air pollution concentrations. We also calculated air pollution concentrations
with a 100 m buffer and without any buffer. The results and conclusions were the same as
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those produced with the 400 m buffer. For the purposes of this paper, we used the 400 m
buffer air pollution concentrations calculated to ensure that we incorporate proximate
roadway-generated air pollution.
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Figure 1. Study domain.

The housing valuation data (shown in Figure 2) were provided by Estated, Inc.
(Boulder, CO, USA), (https://estated.com/ accessed on 13 August 2020), and include
land, improvement, and total value for every property within our study domain. The value
of each property is calculated based on tax assessment as provided by the county assessor.
For each property, the detailed structure information includes year built, stories, room
counts, parking type, construction type, and total area. Finally, sociodemographic variables
at the census tract level influencing housing price, including population density, income,
and non-employment rate, were assembled using the 2016 American Community Survey.

2.3. Methods

Following Kim et al.’s study [16], in which the SLM model specification outperformed
SEM on housing data in Korea, we constructed a spatial lag model (SLM) with an additional
instrumental variable to include both the spatial autocorrelation and endogeneity effects
(Equation (1)):

y = Xβ + λWy + ε, ε ∼ N
(

0, σ2
)

(1)

where y is the logarithm of housing price, X’s are independent variables including an
instrumental variable, β are the estimated coefficients, W is the non-stochastic spatial
weight matrix, Wy represents the spatial lag of the dependent variables, and ε is the error
term. For the spatial weight matrix, there are no widely accepted spatial structures for
housing price data, but some studies use the queen contiguity weighting matrix since it is
representative for contiguity-based weighting matrices [12]. Therefore, we used the queen
contiguity weighting matrix.

https://estated.com/


Int. J. Environ. Res. Public Health 2021, 18, 12195 4 of 13
Int. J. Environ. Res. Public Health 2021, 18, 12195 4 of 14 
 

 

 

Figure 2. Housing price spatial distribution in the study domain. 

2.3. Methods 

Following Kim et al.’s study [16], in which the SLM model specification outper-

formed SEM on housing data in Korea, we constructed a spatial lag model (SLM) with an 

additional instrumental variable to include both the spatial autocorrelation and endoge-

neity effects (Equation (1)): 

𝑦 =  𝑋𝛽 +  𝜆𝑊𝑦 + 𝜀, 𝜀~𝑁(0, 𝜎2) (1) 

where y is the logarithm of housing price, X’s are independent variables including an in-

strumental variable, β are the estimated coefficients, W is the non-stochastic spatial weight 

matrix, Wy represents the spatial lag of the dependent variables, and ε is the error term. 

For the spatial weight matrix, there are no widely accepted spatial structures for housing 

price data, but some studies use the queen contiguity weighting matrix since it is repre-

sentative for contiguity-based weighting matrices [12]. Therefore, we used the queen con-

tiguity weighting matrix. 

To address the endogeneity concern between housing prices and air pollution con-

centrations, we combined the instrumental variable (IV) method together with the SLM. 

We used the mean of the median vehicle speed within the buffer area as the instrumental 

variable, which is positively related to air pollution concentrations but is not correlated 

with housing prices. 

The spatial lag term in Equation (1) is an endogenous variable, and the instrumental 

variable is an additional endogenous variable, which can result in difficulty in estimating 

the model coefficients due to the extra endogenous variable. We used a two-step general-

ized moments (GM) and instrumental variable (IV) method to estimate the coefficients in 

Equation (1) [29–33]. All the calculations were conducted in R [34] and the two-step 

GM/IV method is available in sphet package with function spreg [35,36]. 

  

Figure 2. Housing price spatial distribution in the study domain.

To address the endogeneity concern between housing prices and air pollution con-
centrations, we combined the instrumental variable (IV) method together with the SLM.
We used the mean of the median vehicle speed within the buffer area as the instrumental
variable, which is positively related to air pollution concentrations but is not correlated
with housing prices.

The spatial lag term in Equation (1) is an endogenous variable, and the instrumental
variable is an additional endogenous variable, which can result in difficulty in estimating
the model coefficients due to the extra endogenous variable. We used a two-step gener-
alized moments (GM) and instrumental variable (IV) method to estimate the coefficients
in Equation (1) [29–33]. All the calculations were conducted in R [34] and the two-step
GM/IV method is available in sphet package with function spreg [35,36].

3. Results and Discussion
3.1. Variable Distribution

Housing prices are not normally distributed (Figure 3A), so we applied the logarithm
transformation of housing prices (Figure 3B). The NO, NO2, and BC concentrations in
Figure 3C–E are the average of measurements within the 400 m buffer of each parcel.
We also tested using the logarithm transformation of NO, NO2, and BC concentrations
as input to our model, which obtained very similar results as using the concentrations
without transformation. Therefore, no transformation was applied to the NO, NO2, and BC
concentrations. Most parcels have NO concentrations less than 40 ppb, NO2 concentrations
less than 25 ppb, and BC concentrations less than 1.5 µg/m3. The summary statistics of
housing prices and air pollution concentrations are shown in Table 1 below.
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Figure 3. Distributions of housing prices (A), logarithm transformed of housing prices (B), and concentrations of NO (C),
NO2 (D), and BC (E).

Table 1. Summary statistics of housing prices and air pollution concentration data.

Housing Price, USD NO Concentration,
ppb

NO2 Concentration,
ppb

BC Concentration,
µg/m3

Sample size 26,386 a 26,210 a 26,210 a 26,210 a

Mean 275,664.1 10.293 12.121 0.457

Median 227,788.4 6.632 9.883 0.393

Standard deviation 200,586.2 8.68 5.07 0.23
a Some apartments have multiple stories at the same locations, which makes the number of air pollution data less than the number of
housing price data.
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3.2. Spatial Autocorrelation

We used the Moran scatter plot to examine the spatial autocorrelation of housing
prices and three air pollutants within the study domain (Figure 4). For the Moran scatter
plot, it shows the relation between the spatially lagged variable and the original variable,
which suggests how housing prices and air pollutant concentrations are related to their
surrounding neighbors. The Moran’s I test is commonly used in geography-related fields
to quantify spatial autocorrelation. For the Moran’s I test, the test statistic is represented by
the slope of the fitted line in the Moran scatter plot (Figure 4), which measures how one
object is similar to its surroundings. We also used the permutation-based random Moran’s
I test, which uses the Monte-Carlo simulation method to randomly shuffle the data and
calculate the Moran’s I statistic for each random shuffle and compare it with the actual
Moran’s I statistic. The results of both Moran’s I tests for housing prices and the three
pollutants are shown in Table 2. The housing price has a Moran’s I value equal to 0.276,
suggesting a positive spatial autocorrelation. All of the pollutants have Moran’s I values
close to 0.99, suggesting highly positive autocorrelation. Therefore, including the spatial
autocorrelation term into the hedonic price model is necessary.
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Table 2. Moran’s I test results for housing prices and three pollutants.

Housing Price NO Concentration NO2 Concentration BC Concentration

Moran’s I test statistic 0.27643 0.98498 0.9927 0.99127

Analytical method p-value <0.001 <0.001 <0.001 <0.001

Monte-Carlo-based p-value <0.001 <0.001 <0.001 <0.001

3.3. Spatial Lag Model Results

The model results of all three pollutants were very similar (Table 3). As expected,
the year the home was built negatively influences the housing price, and garage, bath
number, total area, and median income positively influence the housing price. Air pollution
concentrations positively and significantly influence housing prices, which we will discuss
in greater detail in Section 3.4.

3.4. Discussion

Based on the coefficients from the SLM model in Table 3, they suggest that all three
pollutants (NO, NO2, and BC) have a positive and significant effect on housing prices. This
is unexpected and we have a few speculations as to why this occurs. First, the air pollution
concentrations are low throughout the area. The average concentration of NO is 10.29 ppb,
NO2 is 12.12 ppb, and BC is 0.46 µg/m3. We also included the air pollution concentrations
of BC and PM2.5 from a stationary monitoring station (Oakland-West site) located in the
center of West Oakland (https://ww3.arb.ca.gov/qaweb/iframe_site.php?s_arb_code = 60349,
accessed on 15 September 2020). For the stationary data, we calculated the mean values of the
hourly measurements between June 2015 and May 2016, which covers the same time range
(9 am to 5 pm) of the mobile air pollution measurement in our study. The mean concentra-
tions of BC and PM2.5 from the stationary monitor are 0.59 and 8.36 µg/m3, respectively.
The BC concentrations are close between the stationary monitor measurement and the
mobile measurement we used in this study, which provides a general estimate about the
PM2.5 concentrations across our study domain. Comparing these to the National Ambient
Air Quality Standards (NAAQS), the annual standard of NO2 is at a level of 53 ppb, and
the annual standard of PM2.5 is 12.0 µg/m3 for a primary source and 15.0 µg/m3 for a
secondary source [37]. It is possible that when the ambient air quality is relatively clean,
affordability dominates the need to pay a housing premium for even cleaner air. Of the
19 papers we found on housing and air quality, 10 papers were relevant to our research.
Among these, the findings are mixed (Table 4). Three show insignificant effects of air
pollution on housing price. In the remaining seven papers, the air pollution concentrations
have significant and negative effect on house prices.

All 10 papers we found used the hedonic price model to study the impact of air pollu-
tion on housing prices. Their conclusions were derived from the model coefficients. If the
regression coefficient of air pollution is statistically significantly less than zero, air pollution
negatively influences housing prices, and if the coefficient is significantly greater than
zero, air pollution positively influences housing prices. If the coefficient is not significantly
different from zero, air pollution is not significantly influencing housing prices.

As we noted in the introduction, even though all of the papers used the hedonic price
model, the authors relied on different methods to emphasize different effects (e.g., instrumen-
tal variable (IV), spatial lag model (SLM), spatial error model (SEM), fixed effect, etc.).

In Table 4, among the three studies with insignificant results about air pollution
influencing housing prices, they all take the spatial autocorrelation effect into consideration
when constructing the hedonic price model. In one study, the authors argue that the
insignificant effect of NOx concentrations on housing prices is due to the fact that NOx
does not tend to exceed the standard; on the contrary, SO2 shows a significant and negative
impact on housing prices in the same study, because SO2 has exceeded the official air
quality standard over a long period of time [16]. The other two studies believe that the
insignificant results are caused by either an insufficient degree of efficiency [11] or that the

https://ww3.arb.ca.gov/qaweb/iframe_site.php?s_arb_code
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change of air pollution concentration is more important than air pollution concentration
itself [12].

Table 3. Results of models with different pollutants a.

Variables NO Concentration NO2 Concentration BC Concentration

Intercept 2.9196 ***
(0.4688)

2.5027 ***
(0.45954)

2.8232 ***
(0.46502)

Year Built −0.0070745 ***
(0.00033103)

−0.0068693 ***
(0.00032984)

−0.0070433 ***
(0.0003305)

Effective Year Built 0.010137 ***
(0.0003401)

0.010268 ***
(0.00033955)

0.010166 ***
(0.00033986)

Construction type: concrete −0.014669
(0.061875)

−0.0076211
(0.061662)

−0.0041038
(0.061783)

Construction type: frame −0.3531 ***
(0.020988)

−0.32364 ***
(0.021187)

−0.34251 ***
(0.021)

Construction type: masonry −0.36805 ***
(0.075532)

−0.32321 ***
(0.074869)

−0.35448 ***
(0.075232)

Other rooms:
gym

−0.10416 **
(0.043856)

−0.080572 *
(0.04356)

−0.092731 **
(0.043693)

Other rooms:
office

0.17428
(0.40627)

0.18374
(0.4051)

0. 18428
(0.40593)

Parking type:
Carport

−0.027576
(0.029369)

−0.016681
(0.029342)

−0.020942
(0.029382)

Parking type:
garage

0.051695 ***
(0.010082)

0.061715 ***
(0.010229)

0.055929 ***
(0.010152)

Parking type:
Mixed

−0.0064772
(0.041319)

0.0046338
(0.041243)

−0.00011624
(0.04131)

Stories 0.020611 ***
(0.0021083)

0.017629 ***
(0.0021295)

0.020372 ***
(0.0021063)

Rooms −0.0095808 **
(0.0040749)

−0.0096307 **
(0.0060424)

−0.094721 **
(0.0040706)

Beds −0.010024
(0.0064244)

−0.0092185
(0.0064047)

−0.010209
(0.0064193)

Baths 0.084969 ***
(0.0086318)

0.082202 ***
(0.0086111)

0.08463 ***
(0.0086243)

Total area 0.00027102 ***
(0.000014127)

0.00026972 ***
(0.000014055)

0.0002711 ***
(0.000014107)

Population density 0.000014708 ***(
2.7835 × 10−6 )

0.00017308 ***(
2.8254 × 10−6 )

0.000018455 ***(
2.9621 × 10−6 )

Median income 5.0184 × 10−6 ***(
3.0363 × 10−7 )

5.244 × 10−6 ***(
2.9925 × 10−7 )

5.3215 × 10−6 ***(
2.9968 × 10−7 )

Non-employment rate 0.07601
(0.050197)

0.031651
(0.050804)

0.081003
(0.04948)

NO concentration 0.0054361 ***
(0.00082701) - -

NO2 concentration - 0.013246 ***
(0.0016209) -

BC concentration - - 0.22871 ***
(0.03212)

lambda 0.21710 ***
(0.019776)

0.18774 ***
(0.020526)

0.20761 ***
(0.020015)

R2 0.3183 0.3175 0.3178
a *** significant at less than 0.1%, ** significant at less than 5%, * significant at 10%. (): standard error.
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Table 4. Literature review summary.

Location
Air Pollution Concentrations

Method

Air Pollution
Impact on

Housing PriceCO, µg/m3 NO2, µg/m3 O3, µg/m3 PM2.5, µg/m3 PM10, µg/m3 SO2, µg/m3 TSP, µg/m3 BC, µg/m3 NO, µg/m3

Seoul, Korea
(Kim & Yoon, 2019) 45.611 SDM insignificant

Seoul, Korea (C.W. Kim,
Phipps, & Anselin, 2003)

45.57 a
SLM, SEM insignificant

82.95 negative

18 districts in Warsaw,
Poland (Ligus &
Peternek, 2017)

__ __ Linear, Logarithm,
SLM, SEM insignificant b

Beijing, China
(Mei, et al. 2020)

1399.1

Fixed effect

negative

60.34 negative

53.66 positive

88.24 negative

111.27 negative

20.5 negative

286 prefectural cities in China
(Chen & Jin, 2019) 64.81 IV negative

288 Chinese cities
(Huang & Lanz, 2018) 77.44

IV and
discontinuity

regression
negative

3 largest cities in Mexico
(Gonzalez, Leipnik &

Mazumder, 2013)
38.5, 51.7, 84 IV negative

Metro areas US
(Bayer et al., 2009)

42.21 (1990),
33.87 (2000) IV negative

All counties in USA
(Chay & Greenstone, 2005)

64.1 (1970),
56.3 (1980)

quasi-
experimental
discontinuity

regression

negative

Lebanon (Marrouch &
Sayour, 2021) 27.67 Fixed effect negative

Oakland, CA, USA 22.79 0.457 12.86 IV and SLM positive
a Paper reported NOx concentration in ppb and we converted it to µg/m3 with NO2 molecular weight. b Insignificant in most districts, some districts are positive or negative.
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In examining the literature, the results are suggestive that air pollution’s effects tend
to be insignificant when overall ambient air pollution concentrations are relatively low. In
our study, the average air pollution concentrations across all of our sample observations
were the lowest among these studies. It is possible that affordability is more important
than a housing premium for even cleaner air when the ambient air quality is already good.
Therefore, the positive and significant coefficients of air pollution on housing prices may
be reasonable in areas with good air quality.

A second possible reason why we find counterintuitive results may be due to the very
low variability in pollutants and housing prices. Within our buffer, standard deviations of
NO, NO2, and BC concentrations were 8.68 ppb, 5.07 ppb, and 0.23 µg/m3, respectively.
We compared the distribution of the three pollutants in our study with one stationary
monitoring measurement located in the center of West Oakland (WO) in Figure 5. For
the stationary data, we used the hourly measurements of NO, NO2, and BC from the
above-mentioned Oakland-west site, covering the same date and time range of the mobile
air pollution measurement in our study. Our data variability is close to the variation of
air pollution concentrations at a single location. Low variability may lead to positive and
significant coefficients even if the results are not significant.
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4. Limitations and Conclusions

To the best of our knowledge, this is the first study that combines a spatial lag model
with an instrumental variable method to capture both the spatial autocorrelation and
endogeneity effects of the relationship between housing prices and air pollution. Our
study demonstrated the use of high-resolution air pollution mapping data to quantify the
localized ambient air quality at the parcel level, which can largely improve the accuracy
of pollution cost valuation. The results of our work have significant policy implications,
as the air quality regulations require accurate understanding of the potential pollution
cost. Furthermore, our work is helpful and instructive in environmental justice studies,
especially in the local scale. It helps to identify the vulnerable populations in the complex
urban environment.

Our results are counterintuitive, suggesting that air pollution positively influences
housing prices in Oakland, CA. We believe that this counterintuitive result arises from
two possible explanations. First, the results suggest that people may be insensitive to air
quality if the overall ambient air quality is good, which is consistent with other literature
we reviewed. Second, our study focused on a relatively small study domain, where the
variability of air pollution concentrations and housing prices is low. The low variability of
variables may lead to significant result even though the true influence is not significant.

Our results indicate that a larger, multi-regional study is probably the best way to
determine the relationship between air pollution and housing prices. This study was
conducted based on the 2016 data. Recently, data from high-resolution air pollution mea-
surements have been expanding quickly. The Google Earth Outreach team has conducted
the high-resolution air pollution measurement in Houston, London, Copenhagen, and
Amsterdam. These data may prove useful to better understand how air pollution affects
housing prices. The framework and method of this paper can be applied to multi-regions
when the coverage of the high-resolution air pollution measurement is widely expanded.
With more diversified regions covered in the analysis, we will be able to more accurately
and precisely understand how air pollution concentrations influence housing prices.
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