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Abstract: Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be trans-
mitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development
is the composition of the bacterial gut microbiota in the triatomine. Herein, we analyzed the humoral
immune responses of R. prolixus nymphs treated with antibiotics and subsequently recolonized with
either Serratia marcescens or Rhodococcus rhodnii. The treatment with antibiotics reduced the bacterial
load in the digestive tract, and the recolonization with each bacterium was successfully detected
seven days after treatment. The antibiotic-treated insects, recolonized with S. marcescens, presented
reduced antibacterial activity against Staphylococcus aureus and phenoloxidase activity in hemolymph,
and lower nitric oxide synthase (NOS) and higher defensin C gene (DefC) gene expression in the fat
body. These insects also presented a higher expression of DefC, lower prolixicin (Prol), and lower
NOS levels in the anterior midgut. However, the antibiotic-treated insects recolonized with R. rhodnii
had increased antibacterial activity against Escherichia coli and lower activity against S. aureus, higher
phenoloxidase activity in hemolymph, and lower NOS expression in the fat body. In the anterior
midgut, these insects presented higher NOS, defensin A (DefA) and DefC expression, and lower
Prol expression. The R. prolixus immune modulation by these two bacteria was observed not only
in the midgut, but also systemically in the fat body, and may be crucial for the development and
transmission of the parasites Trypanosoma cruzi and Trypanosoma rangeli.
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1. Introduction

Chagas disease was described by Carlos Chagas in 1909 [1] and is considered a
severe public health problem, being one of 21 neglected diseases listed by the World
Health Organization. The etiologic agent of Chagas disease, the parasite Trypanosoma cruzi,
is transmitted by species of the subfamily Triatominae (Hemiptera, Reduviidae). It is
estimated that about ten thousand human deaths occur yearly due to complications linked
to Chagas disease. About six to seven million people are infected globally, and particularly
in Latin America, an endemic region. However, in recent decades, the infection has also
been detected in the United States, Canada, and in several European countries [2].

The main triatomine species responsible for T. cruzi transmission are Triatoma brasilien-
sis, Panstrongylus megistus, and Rhodnius prolixus [3,4] These vectors are hematophagous
insects that can acquire the parasite while feeding in infected mammal reservoirs [4,5].
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The complete development of T. cruzi depends on the success of the multiplication of
epimastigotes along the midgut of the vector, which might be affected by diverse factors
mainly related to the parasite strain, physiological aspects of the triatomine species, and
the intestinal microbiota [6,7]. The differentiation of T. cruzi into infective forms takes
place in the insect rectum [8,9]. Transmission can occur through the deposition of the
infective forms eliminated with the insect feces or urine near the bite in the host, or by the
contamination of food with infected feces, which is considered oral transmission [4,5,10].

The co-evolution between the parasite, the vector, and its microbiota can result in a
specific tripartite interaction. A specific parasite strain can modulate the insect immune
system and affect the gut microbiota. At the same time, the commensal bacteria can stimu-
late immune priming in the insect gut, protecting it from further parasite infection [11–13].
The microbiota is also fundamental for insect physiology, favoring insect digestion, and
priming the immune system [11–16]. In this sense, the gut bacterial microbiota impacts the
development of trypanosomatids in insects [17–19]. In R. prolixus, the intestinal microbiota
components identified to date are Serratia, Dietzia, Gordonia, Mycobacterium, Corynebacterium,
Rhodococcus, Pectobacterium, and Staphylococcus [17,20–24]. However, knowledge of the
interaction between the triatomine and the T. cruzi with the bacterial species Rhodococcus
rhodnii and Serratia marcescens is still scarce [17,18,23].

Rhodococcus rhodnii is a Gram-positive bacterium belonging to the Nocardiaceae family.
It was first observed in R. prolixus in 1926 by Duncan [25]. Wigglesworth described the
same bacteria in the gut of R. prolixus, Triatoma rubrofasciata, Triatoma infestans, and Triatoma
flavida [26]. It has been shown that egg surfaces and adult feces transmit R. rhodnii to the
gut epithelium of the newborn insect. Subsequently, several authors have demonstrated
the close relationship between R. rhodnii and R. prolixus. Aposymbiotic nymphs, free of
R. rhodnii [27,28] and nymphs fed with rabbit blood immunized against R. rhodnii [29],
did not reach adulthood. The symbiotic relationship between R. rhodnii and R. prolixus
in the digestive tract was also suggested by supplementing aposymbiotic nymphs with
B-complex vitamins, which allowed insect ecdysis, as described by Lake and Friend [30].
The ability of R. rhodnii for vitamin B synthesis was recently confirmed by the annotation
of its genome [31]. A recent work demonstrated that not only R. rhodnii can supply B-
complex vitamins to R. prolixus, but also different microbes from Rhodnius microbiota are
able to produce vitamin B derivatives, due to the fact that they have the necessary genes
required for the biosynthesis of this vitamin complex [32]. Different methods of parasite
development control in the insect digestive tract, through paratransgenesis, have been
proposed by several authors [33–35].

S. marcescens, a Gram-negative bacterium, belongs to the Enterobacteriaceae family. It
is a ubiquitous bacterium found in different environments and the digestive tract of diverse
animals [36] S. marcescens is found frequently in different species of triatomines collected
both in the field and laboratory insectaries [21,24]. In R. prolixus, the S. marcescens strains
isolated from the intestinal microbiota have in vitro trypanolytic activity against T. cruzi
epimastigotes [19]. In addition, in vivo infections of R. prolixus with T. cruzi Dm28c strain
reduce the expression of S. marcescens 16S rRNA in the anterior midgut [7,20]. S. marcescens
is also found in the microbiota of other vector insects. The use of genetically modified
Serratia has been proposed for the secretion of anti-plasmodium molecules in the mosquito
Anopheles, as a paratransgenesis strategy to avoid parasite infection, preventing its trans-
mission [37]. In addition to its beneficial effects on insects’ digestion and development, the
intestinal microbiota is also essential in maintaining the homeostasis of the digestive tract
immune response [16,38,39]. Vieira et al. [39] showed that Gram-negative Escherichia coli
and Gram-positive Staphylococcus aureus oral infection induce differential antimicrobial
peptide expression in the R. prolixus midgut [39]. Therefore, it is crucial to analyze the ef-
fects of R. rhodnii and S. marcescens (both bacteria naturally colonize the R. prolixus digestive
tract), on Rhodnius immune response, in addition to their interactions with T. cruzi.

In this context, the present work evaluated the modulation of S. marcescens and
R. rhodnii on R. prolixus expression of antimicrobial peptides (AMPs), antimicrobial activity,
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phenoloxidase (PO) activity, and the production of reactive nitrogen species (RNS) through
the expression of nitric oxide synthase (NOS). The insect immune responses modulated by
each commensal bacteria could be used as a strategy to eliminate the parasite development
in the insect. This may be the basis for the biotechnological development of bacteria focused
on the expression of anti-parasitic agents, e.g., in the production of paratransgenic insects.
Knowledge of relationships between triatomines and microbiota are of great importance in
designing new control strategies for Chagas disease.

2. Results
2.1. Quantification of Serratia Marcescens and Rhodococcus Rhodnii by qPCR

Treatment of 4th instar nymphs with antibiotics (group Fa, Figure 1) resulted in a
significant decrease in the number of intestinal bacteria in the 5th instar nymphs after
they received a regular blood supply when compared to the control group not treated
with antibiotics (group C, Figure 1). This effect was observed for both intestinal bacteria
analyzed, R. rhodnii (p < 0.01; Figure 1A), and S. marcescens (p < 0.0001; Figure 1B).
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Figure 1. RT-qPCR determination of bacterial load in the anterior midgut of 5th instar nymphs of Rhodnius prolixus 7 days
after feeding. The insects were previously treated with antibiotics as 4th instar nymphs and orally recolonized with
Rhodococcus rhodnii or Serratia marcescens added to the blood meal of 5th instar nymphs. The antibiotic treatment consisted
of ampicillin, penicillin, and hygromycin, with final concentrations of 150, 150, and 1 µg/mL, respectively, of defibrinated
rabbit blood meal, and the treatment with R. rhodnii or S. marcescens added to the blood meal was 104 and 103 /mL,
respectively. Analysis of relative expression of 16S-rRNAs gene from (A) R. rhodnii and (B) S. marcescens by RT-qPCR.
Treatments: control (C); insects treated with antibiotics on 4th instar only (Fa); R. rhodnii (FaRr+); S. marcescens (FaSm+).
Each bar represents the mean of relative quantification (RQ) values of 2 experiments, each experiment with 2 pools of
5 insect tissues each, corresponding to 20 insects (n = 4). The relative quantification by the ∆∆Ct method was performed
using the control group (insects fed with blood only) as the calibrator. All data were normalized to the R. prolixus 18S-rRNA.
∆∆Ct values were analyzed by one-way ANOVA with the post-hoc Tukey test, ** p < 0.01; *** p < 0.001, **** p < 0.0001.

Insects fed with R. rhodnii in the 5th instar, after the antibiotic treatment in the 4th
instar (group FaRr+ in Figure 1A), had no significant difference in the amount of R. rhodnii
compared to the nymphs only treated with antibiotic (group Fa in Figure 1A) or nymphs
fed with S. marcescens (p < 0.0001; group FaSm+ in Figure 1A). However, the recolonization
with R. rhodnii (group FaRr+, Figure 1A) did not result in similar levels to those of the
control group, which was not treated with antibiotics (group C, Figure 1A). In the same
experiment, recolonization with R. rhodnii resulted in amounts of S. marcescens (group
FaRr+ in Figure 1B) that were comparable to controls not treated with antibiotics (p > 0.05;
group C in Figure 1B), significantly higher than antibiotic-treated insects fed with blood
only (p < 0.0001; group Fa in Figure 1B), and significantly lower than insects recolonized
with S. marcescens after the antibiotics treatment (p < 0.001; group FaSm+ in Figure 1B).

The 5th instar nymphs recolonized with S. marcescens, after treatment with antibiotics
in the 4th instar, showed no detectable R. rhodnii counts in the 5th instar (group FaSm+ in
Figure 1A). This result was significantly different than those of controls (p < 0.0001; group C
in Figure 1A), insects treated with antibiotics (p < 0.01; group Fa in Figure 1A), and insects
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treated with antibiotics and fed with R. rhodnii (p < 0.0001; group FaRr+ in Figure 1A).
As expected, this group of insects (FaSm+) orally recolonized with S. marcescens after
treatment with antibiotics had significantly higher amounts of S. marcescens (group FaSm+
in Figure 1B) than insects treated with R. rhodnii (p < 0.001, group FaRr+ in Figure 1B),
controls (p < 0.0001; group C in Figure 1B), and antibiotic-treated insects (p < 0.0001; group
Fa in Figure 1B).

Another set of experiments was standardized using 1st instar aposymbiotic nymphs.
Initially, we checked if these insects were free from contamination by S. marcescens and
R. rhodnii. For this, the expression of 16S rRNA genes of bacteria was also quantified. We
observed that the aposymbiotic nymphs showed a reduction in the amount of S. marcescens
(p < 0.001) and R. rhodnii (p < 0.05) in the anterior midgut when compared to control
nymphs (Figure 2).
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Figure 2. Determination of bacterial load in the anterior midgut of 1st instar nymphs of Rhodnius prolixus 5 days after
feeding. Relative abundance of (A) R. rhodnii 16S rRNA (and (B) S. marcescens 16S rRNA. Treatments: Control group: eggs
and insects kept in contact with adult feces; Aposymbiotic group: eggs treated with povidone-iodine 1% and maintained in
sterile conditions. Each bar represents the mean of relative quantification (RQ) values of 2 experiments, each experiment
with 2 pools of 5 insect tissues each, corresponding to 20 insects (n = 4). The relative quantification by the ∆∆Ct method
was performed using the relative abundance of 18S rRNA of R. prolixus as the calibrator. ∆∆Ct values were analyzed by an
unpaired Student’s t-test, * p < 0.05; *** p < 0.001.

2.2. Phenoloxidase Enzyme Activity

After establishing the treatments with antibiotics and oral treatments with R. rhodnii
and S. marcescens, we analyzed the PO activities in the hemolymph of the 5th instar nymph
groups 7 days after feeding (DAF). The hemolymph PO activity in insects treated with
antibiotics and fed with untreated blood (Fa) (p < 0.01) was higher than that in controls
without antibiotics treatment (C) (Figure 3). The PO activity in the insects treated with
antibiotics and recolonized with R. rhodnii (FaRr+) and S. marcescens (FaSm+) was similar
to that for the controls (C).

2.3. Antibacterial Activity

Two different biological fluids were assayed for antibacterial activity in 5th instar
nymphs collected 7 DAF: the hemolymph and anterior midgut (Figure 4). These samples
were tested against two different bacteria: S. aureus, a Gram-positive bacterium, and E. coli,
a Gram-negative bacterium. In the hemolymph, no significant differences were observed
in the antibacterial activities among the tested groups (Figure 4A).

In contrast, in the anterior midgut (Figure 4B), the insects recolonized with S. marcescens
(FaSm+) had higher antibacterial activity against E. coli when compared to the antibiotic-
treated group (Fa) (p < 0.01) and higher antibacterial activity against E. coli when compared
with the same group (FaSm+) tested against S. aureus (p < 0.001).
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Figure 4. Antibacterial activity in the hemolymph and anterior midgut of 5th instar nymphs of Rhodnius prolixus 7 days
after feeding. The treatments and group names are as described in Figure 1. The antibacterial activities were measured
in vitro using (A) hemolymph and (B) anterior midgut, samples tested against E. coli (yellow bars) and S. aureus (orange
bars) through the turbidimetric assay (OD550 nm) after 15 h incubation. Bars represent the mean ± SEM of two independent
experiments with pools of 10 insects each; for each condition tested, n is represented above the bars. Means were compared
between the different treatments (C, Fa, FaRr+ and FaSm+) and the different bacteria (E. coli and S. aureus) using two-way
ANOVA with the post-hoc Tukey test; ** p < 0.01; *** p < 0.001; ns: not significant.

2.4. Antimicrobial Peptides (AMP) Gene Expression

The 5th instar nymphs recolonized with R. rhodnii (FaRr+) had DefA expression
levels in the fat body around 16-fold higher when compared to the group treated with
antibiotics only (Fa) (p < 0.0 5, Figure 5A). Recolonization with S. marcescens (FaSm+) did
not result in significant changes in DefA expression in the fat body (p > 0.05; Figure 5A).
In the anterior midgut, the expression levels of DefA were significantly higher in the R.
rhodnii-recolonized (FaRr+) (p < 0.0001) and antibiotic-treated (Fa) (p < 0.05) groups when
compared to the controls (Figure 5B). The S. marcescens recolonized (FaSm+) group had
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similar DefA expression when compared to controls but significantly lower (p < 0.0001)
when compared to the antibiotic-treated (Fa) group (Figure 5B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 17 

 

2.4. Antimicrobial Peptides (AMP) Gene Expression 
The 5th instar nymphs recolonized with R. rhodnii (FaRr+) had DefA expression levels 

in the fat body around 16-fold higher when compared to the group treated with antibiotics 
only (Fa) (p < 0.0 5, Figure 5A). Recolonization with S. marcescens (FaSm+) did not result 
in significant changes in DefA expression in the fat body (p > 0.05; Figure 5A). In the ante-
rior midgut, the expression levels of DefA were significantly higher in the R. rhodnii-recol-
onized (FaRr+) (p < 0.0001) and antibiotic-treated (Fa) (p < 0.05) groups when compared to 
the controls (Figure 5B). The S. marcescens recolonized (FaSm+) group had similar DefA 
expression when compared to controls but significantly lower (p < 0.0001) when compared 
to the antibiotic-treated (Fa) group (Figure 5B). 

Regarding the DefC gene, insects recolonized with S. marcescens (FaSm+) had higher 
expression levels in the fat body than the controls and the antibiotic-treated (Fa) groups 
(p < 0.05; Figure 5C). In the anterior midgut, the antibiotic-treated (Fa), R. rhodnii (FaRr+), 
and S. marcescens (FaSm+) recolonized groups had higher expressions levels of DefC when 
compared to the control group (p < 0.0001; Figure 5D). The S. marcescens (FaSm+)-recolo-
nized group demonstrated lower DefC expression when compared to the antibiotic-
treated group (Fa) (p < 0.01; Figure 5D). 

 
Figure 5. Antimicrobial peptide genes relative expression in the fat body (FB) and anterior midgut 
(AM) of Rhodnius prolixus 5th instar nymphs. The nymphs were previously fed with only antibiotic 

Figure 5. Antimicrobial peptide genes relative expression in the fat body (FB) and anterior midgut (AM) of Rhodnius prolixus
5th instar nymphs. The nymphs were previously fed with only antibiotic (Fa), R. rhodnii plus antibiotic (FaRr+), or S.
marcescens plus antibiotic (FaSm+). Fat body (FB) and anterior midgut (AM) were collected 7 days after feeding. Relative
expression of DefA (A,B), DefC (C,D), and Prol in (E,F) were analyzed in the fat body (A,C,E) and anterior midgut (B,D,F).
Data were quantified using the gene expression of control insects as the calibrator. Bars represent the mean of 2 independent
experiments—2 pools of 5 tissues each, with a total of 20 insects (n = 4). ∆∆Ct values were analyzed by one-way ANOVA
compared with the post-hoc Tukey test, * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Regarding the DefC gene, insects recolonized with S. marcescens (FaSm+) had higher
expression levels in the fat body than the controls and the antibiotic-treated (Fa) groups
(p < 0.05; Figure 5C). In the anterior midgut, the antibiotic-treated (Fa), R. rhodnii (FaRr+),
and S. marcescens (FaSm+) recolonized groups had higher expressions levels of DefC
when compared to the control group (p < 0.0001; Figure 5D). The S. marcescens (FaSm+)-
recolonized group demonstrated lower DefC expression when compared to the antibiotic-
treated group (Fa) (p < 0.01; Figure 5D).

There were no significant differences in the abundance of Prol transcripts between
treatments in the fat body (p > 0.05; Figure 5E). In the anterior midgut, all treated groups
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had a lower relative expression of Prol when compared to controls (Fa, p < 0.0001; FaRr+,
p < 0.01; FaSm+, p < 0.0001; Figure 5F). Insects of the group FaRr+ had higher expression
of Prol than antibiotic-treated Fa (p < 0.05) insects. The FaSm+ group presented decreased
Prol expression when compared to the antibiotic-treated group (Fa, p <0.0001; Figure 5F).

In 1st instar nymphs, there were no significant differences in the expression of DefA
in the anterior midgut when comparing aposymbiotic and control 1st instar nymphs
(Figure 6A). Aposymbiotic nymphs showed an increase in the relative amounts of DefC
(p < 0.01 Figure 6B) and Prol transcripts (p < 0.05; Figure 6C) when compared to the control
group.
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Figure 6. Relative expression of antimicrobial peptide genes in the anterior midgut (AM) of Rhodnius
prolixus 1st instar nymphs 5 days after feeding. (A) DefA; (B) DefC; (C) Prol. Treatments: control
group: eggs and insects were kept in contact with adult feces; aposymbiotic group: eggs previously
treated with povidone-iodine 1% and maintained in sterile conditions. Data were quantified using
the gene expression of control insects as the calibrator. Each bar represents the mean of relative
quantification (RQ) values of 2 independent experiments—2 pools of 5 tissues each, with a total
of 20 insects (n = 4). Bars represent the mean of 2 independent experiments—2 pools of 5 tissues
each, with a total of 20 insects (n = 4). ∆∆Ct values were analyzed by an unpaired Student’s t-test,
* p < 0.05; ** p < 0.01.
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2.5. Nitric Oxide Synthase (NOS) Gene Expression

Regarding NOS expression in the fat body insects recolonized with R. rhodnii (FaRr+)
had significantly lower relative levels when compared to the control (p < 0.01) and antibiotic-
treated (Fa) groups (p < 0.01; Figure 7A). Treatment with antibiotics (Fa) did not result in
significant NOS expression changes compared to controls (Figure 7A). The FaSm+-infected
group had lower levels of NOS when compared to the control group (p < 0.001), to the
antibiotic-treated (Fa) group (p < 0.01), and to the R. rhodnii-recolonized (FaRr+) group
(p < 0.05; Figure 7A).
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Figure 7. Nitric oxide synthase (NOS) relative expression in fat bod (FB) (A) and anterior midgut
(AM) (B) of 5th instar nymphs of Rhodnius prolixus 7 days after feeding. The insects were previously
treated with antibiotics as 4th instar nymphs and recolonized with Rhodococcus rhodnii or Serratia
marcescens added to the blood meal of 5th instar nymphs. The treatments and group names are
as described in Figure 1 Each bar represents the mean of relative quantification (RQ) values of
2 experiments, each with 2 pools of 5 insect tissues, with a total of 20 insects (n = 4). The relative
quantification by the ∆∆Ct method was performed using the control group (insects fed with blood
only) as the calibrator. ∆∆Ct values were analyzed by one-way ANOVA with the post-hoc Tukey
test, * p < 0.05; ** p < 0.01; *** p < 0.001. The level of expression of the control group (arbitrarily set
as 1) is shown with the dotted line. Asterisks above individual bars show significant differences to
the controls, and asterisks above brackets show differences between two experimental groups.

In the anterior midgut, insects recolonized with R. rhodnii (FaRr+) had higher levels of
NOS transcripts when compared to control groups and the group treated with antibiotics
(Fa) (p < 0.01 and p < 0.05, respectively; Figure 7B).

3. Discussion

Rhodnius prolixus nymphs engage in coprophagy, which is essential for the acquisition
of microorganisms from the other insects of their colony [40]. These ingested environ-
mental microorganisms may contribute to triatomine development and protection against
pathogenic microorganisms [13,41]. Herein, we observed the modulation of the R. pro-
lixus immune system working with two described bacterial species associated with this
triatomine, the symbiont Rhodococcus rhodnii and the generalist Serratia marcescens.

Initially, the insects were treated with a mixture of antibiotics that succeed to eliminate
R. rhodnii and S. marcescens from the anterior midgut contents (Figure 1). We observed
that the anterior midgut of the antibiotic-treated insects (Fa) presented higher expression
of the AMPs DefA (8.6-fold) and DefC (50-fold), and reduced expression of Prol when
compared with the control (Figure 5B,D,F). The aposymbiotic (egg surface-sterilized) 1st
instar R. prolixus also presented higher expression of DefC and Prol in the anterior midgut in
comparison to controls (Figure 6B,C). The upregulation of AMP genes was also observed in
aposymbiotic hemiptera, Dysdercus fasciatus [42], and in larvae of Drosophila with nutrient
deprivation [43].
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It is known that the disturbance of the microbiota bacteria community by insect
antibiotic treatment and diet diversity may cause metabolic and immunological imbal-
ance [43–46]. Here, we observed that the pre-treatment with antibiotics also increased the
PO activity in the hemolymph of R. prolixus (Figure 3). In contrast, the downregulation of
PO activity in the R. prolixus midgut treated with antibiotics was observed in a previous
publication [18]. However, the combination of antibiotics used was different and probably
altered the microbiota composition in a different pattern. Furthermore, the tissues analyzed
here and in [18] were different. The reduction of some bacteria from the insect gut micro-
biota could cause an imbalance in the proportion of microorganisms favoring the growth of
other microorganism species, which are potentially pathogenic. This imbalance is known
as dysbiosis; dysbiosis is associated with an intense immune stimulus in Drosophila [47],
and could be the reason for the high PO activities and AMP expression observed in the 4th
instar nymphs treated with antibiotics or 1st instar aposymbiotic nymphs.

The recolonization of each commensal bacterium in the antibiotic-treated insects
succeeds in growing the desired bacteria in the insect gut. Although the FaSm+ group was
fed with antibiotics in the 4th instar and with S. marcescens in the 5th instar, there was an
unexpected growth of R. rhodnii (Figure 1). We hypothesize that the presence of S. marcescens
provides an indirect and unknown source of growth of other microorganisms, and this
phenomenon needs to be better studied. Furthermore, we recognize that the experimental
elimination of bacteria from the insect’s gut microbiota, followed by recolonization with
only one commensal bacterium, may be limited due to several microbiota community
effects that may not be captured by an experimental design.

The overexpression of the antimicrobial peptide transcript DefC was also observed in
the anterior midgut of R. prolixus treated with antibiotics and recolonized with R. rhodnii
and S. marcescens (groups FaRr+ and FaSm+; Figure 5). Similarly, DefC expression was also
enhanced in R. prolixus after the following challenges: injection into hemocoel of Enterobacter
cloacae [48], and oral infection with Escherichia coli [39], T. rangeli, and T. cruzi [7,49]. In
addition, some authors demonstrated that the expression of DefC was suppressed in
R. prolixus after challenge with S. aureus, a Gram-positive bacterium, through injection and
oral infection [39,48].

However, suppression of DefC expression appears to be more induced by Gram-
negative bacteria and Trypanosoma spp. infection in R. prolixus, but additional roles of this
AMP need further investigation. In the case of these trypanosomatids, the increase in the
expression of DefC was associated with the reduction of the microbiota population [7]. The
expression of DefA was also upregulated in R. prolixus recolonized with R. rhodnii, a Gram-
positive bacterium, as in the case of S. aureus infection, which also increased DefA mRNA
levels [39]. However, in the sand fly Lutzomyia longipalpis, oral feeding with different
Gram-negative bacteria, such as E. coli, Ochrobactrum sp., and S. marcescens stimulated and
increased defensin expression [50].

The AMP prolixicin, isolated initially from the R. prolixus fat body, has a higher in vitro
effect on Gram-negative bacteria [51]. Vieira et al. [39] observed a downregulation of Prol
transcript production in the anterior midgut of R. prolixus fed with E. coli. In agreement,
downregulation of the Prol mRNA levels was observed in insects previously treated with
antibiotics and in insects recolonized with S. marcescens (Figure 5). The low level of Prol
transcripts was also observed in the control group of 1st instar nymphs that had a greater
amount of S. marcescens than R. rhodnii, indicating that the effect is similar at different
stages of development (Figure 6).

In addition to the higher expression of defensins A (Figure 5), higher PO activities
were observed (Figure 3) in the hemolymph of antibiotic-treated and R. rhodnii-recolonized
(FaRr+) groups when compared to controls. Although the bacteria of intestinal microbiota
reside in the digestive tract, the microbiota reduction can interfere with the immune
responses of the hemocoel in a systematic manner, as observed in the bean bug, Riptortus
pedestris [52]. In this model, the insect line harboring the gut symbiont Burkholderia had
higher humoral responses in the hemolymph when compared to the group lacking the
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gut symbiont [52]. In aposymbiotic tsetse flies (Glossina morsitans), reduced numbers of
circulating and sessile hemocytes, and prophenoloxidase expression levels, were observed,
making flies more susceptible to infection with the normally non-pathogenic E. coli [53].

Antibacterial activity occurs with the sum of humoral factors that prevent bacterial
growth, which mainly relies on the activity of AMPs, but also on PO activity and the
release of ROS and RNS [18,38,54]. It was previously observed that R. prolixus modulates
antibacterial activity depending on the challenged bacterial species [39]. In the present
work, the insects recolonized with S. marcescens presented higher antibacterial activity
against the Gram-negative bacteria E. coli (Figure 4), which may be due to the effect of
the increased defensin C in the anterior medium intestine also observed in these insects.
In contrast, these insects presented lower antibacterial activity against the Gram-positive
S. aureus. However, in R. prolixus infected with S. aureus, the anterior midgut contents
had high antibacterial activity in vitro against the same bacteria, S. aureus, but not against
E. coli [39], whereas insects infected with E. coli presented an increased antibacterial activity
against S. aureus in the posterior midgut. Therefore, these antibacterial factors need to be
further investigated.

The expression of NOS in the anterior midgut of insects recolonized with R. rhodnii
demonstrated a four-fold increase when compared to controls. The excess of RNS pro-
duced by NOS causes a nitrosative stress that must be avoided, especially in the insect
hemocoel. In Anopheles gambiae, the gut bacteria have genes responsible for regulating
oxidative and nitrosative stress [55]. In previous work, our group observed a negative
relationship between NOS expression and the development of Trypanosoma cruzi in the gut
of R. prolixus [56]. This raises the question of whether R. rhodnii affects the development of
trypanosomatids in the anterior midgut.

It is known that the intestinal microbiota can affect the vectorial competence of
insect vectors in different ways, such as by competition for resources, by secretion of
antipathogenic molecules, or by modulation of the insect’s immune response [57–59].
A. gambiae treated with antibiotics becomes more susceptible to infection by Plasmodium
falciparum [60] and the infection of A. gambiae with S. marcescens demonstrates an anti-
plasmodium effect [61].

This knowledge may lead to discovering new methods to block the transmission
of pathogens, such as paratransgenesis. The use of S. marcescens in paratransgenesis to
control T. cruzi transmission by triatomines could be considered. S. marcescens is found in
several triatomine species captured in the field and the laboratory [21,24,49]. In addition,
S. marcescens has also been proposed as a tool for controlling pathogen transmission
by other insect vectors [62]. Moreover, bacteria such as R. rhodnii have proven to be a
suitable candidate to be applied in paratransgenic approaches [33,35,40,63–65]. Here, we
hypothesized that increased NOS gene expression in R. prolixus gut caused by R. rhodnii
recolonization could be used as a strategy to prevent T. cruzi development in the vector
since augmented NOS production in the host is related to a limiting factor for parasite
infection. In conclusion, investigations about the mechanisms by which the gut microbiota
interferes in vectorial competence are essential to find new targets for vector-borne disease
insects.

4. Materials and Methods
4.1. Ethics Statement

Rabbit blood was provided by the Instituto de Ciência e Tecnologia em Biomodelos
(ICTB/Fiocruz), which maintains and breeds animals following the Ethical Principles
in Animal Experimentation. Blood collection was licensed and approved by Comissão de
Ética no Uso de Animais from Fundação Oswaldo Cruz (CEUA/Fiocruz) under the protocol
number L-019/17.
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4.2. Insects Maintenance

R. prolixus was maintained in an insectary at Laboratório de Bioquímica e Fisiologia de
Insetos (LABFISI) of Instituto Oswaldo Cruz (IOC) at the Fundação Oswaldo Cruz (Fiocruz), at
26–27 ◦C and 55–60% humidity. Insect feedings were regularly performed using defibri-
nated rabbit blood added to an artificial apparatus [66]. Only fully engorged insects were
selected for the assays.

4.3. Bacteria Maintenance and Preparation for Recolonization

R. rhodnii isolated from R. prolixus insectary from Swansea University was kindly
provided by Prof. Norman Ratcliffe. A colony of R. rhodnii was inoculated in 10 mL of
Tryptone soy broth (TSB) (Sigma-Aldrich, St. Louis, MO, USA) and maintained in an
incubator at 30 ◦C, 90 rpm for 48 h before use for insect feeding.

S. marcescens strain A1 was previously isolated from R. prolixus of the LABFISI insectary
by Mota [20]. It was deposited in the Coleção de Enterobacterias (CENT) at the Fiocruz, Brazil.
A colony of this bacteria was inoculated in 20 mL of TSB and maintained at 30 ◦C, 90 rpm
for 18 h. Before using for insect recolonizations, bacteria were preserved at 4 ◦C for 24 h to
diminish virulence.

Both bacteria were washed in phosphate-buffered saline (PBS) (Sigma-Aldrich,
St. Louis, MO, USA) (0.01 M phosphate buffer, 2.7 mM potassium chloride, and 0.137 M
sodium chloride, pH 7.4) 2 times by centrifugation at 1890× g for 10 min at 4 ◦C, and the
supernatant was removed. They were then suspended in PBS for a final concentration of
103 and 104 cells/mL and counted in a Neubauer chamber. All bacteria stocks were kept at
−70 ◦C in brain–heart infusion (BHI) (Sigma-Aldrich, St. Louis, MO, USA) liquid media
containing 10% (v/v) glycerol.

4.4. Insect Treatments and Recolonization

The commensal recolonization was done with two main bacteria, S. marcescens and
R. rhodnii, encountered in the intestinal microbiota of R. prolixus from the insectary of
LABFISI. S. marcescens is the most abundant species and R. rhodnii is the well-studied
symbiont, both from R. prolixus. To clear the general bacteria from R. prolixus intestinal
microbiota, the insects were treated with a combined antibiotic. Previous experiments with
different antibiotic concentrations established the mixture of antibiotics capable of reducing
the population of S. marcescens and R. rhodnii in the R. prolixus gut, causing minimal impact
on mortality and ecdysis when compared to non-treated controls (Figure S1 and Figure 1).
Therefore, the antibiotics standardized were ampicillin, penicillin and hygromycin (all
purchased form Sigma-Aldrich, St. Louis, MO, USA), with respective final concentrations
of 150, 150, and 1 µg/mL in defibrinated rabbit blood meal.

The 4th instar R. prolixus nymphs were starved for 30–40 days before treatments.
Control groups (C) were fed on defibrinated rabbit blood at the 4th instar and subsequently
after ecdysis, as were 5th instar nymphs. The blood containing the mixture of antibiotics
was offered to a group of 4th instar nymphs which was, after ecdysis, subsequently fed
blood alone or blood containing bacteria, as with 5th instar nymphs. Concentrations of
bacteria given to the insects were selected for lack of impact on mortality and ecdysis
(Figure S1). The S. marcescens or R. rhodnii were offered to the 5th instar nymphs previ-
ously treated with antibiotics at respective final concentrations of 1 × 103 cells/mL and
1 × 104 cells/mL, respectively, in defibrinated blood. Only fully engorged insects were
selected after oral treatments. For the immune assays, insect samples were collected at
7th day after feeding (DAF) due to the known dynamic of bacterial growth [17] and greater
intensity of immune response activation in 5th instar nymphs of R. prolixus after blood
ingestion [7,18,67]. The scheme of treatments is summarized in Table 1.
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Table 1. The protocol designed to treat the different groups of Rhodnius prolixus nymphs.

Insect Groups
4th Instar 5th Instar

Antibiotic Treatment † Bacteria Recolonization

Control (C) _ _
Antibiotics (Fa) + _

S. marcescens + antibiotics (FaSm+) †† + +
R. rhodnii + antibiotics (FaRr+) ††† + +

† A mixture of antibiotics was added to the blood meal at final concentration of ampicillin (150 µg/mL), penicillin
(150 µg/mL), and hygromycin (1 µg/mL). †† S. marcescens (FaSm+) was added to the blood meal in final
concentration of 1 × 103 cells/mL. ††† R. rhodnii (FaRr+) was added to the blood meal in final concentration of
1 × 104 cells/mL.

4.5. Aposymbiotic Nymphs

To better understand the same events at another stage of development, the AMPs ex-
pression in the 1st instar stage was also observed. Adult R. prolixus females were separated
for oviposition immediately after feeding. They were maintained in aseptic conditions
for five days for egg collection. Glass vials used in aseptic conditions were autoclaved
containing pieces of filter paper inside, and covered with a sterile cover made of cotton
and gauze that protected the vial against contamination and allowed air passage. After
being collected, the eggs were separated into two groups: aposymbiotic and control. The
aposymbiotic group was obtained by sterilizing the eggs’ surface with commercial povi-
done (1% of active iodine v/v) for 20 min and washing three times with sterile water [63].
The eggs treatment with commercial povidone does not affect egg hatching time, nor
nymph viability. Then, eggs were maintained in the same sterile conditions as described
for oviposition. Control eggs were washed in water and kept in non-sterile conditions
inside a glass with filter paper impregnated with adult feces from the insectary.

Two weeks later, the 1st instar nymphs, from sterilized and control eggs, were fed
inside the laminar flow cabinet, using autoclaved artificial feeders as described before, in
sterile conditions.

4.6. Antimicrobial Peptides (AMPs) and NOS Gene Expression, and Quantification of Serratia
Marcescens and Rhodococcus Rhodnii by qPCR

The 5th instar nymphs recolonized with bacteria at the 7th DAF were dissected to
obtain two pools of five fat bodies and anterior midgut samples each. In addition, 1st
instar nymphs, and aposymbiotic and control nymphs, were dissected 5 DAF to obtain the
anterior midguts, which were separated into two pools of five tissue samples each [39].
Total RNA was extracted using a NucleoSpin® RNA II Kit (Macherey-Nagel, Düren, Ger-
many) using the manufacturer’s instructions, and quantified using a NanoDrop 2000
Spectrophotometer® (Thermo Scientific, Waltham, MA, USA). cDNA was synthesized with
a First-Strand cDNA Synthesis Kit® (GE Healthcare, Buckinghamshire, UK) following the
manufacturer’s protocol using 2.5 µg of total RNA and pd(N)6 primer (Table S1). The
cDNA obtained was quantified by fluorescence using a Qubit Fluorimeter (Life Technolo-
gies) with the ssDNA assay kit. Real-time quantitative polymerase chain reactions (qPCR)
were performed in an ABI PRISM 7500 Sequence Detection System® (Applied Biosystems)
at the PDTIS/Fiocruz facilities.

Each measurement was made in triplicate for each pool of insects (two pools of five
tissues; n = 2, representing 10 insects). Each reaction contained 10 ng cDNA, primers
(0.25 µM), and the GoTaq qPCR master mix (Promega) in a final volume of 20 µL. Reactions
were incubated at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C
for 1 min. As negative controls, reactions were carried out without the cDNA template.
Melting curve analysis was carried out to confirm that only a single product was amplified
for each target. Primers used are described in Supplementary Table S1. The AMPs analyzed
herein was defensins A and C and prolixicin. Defensin B was not investigated here, since as
previously seen, DefB is significantly downregulated during parasite infection, difficulting
gene expression assessment by RT-qPCR due primer dimer formation [7]. The AMPs and
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NOS gene expression in the tissues of R. prolixus were quantified by the comparative Ct
(∆∆Ct) method [68], using GAPDH, α-tubulin and 18S-rRNA as R. prolixus housekeeping
genes. Data were analyzed by the Expression Suite v1.0.3 software (Life Technologies),
considering the amplification efficiency of each target.

4.7. Antibacterial Activity

To analyze the antibacterial activity in the hemolymph and anterior midgut, we used
the turbidimetric assay as previously described [39].

Dissections of 5th instar nymphs were performed on 7th DAF. Hemolymph was
collected from the insects after sanitizing the cuticle with 70% alcohol. Then, the forelegs
were cut off and the hemolymph with free-circulating hemocytes was collected by pipetting.
Three pools with 10 insects each were used, obtained in 2 different experiments (n = 6,
representing 60 insects) and diluted 1:1 in ultrapure water in sterile 1.5 mL tubes containing
1.5 µL of a saturated solution of phenylthiourea to avoid melanization. The anterior midgut
was homogenized in 200 µL of PBS and centrifuged at 10,000× g for 1 min at 4 ◦C. Aliquots
of 70 µL of the supernatant were transferred into tubes containing 630 µL of ultrapure water.
All samples were filtered in a sterile 0.22 µm filter and maintained in sterile conditions,
frozen at −20 ◦C until the assays.

For these assays, we used Escherichia coli (K12 4401) and Staphylococcus aureus (9518),
both obtained from the National Collection of Industrial and Marine Bacteria (NCIMB),
Aberdeen, UK. Cultures of bacteria in exponential growth were washed in PBS as previ-
ously described [39] and diluted in tryptone soy broth (TSB) to a final concentration
of 1 × 104 cells/mL (90 uL sample + 10 uL of bacterial culture in a concentration of
1 × 105 cells/mL). Controls were performed with the growth of the same concentrations
of bacteria in peptone.

The bacterial growth was measured at 550 nm (OD550) during a 15 h incubation at
37 ◦C, with readings at hourly intervals in a microplate reader (SpectraMax 190, Molecular
Devices). Data points were blanked against time zero, and the readings of the control
wells were subtracted from all sample readings. The antibacterial activity is the difference
between the readings of the bacteria growth in the control wells and the readings of bacteria
growth in the sampled wells.

4.8. Phenoloxidase (PO) Assay

For PO activity measurement, the hemolymph was collected as described above in
three replicates of 5 insects (n = 15). Samples were collected 7 DAF and diluted ten times
in 10 mM sodium cacodylate buffer pH 7.4. The method was performed as described by
Genta et al. [67].

The assay was prepared in triplicate by incubating 10 µL of the sample with 35 µL
of 10 mM sodium cacodylate buffer pH 7.4 and 25 µL of a saturated solution of L-DOPA
(4 mg/mL in sodium cacodylate buffer). The absorbance at 490 nm was measured for
120 min at 37 ◦C, with readings taken every 15 min in a microplate reader (SpectraMax 190,
Molecular Devices). The values of enzymatic activity are expressed as abs/min.

4.9. Statistical Analyses

Statistical analysis was performed using GraphPad Prism 8.0.2 (San Diego, CA, USA).
The D’Agostino–Pearson omnibus K2 normality test was used for verification of Gaussian
distributions. For comparison of normally distributed data, an unpaired Student’s t-test
or one-way ANOVA or two-way ANOVA was used depending of the numbers of groups
tested, followed by Tukey’s multiple comparison tests. The F-test was used to check the
equality of variances between samples. Differences among groups were considered statisti-
cally significant when p < 0.05. Results are reported as mean ± error (SEM). Probability
levels are specified in the text and figure legends. For survival analysis, a Kaplan–Meier
plot was used.
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