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HIV-1 viremia persists at low-levels despite clinically effective antiretroviral therapy (ART).
Here we review new methods to quantify and characterize persistent viremia at the single
genome level, and discuss the mechanisms of persistence including clonal expansion
of infected cells and tissue origins of viremia. A deeper understanding of how viremia
persists on ART is critically important to the design of therapies to eliminate viremia and
achieve a functional cure for HIV-1.
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INTRODUCTION

Over the last 30 years there have been great strides made in the diagnosis and treatment of HIV-1
infection. The broad implementation of antiretroviral therapy (ART) has saved the lives of many
millions of persons with HIV (Palella et al., 1998), but has also uncovered the persistence of HIV-1
on ART, both as a latent reservoir and as an expression of low-level viremia (Chun et al., 1995,
1997a,b; Finzi et al., 1997; Wong et al., 1997; Dornadula et al., 1999). Studies of patients on ART
revealed two sources of plasma viremia: (1) short-lived, productively infected CD4+ T-cells that
produce bursts of virus and then die; and (2) long-lived cells capable of producing viremia that
is below the limit of detection of commercial assays (Ho et al., 1995; Wei et al., 1995; Perelson
et al., 1996, 1997; Dornadula et al., 1999). Longitudinal studies of persistent plasma HIV-1 viremia
below the limit of detection of commercial assays in persons on long-term ART have provided a
biphasic model of viremia decay, including an initial decay phase with a half-life of 39 weeks and a
more slowly decaying phase with a half-life of 11 years (Maldarelli et al., 2007; Palmer et al., 2008;
Riddler et al., 2016). These studies showed a positive association between persistent plasma viremia
and pre-ART plasma HIV-1 RNA. Riddler et al. (2016) reported that persistent plasma viremia was
associated with higher CD8 T-cell counts and a lower CD4/CD8 ratio on ART, both markers of
incomplete immune recovery. The source(s) and mechanisms of persistent HIV-1 plasma viremia
are still largely uncharacterized despite improved detection methods. Because persistent viremia
represents a major barrier to HIV-1 cure, its characterization and clearance remain a high priority.
Here we review some recent advances in measuring and identifying the origins of persistent viremia.

PERSISTENT HIV-1 VIREMIA ON ART

Measurement and Recent Improvements
The development of more sensitive, reverse-transcriptase initiated quantitative PCR (RT qPCR)
assays revealed that more than half of individuals on ART with plasma HIV-1 RNA suppressed
below the limit of detection of commercial assays (20–40 copies/ml) still have detectable HIV-1
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RNA in plasma, averaging around 1–3 copies/mL (Dornadula
et al., 1999; Palmer et al., 2003, 2008; Maldarelli et al., 2007;
Zheng et al., 2013; Riddler et al., 2016). Recent innovations
have improved the measurement of this low-level plasma HIV-1
RNA. The first-generation two-step qRT-PCR assay with single
copy sensitivity targeted HIV-1 gag (gSCA) and required 6–
7 mL of plasma (Palmer et al., 2003). A subsequent single
copy qRT-PCR assay targeted a highly conserved region of
integrase in HIV-1 pol (iSCA v1.0) and enhanced nucleic
acid recovery from a smaller volume of plasma (Cillo et al.,
2014). Despite highly successful implementation in many
clinical studies, iSCA v1.0 required ultracentrifugation and
only assayed about half of the total extracted nucleic acid for
HIV-1 RNA. In the most recent iteration of a single-copy
assay (iSCA v2.0), ultracentrifugation is replaced with tabletop
centrifugation and a greater proportion (∼80%) of the total
extracted nucleic acid is tested for HIV-1 RNA. Importantly,
when equal volumes of the same donor plasma were tested using
versions of iSCA, 55% of the samples that had no HIV-1 RNA
detected by iSCA v1.0 had HIV-1 RNA detected by iSCA v2.0
(Tosiano et al., 2019a).

Automated, next-generation commercial platforms can
reproducibly measure HIV-1 RNA in plasma above the
limit of quantification (20–200 copies/mL depending on
the platform) (Wiesmann et al., 2018). Although individual
measurements using commercial platforms do not provide
the sensitivity of manual single copy assays, automated
platforms have potential as a screening tool. For example, results
reported by either Roche or Abbott automated platforms
as <20 or <40 copies/mL respectively (also known as
“detected but not quantifiable”) are almost always detected
and quantified by manual single copy assay (Margot et al.,
2018; Tosiano et al., 2019b), whereas automated platform
results indicating “no target detected” are associated with
a significantly lower frequency of HIV-1 RNA detection
by manual single copy assays. In addition, Bakkour et al.
(2019) have reported that reasonable estimates of HIV-1
RNA copies/mL below the limit of quantification can
be obtained using automated platforms to test multiple
replicates of plasma to generate a combination of detected,
non-detected, and detected but not quantifiable results.
Each sample can be assigned a value for HIV-1 RNA by
applying a mathematical algorithm based upon the qualitative
readouts. Comparisons are in progress of HIV-1 RNA levels
obtained by manual single copy assays versus multiple
replicates on automated platforms. An automated platform
with single copy sensitivity would have distinct advantages
over more labor intensive and lower throughput, manual
single copy assays.

Association of Persistent Viremia With
Cell-Associated HIV-1 DNA
The half-life of persistent plasma viremia on stable ART,
calculated using decay dynamics modeling, is more than
11 years (Riddler et al., 2016). Interestingly, decay of HIV-1
proviral DNA-containing cells on ART was recently reported

to have a similar half-life of 13 years (Gandhi et al., 2017).
Although it is enticing to suggest that the similar half-lives
of total cell-associated HIV-1 DNA and plasma HIV-1 RNA
on ART represent a direct association between infected cells
and persistent plasma viremia, it is important to note that
proviral DNA-containing cells rarely contain full-length, intact
proviruses. In fact, less than 1–10% of proviruses that persist on
ART are capable of producing infectious virus (Fourati et al.,
2012; Ho et al., 2013; Bruner et al., 2019). Despite this data, many
have reported direct associations of varying degrees between
qPCR measures of the proviral reservoir (total cell-associated
HIV-1 DNA) and persistent plasma viremia, suggesting that
they are related (Chun et al., 2011; Mexas et al., 2012; Hong
et al., 2018). The recent development of an assay capable of
quantifying intact proviral DNA (Intact Proviral DNA Assay,
IPDA) will help address questions regarding the degree of
correlation between total and intact cell-associated DNA and
plasma viremia (Bruner et al., 2019). Intact proviral DNA
correlated modestly with ex vivo measurements of inducible,
infectious virus outgrowth. However, such quantitative viral
outgrowth assays (qVOAs) have not correlated with levels of
persistent plasma viremia in individuals on ART (Siliciano
et al., 2003; Eriksson et al., 2013). qVOAs have also been
shown to underestimate the size of the reservoir by missing the
fraction of intact provirus that is non-inducible ex vivo; this
fraction could contribute to plasma viremia in vivo (Ho et al.,
2013; Bruner et al., 2019). As such, assays that quantify intact
proviruses may show stronger correlations with plasma viremia
than total HIV-1 DNA. Studies are currently in progress to assess
this possibility.

Association of Persistent Viremia With
Cell-Associated HIV-1 RNA
Measurements of various forms of cell-associated bulk HIV-
1 RNA have been used to estimate proviral transcriptional
activity, both at steady-state and in response to latency
reversal agents (Pasternak et al., 2008; Strain and Richman,
2013; Kiselinova et al., 2014; Kearney et al., 2015; Procopio
et al., 2015; Hong et al., 2016; Li et al., 2016; Yukl et al.,
2018). Whether cell-associated HIV-1 RNA correlates with
production of plasma virus is debated. Typically, PCR-based
approaches have targeted a single small region of bulk
HIV-1 RNA. Although important information about HIV-
1 pathogenesis has been garnered from these assays, their
utility for assessing latency reversal or changes in viremia
have been questioned (Eriksson et al., 2013; Archin et al.,
2014; Elliott et al., 2014). In a recent study, cell-associated
unspliced HIV-1 RNA strongly correlated with plasma viremia
in untreated individuals, but not in individuals on ART (Hong
et al., 2018). These conflicting results could be attributed to
the accumulation of defective provirus after ART initiation
(Bruner et al., 2016) leading to production of defective
transcripts that do not result in virion production (Imamichi
et al., 2016; Pollack et al., 2017; Wiegand et al., 2017).
Interestingly, an analysis of various forms of cell-associated
HIV-1 RNA transcripts that are expressed following treatment
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with latency reversal agents showed very different expression
profiles depending upon the conditions and agent used,
most of which did not lead to production of full-length
polyadenylated transcripts (Yukl et al., 2018; Moron-Lopez
et al., 2019). Given the uncertain value of measuring cell-
associated HIV-1 RNA in all infected cells, assays that measure
HIV-1 RNA transcribed only from intact proviruses (and
therefore more likely to produce plasma virus) are likely to
be more useful for assessing interventions aimed at perturbing
and/or eliminating the HIV-1 reservoir (Wiegand et al., 2017;
Yucha et al., 2017).

SOURCES OF PERSISTENT HIV-1
VIREMIA ON ART

Cell and Tissue Sources
Understanding the source of persistent viremia is critically
important for the design of interventions to eliminate it.
While the source of persistent viremia is likely multi-faceted
and variable across individuals, ongoing studies are seeking
common sources of viremia that could serve as more specific
therapeutic targets. In virologically suppressed individuals, most
HIV-1 proviral DNA is found in resting CD4+ T-cells (Chun
et al., 1997a; Finzi et al., 1997; Wong et al., 1997). Though
not considered a major contribution to the reservoir, other
cells types such as monocytes, macrophages, and hematopoietic
stem cells have been reported to harbor proviral DNA (Sonza
et al., 2001; Zhu et al., 2002; Zaikos et al., 2018; Mitchell
et al., 2019). The propensity for white blood cells to circulate
throughout the body and penetrate various tissues and lymphoid
organs provides an opportunity for infected cells to access
ordinarily anatomically protected and/or immune-privileged
sites. As such, HIV-1 RNA and/or DNA have been detected
widely across tissues in virologically suppressed individuals,
including in lymph nodes (Perreau et al., 2013), cerebrospinal
fluid (Dahl et al., 2014; Spudich et al., 2019), adipose tissue
(Couturier et al., 2015; Damouche et al., 2015), gut-associated
lymphoid tissue (GALT) (Lampinen et al., 2000; Anton et al.,
2003; Belmonte et al., 2007); and most recently, in the urethra
(Ganor et al., 2019).

By contrast, the cellular and/or tissue reservoir(s) that
contribute to persistent plasma viremia have not been clearly
identified. It is possible that multiple sources contribute to
variable degrees, and that sources vary between individuals.
Historically, comparison of sequences of persistent plasma virus
and total cell-associated proviral DNA in circulating CD4+
T-cells have rarely identified matches. This finding is likely
because limited sequencing methods may not detect rare intact
provirus that are producing virus. Indeed, in a study in
which intensive sampling and single genome sequencing were
performed, proviral sequences were detected that did match
persistent plasma virus (Bailey et al., 2006). Another likely
explanation for the discrepancy between proviral and plasma
viral sequences is that most of the cellular reservoir of HIV-1 is
found in anatomically protected and immune-privileged sites and
is absent from the peripheral CD4+ T-cells. A combination of

assays that can detect and characterize intact proviruses and HIV-
1 mRNA in both tissues and blood samples should help identify
the likely source(s) of persistent viremia.

Viral Replication or Proviral Expression
as the Major Source of Persistent
Viremia?
A longstanding debate is whether low-level viremia on ART
results from ongoing, complete cycles of viral replication or is
from clonally expanded infected T cells that produce virions
but that do not infect new cells because they are protected by
antiretrovirals (Finzi et al., 1997; Wong et al., 1997; Lorenzo-
Redondo et al., 2016). As shown in Figure 1, complete
cycles of viral replication give rise to rapid accumulation
of mutations attributed to the error-prone nature of reverse
transcriptase. An additional consequence of productive cycles of
viral replication is multiple integrations of proviral DNA into
different locations in chromosomal DNA. Conversely, expansion
of infected cells through cellular proliferation produces identical
HIV proviral sequences and identical integration sites in cell
progeny. Importantly, a subset of these cell progeny can contain
transcriptionally active proviruses that produce virions (Figure 1;
Bailey et al., 2006; Wagner et al., 2014, Wiegand et al., 2017). For
example, Simonetti et al. (2016) reported the detection of a highly
expanded CD4+ T-cell clone containing an intact provirus that
was a source of persistent viremia on ART.

It has been reported that anatomical sanctuary sites such as
the lymph nodes can allow residual viral replication on ART,
contributing to maintenance of the HIV reservoir (Lorenzo-
Redondo et al., 2016). However, a reanalysis of this data revealed
(1) a limited data set after adjusting for PCR resampling and
hyper-mutated sequences, (2) limited unique HIV RNA and DNA
sequences that were available (median of 5 per sample, range
0–37), (3) sampling time points that may not have taken into
account the shifting dynamics of the HIV DNA population within
the first year of ART, and (4) inconsistent evidence of viral
evolution using more complex analyses (Kearney et al., 2017).
These results, along with previous studies reporting no evidence
of HIV-1 evolution on suppressive ART in chronically infected
adults, as well as in children treated shortly after birth when viral
diversity is low, argue against active viral replication being the
major source of persistent viremia (Joos et al., 2008; Kearney
et al., 2014; van Zyl et al., 2017). Additionally, the presence
of invariant sequences and the absence of sequence divergence
during prolonged ART, or during and after analytical treatment
interruption, is indicative of long-lived cells infected and argues
against viral replication. As there have been additional reports
of viral replication on ART due to low drug penetration and
exclusion of immune cells in anatomical sanctuary sites (Buzón
et al., 2010, 2011; Sigal et al., 2011; Hatano et al., 2013; Luo et al.,
2013; Patterson et al., 2013; Cardozo et al., 2014; Fletcher et al.,
2014; Piovoso and Zurakowski, 2014; Puertas et al., 2014), some
residual low-level viral replication on ART cannot be definitively
ruled out. Nevertheless, the weight of the evidence discussed
above argues against viral replication as the major source of
persistent viremia.
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FIGURE 1 | Differentiating Viral Replication From Clonal Expansion with Proviral Expression as the Source of Persistent Viremia on ART. Integration site and HIV
sequence analyses can be used to assess the origin of proviral expansion and/or viremia. Productive cycles of viral replication result in both genetic heterogeneity
due to errors introduced by reverse transcriptase, and variation in the chromosomal integration site of the HIV provirus. Conversely, clonal expansion results in
identical chromosomal HIV integration sites in cell progeny, identical proviral sequences, and identical viral sequences from the subset of cell in the clone that
produce virus. See text for more details.

Finally, the recent discovery by multiple groups that most
of the inducible, infectious virus comes from clonally expanded
T-cells argues for cellular proliferation and against ongoing viral
replication as the major mechanism for persistence of HIV-
1 reservoirs (Lorenzi et al., 2016; Bui et al., 2017; Hosmane
et al., 2017). Additional studies are in progress to determine
whether most persistent viremia is of clonal cell origin, as has
already been described in one instance of an individual with
advanced malignancy (Simonetti et al., 2016). Identifying the
clonal origin of viremia requires in depth analyses, including full-
length single genome sequencing of HIV-1 RNA from plasma
and viral outgrowth cultures, and HIV DNA from infected cells,
to identify possible clones, with confirmation of clonality by
integration site analyses (Palmer et al., 2005; Maldarelli et al.,
2014; Bui et al., 2017).

Clearing Persistent Viremia
Many interventions are being investigated for their ability to
clear the HIV-1 reservoir and achieve a functional or sterilizing
cure. Among the strategies being studied are: (1) latency
reversal to induce viral protein production and expose infected
cells to the immune system; (2) engineering immune cells
for artificial priming of an HIV-specific immune response or
targeted killing of infected cells; (3) gene therapy for alteration
of target cell susceptibility to prevent HIV-1 infection; (4)
passive immunotherapy with antibodies identified as broadly
HIV neutralizing (bnAbs) to clear viremia and infected cells;
and combinations of these approaches. These diverse strategies

are reviewed elsewhere (Deeks et al., 2016). A promising
monoclonal bnAb targeting the CD4 binding site of the HIV-
1 envelope (VRC01) has been extensively evaluated for safety,
neutralization capacity and pre-existence or development of
resistance. Given its high efficacy in neutralizing free virus and
the property of bnAbs to promote antibody-dependent cell-
mediated cytotoxicity, VRC01 was evaluated in individuals on
long-term ART for its effect on persistent plasma viremia and
infected cells. Intravenous infusions of VRC01 in individuals
on long-term ART did not lead to any change in markers of
the reservoir such as cell-associated proviral DNA and RNA,
or in levels of persistent plasma viremia (Lynch et al., 2015;
Riddler et al., 2018). These disappointing results suggest that
persistent virus is either resistant to VRC01 binding or VRC01
effector functions are impaired, such as Fc-mediated clearance
or antibody-dependent cellular cytoxicity (ADCC). Work is
ongoing to identify the reason(s) for the lack of effect of VRC01
on reservoir markers and on improving the breadth and effector
function of bnAbs.

UNANSWERED QUESTIONS AND
CONCLUDING REMARKS

Whether persistent plasma viremia in individuals on long-term
ART consists of infectious virus remains unclear. It has been
shown, at least in some instances, that a portion of the persistent
viremia produced by infected cell clones is infectious and

Frontiers in Microbiology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 2383

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02383 October 15, 2019 Time: 12:33 # 5

Jacobs et al. Persistent HIV-1 Viremia on ART

contributes to rebound virus when ART is stopped (Simonetti
et al., 2016; Kearney et al., 2017). Since only an intact gag gene is
required for virion production and budding (Delchambre et al.,
1989), a scenario in which non-infectious virus is released into
the plasma and contributes to persistent plasma viremia is also
possible. This possibility may help explain the lack of correlation
between levels of persistent plasma viremia and the quantity of
inducible, infectious virus ex vivo (Siliciano et al., 2003; Eriksson
et al., 2013; van Zyl et al., 2018). Studies evaluating the ability of
virions present in persistent plasma viremia to infect target cells
would be useful to address this question.

It is also unclear whether viremia that rebounds following
ART interruption is coming from the same source as that
producing persistent viremia on ART. Interestingly, a recent
study linked clonal proviral populations in infected cells to clonal
sequences in rebounding viremia after treatment interruption,
showing that infected cell clones are an important viral reservoir
(De Scheerder et al., 2019). The report also described preliminary
evidence of linkage between virus in plasma and rebound
virus in a subset of individuals. Additional studies examining
sequences from persistent viremia and rebound virus will further
inform the question of the relevance of persistent viremia to
rebound off ART.

In conclusion, although unanswered questions remain,
remarkable progress has been made toward measuring and
characterizing persistent plasma viremia in individuals on ART
since it was first reported in 1999. Mounting evidence indicates
that persistent HIV-1 viremia on ART largely arises from clonally
expanded CD4+ T-cells, although some contribution of ongoing
viral replication cannot be excluded. Future and ongoing studies

to further characterize clonal populations producing low-level
viremia and their mechanisms of escape from immune clearance
will be important to achieve a functional cure.
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