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Abstract: In this study, bismuth oxybromide/reduced graphene oxide (BiOBr/RGO), i.e. BiOBr-G
nanocomposites, were synthesized using a one-step microwave-assisted method. The structure of
the synthesized nanocomposites was characterized using Raman spectroscopy, X-ray diffractometry
(XRD), photoluminescence (PL) emission spectroscopy, scanning electron microscopy (SEM), trans-
mission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-
visible diffuse reflection spectroscopy (DRS). In addition, the ability of the nanocomposite to degrade
methylene blue (MB) under visible light irradiation was investigated. The synthesized nanocom-
posite achieved an MB degradation rate of above 96% within 75 min of continuous visible light
irradiation. In addition, the synthesized BiOBr-G nanocomposite exhibited significantly enhanced
photocatalytic activity for the degradation of MB. Furthermore, the results revealed that the separa-
tion of the photogenerated electron–hole pairs in the BiOBr-G nanocomposite enhanced the ability
of the nanocomposite to absorb visible light, thus improving the photocatalytic properties of the
nanocomposites. Lastly, the MB photo-degradation mechanism of BiOBr-G was investigated, and the
results revealed that the BiOBr-G nanocomposites exhibited good photocatalytic activity.

Keywords: photocatalytic activity; bismuth oxybromide; graphene; microwave-assisted synthe-
sis; nanocomposites

1. Introduction

Since 1972, the principle and applications of photocatalysis have been extensively
investigated. Recently, with the increase in environmental protection awareness, photo-
catalysis has attracted significant attention for the treatment of environmental pollution
and the conversion of solar energy [1–3]. As an advanced oxidation process, photocatalysis
generates electron–hole pairs via light irradiation of photocatalysts. This photocatalytic
degradation reaction can be attributed to the excitation of electron radiation in the va-
lence band (VB) to the conduction band (CB) and the formation of holes with positive
charges in the VB. During photocatalysis, the adsorbed material further reacts with the
electron and hole to produce numerous oxidized substances that can degrade some organic
pollutants [4,5].

Titanium dioxide (TiO2) is a traditional photocatalyst with high photocatalytic ac-
tivities and low toxicity [6,7]. Currently, TiO2 is the most commonly used photocatalytic
material owing to its low toxicity, which significantly limits its negative impact on the
environment [8]. However, the large band gap of TiO2 (3.2 eV) limits its ability to effec-
tively convert solar energy. This is because it can only be excited by ultraviolet (UV) light
(λ < 390 nm), which makes up only approximately 7% of the solar spectrum [9]. To increase
the effective utilization of solar energy, researchers have devoted tremendous efforts to de-
veloping a new photocatalyst that can perform photocatalysis in the visible light range and
clean the environment in an effective and environmentally friendly manner [10]. Bismuth
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oxyhalides (BiOX, X = Cl, Br, and I) have attracted increased attention for the visible light
photocatalytic degradation of organic pollutants [11,12]. Liu et al. [13] combined BiOI with
BiOCl or BiOBr to prepare BiOI/BiOCl, which exhibited a methyl orange (MO) removal
of 78% after 150 min visible light irradiation. In addition, Meng et al. [14] utilized Pd
surface-modified BiOBr nanoparticles to degrade phenol and found that the nanoparticles
exhibited a 100% phenol removal after 300 min visible light irradiation. However, the re-
combination of the photogenerated electrons and holes of BiOX reduces the photocatalytic
activity of the catalyst [15]. The high electron and hole recombination rates of BiOX have
restricted its further application. [16,17].

Graphene is a well-known special material globally [18]. The lifetime of the electron–
hole pairs of a photocatalyst can be enhanced by adding graphene materials to the pho-
tocatalyst. This is because the high conductivity of graphene reduces charge recombi-
nation [19]. Consequently, graphene-based photocatalysts have attracted tremendous
attention owing to their photocatalytic efficiency. For example, Liang et al. [20] synthesized
NiFe2O4-reduced graphene oxide (RGO) nanocomposites and found that these materials
exhibited 99.1% methylene blue (MB) removal under 180 min UV irradiation. In addition,
Liu et al. [21] prepared an RGO-wrapped TiO2 hybrid and found that the catalyst exhibited
100% MB removal under 150 min UV irradiation. Furthermore, Patil et al. [22] synthesized
BiVO4/Ag/rGO hybrid architectures and found that the catalyst exhibited approximately
90% MB dye removal.

Several methods, such as ultrasonication, hydrothermal method, solvent heat method,
and the sol-gel method, are used for the synthesis of photocatalysts. In a previous study,
an H3PW12O40/TiO2 composite photocatalyst was prepared using a high-intensity ul-
trasonication method at a low temperature (80 ◦C). The H3PW12O40/TiO2 photocata-
lyst exhibited a 95% MB degradation rate under 90 min solar irradiation [23]. In addi-
tion, Vadivel et al. [24] synthesized an Sm-BiOBr/rGO composite photocatalyst using a
solvothermal method by utilizing methanol as the solvent. The synthesized photocatalyst
exhibited promising potential for the degradation of various hazardous chemicals and or-
ganic pollutants. Behera et al. [25] synthesized a series of ZnFe2O4@RGO nanocomposites
using hydrothermal and calcination methods and investigated their applications for the
degradation of ciprofloxacin. Farhadian et al. [26] synthesized N, S-doped TiO2 (NST), N,
S-doped ZnO (NSZ), and their composites with chitosan (NST/CS, NSZ/CS) using the
sol gel-hydrothermal method. They found that NST/CS exhibited the highest tetracycline
degradation efficiency of 91% under 20 min visible light exposure. Chamjangali et al. [27]
prepared nanoflower-like Ag-ZnO photocatalysts using a photoreduction and solution
precipitation method and investigated their application for the photocatalytic degradation
of MO and MB. Kumar et al. [28] synthesized Ag/TiO2 by dispersing Ag nanoparticles
into ethanol under sonication, after which TiO2 was added to the ethanol solution. The
synthesized catalyst exhibited the photocatalytic degradation of MB under UV-C light irra-
diation. Liang et al. [29] synthesized magnetic Fe3O4@BiOI@AgI spheres using a multi-step
process. The synthesized spheres exhibited excellent visible light driving activity against
RhB, BPA, and E. coli cells. Sanaa et al. [30] synthesized yBiOBr-(1−y)BHO heterojunction
using hydrothermal synthesis and solution mixing methods, and the heterojunction exhib-
ited enhanced visible-light photocatalytic properties. Some researchers have synthesized
nanocomposites by combining BiOBr and graphene and investigated their potential for the
degradation of organic pollutants in wastewater. Jiang et al. [31] synthesized BiOBr-RGO
nanocomposites using the hydrothermal method, and they found that the nanocomposites
exhibited 100% nitrobenzene degradation after 360 min visible light irradiation. These
studies indicate that the introduction of RGO to BiOBr could enhance its visible-light pho-
tocatalytic activity. Janani et al. [32] synthesized a magnetic RGO–BiOBr (MRGO–BiOBr)
composite by subjecting MRGO and BiOBr to ultrasonication separately for 30 min, after
which they were mixed together under magnetic stirring for 24 h. The effects of parameters,
such as catalytic dose and initial dye concentration, were investigated under visible light
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irradiation. The results revealed that the composite exhibited 76.24% MB dye removal after
120 min visible light irradiation.

However, the large energy consumption and long reaction time of these methods have
limited their further application. To overcome these challenges, in this study, we employed
a simple, efficient, time-saving, and environmentally friendly, one-step synthesis method
for the synthesis of photocatalyst nanocomposites. The fabrication of nanomaterials using
microwaves is an environmentally friendly and cost-effective method. In addition, the
microwave-assisted method can obtain high-purity products, improve product yields,
and increase reproducibility [33]. In this study, BiOBr, a photocatalyst with visible light
photocatalytic ability, was selected and combined with RGO to synthesize a BiOBr/RGO
(BiOBr-G) photocatalyst. Furthermore, the microwave-assisted method was employed
to synthesize BiOBr-G within short durations, and the photocatalytic activity of these
nanomaterials was investigated. In addition, the crystal structure, morphology, functional
groups, absorption spectra, and photocatalytic mechanism were investigated using various
methods. The photocatalytic activity of the nanocomposites was investigated by evalu-
ating their MB degradation ability. BiOBr and BiOBr-G photocatalysts were successfully
synthesized, and their pollutant degradation abilities were investigated. Lastly, their effects
on electron–hole pair separation were also discussed.

2. Materials and Methods
2.1. The Materials Used

Bismuth nitrate Bi(NO3)3·5H2O was obtained from Sigma-Aldrich (St. Louis, MO,
USA). Potassium bromide (KBr) and natural graphite powder (99.99%, metals basis) were
purchased from Alfa Aesar (Haverhill, MA, USA). All of the chemicals used in the study
were of analytical grade. The aqueous solutions were prepared using deionized (DI) water.

2.2. Preparation of Graphene Oxide

In this study, GO was synthesized from graphite powder using the modified Hummers
method [34]. Briefly, 70 mL of concentrated sulfuric acid (Japan Chemicsl Industries Co.
Ltd, Shimizu-ku, Japan ) was placed in an ice bath and cooled to 5 ◦C. Subsequently,
graphite powder, NaNO3, and KMnO4 were added into the flask and stirred evenly for 2 h.
Thereafter, 300 mL of DI water and 10 mL of 30% hydrogen peroxide were added to the
solution to stop the reaction. Subsequently, the solution was subjected to suction filtration,
after which the product was placed in 500 mL of 5% hydrochloric acid and stirred 30 min to
remove the remaining metal ions. Thereafter, the HCl solution was removed and washed
with DI water several times until the pH of the GO suspension was neutral. Lastly, the
suspension was filtrated and dried in an oven for 12 h at 70 ◦C to obtain the GO powders.

2.3. Synthesis of the BiOBr-G Nanocomposites

BiOBr-G nanocomposites with various GO weight percentages were synthesized
using the microwave-assisted method. Briefly, 0.4608 g Bi(NO3)3·5H2O was dissolved
in 25 mL of ethylene glycol, after which the mixture was dispersed in an ultrasonic bath
for 15 min. Simultaneously, GO powders were dissolved in 10 ml of ethylene glycol,
after which the mixture was subjected to magnetic stirring for 30 min. Subsequently,
0.2380 g of KBr was added to the Bi(NO3)3·5H2O solution, after which the mixture was
stirred at room temperature for 0.5 h. Thereafter, the GO solution was carefully added
to the afore-mentioned solution, and the solution was stirred continuously for 30 min.
Subsequently, the mixture was transferred into a 50 mL Teflon-lined vessel, and the mixture
was maintained at 90 ◦C for 15 min. The precipitates were collected by centrifugation and
washed three times with DI water and ethanol. Thereafter, the precipitates were dried in an
oven at 80 ◦C overnight. For comparison, pure BiOBr and RGO were also prepared using a
similar process. The BiOBr-G nanocomposites with RGO content of 0.5, 1, and 5 wt% were
labeled as BiOBr-G0.5, BiOBr-G1, and BiOBr-G5, respectively. The schematic illustration of
the synthesis process is shown in Figure 1.



Materials 2021, 14, 4577 4 of 14

Materials 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

°C overnight. For comparison, pure BiOBr and RGO were also prepared using a similar 148 
process. The BiOBr-G nanocomposites with RGO content of 0.5, 1, and 5 wt% were labeled 149 
as BiOBr-G0.5, BiOBr-G1, and BiOBr-G5, respectively. The schematic illustration of the 150 
synthesis process is shown in Figure 1. 151 

 152 
 153 

Figure 1. Schematic illustration of the synthesis process of the BiOBr-G nanomaterial. 154 

2.4. Photocatalytic Activity 155 
The photocatalytic efficiency of the BiOBr-Gs nanocomposites was investigated. The 156 

photocatalytic reactions of the nanocomposites were investigated using a PCX50B Dis- 157 
cover multi-channel photoreactor (Perfect Light Technology Ltd, Beijing, China). A 5 W 158 
white light Light-emitting diode lamp was used as the light source to provide visible light 159 
with a wavelength of above 420 nm. The MB used in this study was a model pollutant that 160 
must be removed. To prepare the sample used for the photocatalytic analysis, 30 mg of 161 
as-prepared samples was weighed into a quartz flask, after which 50 ml of 2×10−5 M MB 162 
solution was added. Subsequently, the solution was stirred in the dark for 10 min to 163 
achieve adsorption–desorption equilibrium, after which the solution was subjected to ir- 164 
radiation. The photocatalytic reaction was carried out under visible light irradiation for 165 
75 min, and 3 mL of the as-prepared solution was collected every 15 min. The collected 166 
MB solutions were centrifuged (14000 RPM, 3 min) to remove the sample powder. The 167 
degradation of MB was evaluated by measuring the characteristic absorption of MB solu- 168 
tion at 664 nm using a CT-2200 UV-vis spectrophotometer (ChromTech Co. Ltd; Apple 169 
Valley, MN, USA ). After measurement, the collected samples were re-injected to the 170 
quartz flask, and the experimental condition was maintained. 171 

The removal efficiency of the target pollutant was determined using the following 172 
equation: 173 Removal ሺ%ሻ ൌ ሺ1 − C୲C଴ሻ ൈ 100% (1)

 

 

where C0 and Ct are the initial concentration and concentration of MB at time t, respec- 174 
tively. 175 

2.5. Characterization 176 

Figure 1. Schematic illustration of the synthesis process of the BiOBr-G nanomaterial.

2.4. Photocatalytic Activity

The photocatalytic efficiency of the BiOBr-Gs nanocomposites was investigated. The
photocatalytic reactions of the nanocomposites were investigated using a PCX50B Discover
multi-channel photoreactor (Perfect Light Technology Ltd, Beijing, China). A 5 W white
light Light-emitting diode lamp was used as the light source to provide visible light with
a wavelength of above 420 nm. The MB used in this study was a model pollutant that
must be removed. To prepare the sample used for the photocatalytic analysis, 30 mg of
as-prepared samples was weighed into a quartz flask, after which 50 mL of 2 × 10−5 M MB
solution was added. Subsequently, the solution was stirred in the dark for 10 min to achieve
adsorption–desorption equilibrium, after which the solution was subjected to irradiation.
The photocatalytic reaction was carried out under visible light irradiation for 75 min, and
3 mL of the as-prepared solution was collected every 15 min. The collected MB solutions
were centrifuged (14,000 RPM, 3 min) to remove the sample powder. The degradation
of MB was evaluated by measuring the characteristic absorption of MB solution at 664
nm using a CT-2200 UV-vis spectrophotometer (ChromTech Co. Ltd; Apple Valley, MN,
USA). After measurement, the collected samples were re-injected to the quartz flask, and
the experimental condition was maintained.

The removal efficiency of the target pollutant was determined using the follow-
ing equation:

Removal (%) =

(
1− Ct

C0

)
× 100% (1)

where C0 and Ct are the initial concentration and concentration of MB at time t, respectively.

2.5. Characterization

The as-synthesized BiOBr-G nanocomposites were synthesized using a microwave
(Flexiwave T660, Milestone srl, Sorisole, Italy). The crystal structure of the as-synthesized
nanocomposites was analyzed using powder X-ray diffraction (XRD, D8A25 eco, BRUKER
Co. Ltd, Billerica, MA, USA) with CuKα X-ray radiation (λ = 1.5418 Å) operated at 40 kV
and 25 mA. The morphology of the particles was observed using transmission electron
microscopy (TEM, Hitachi H-7500, Tokyo, Japan) at an accelerating voltage of 80 kV. The
surface morphology of the samples was investigated using scanning electron microscopy
(SEM, Jeolism -6930, Tokyo, Japan) equipped with a system of energy-dispersive spec-
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troscopy (EDS, INCAx act, Munich, Germany). The photoluminescence (PL, Hitachi
F-7000, Tokyo, Japan) spectra of the samples were obtained using a Hitachi F-7000 (Tokyo,
Japan) spectrometer at an emission wavelength of 300 nm. The Raman spectra were
determined using a Princeton Instruments Acton SP2500 (Acton, MA, USA) monochro-
matic/photographic spectrometer equipped with a nitrogen-cooled CCD detector and a
Spec-10 system. The light absorption properties of the samples were investigated using
UV−vis diffuse reflectance spectroscopy (DRS, JASCO IBXL0005-V770-EA, JASCO, Tokyo,
Japan). The chemical state of the composites was measured using Fourier-transform in-
frared spectrometer (FT-IR, JASCO FT/IR-6700, JASCO, Tokyo, Japan). A multi-channel
photochemical reaction system (Perfect Light Technology Ltd, PCX-50B, Beijing, China)
was used during the photocatalytic reaction experiment. The MB concentration was mea-
sured using a CT-2200 ultraviolet-visible (UV-Vis) spectrophotometer (ChromTech Co. Ltd.;
Apple Valley, MN, USA).

3. Results
3.1. Characterization of BiOBr and BiOBr-G
3.1.1. XRD Analysis

The GO, RGO, BiOBr, and the BiOBr-G nanocomposites synthesized using the microwave-
assisted method were analyzed using XRD (Figure 2). The XRD pattern of the GO exhibited
a distinct strong reflex at 2θ = 12.6◦, corresponding to the (001) crystal plane of GO. In ad-
dition, notable peaks were observed in the XRD pattern of the RGO at 2θ = 25.0◦and 43.1◦,
corresponding to the RGO (002) and (102) crystal plane, respectively [35]. However, the (001)
crystal plane of GO was not observed in the XRD pattern of the RGO, confirming the suc-
cessful reduction of GO by the microwave-assisted method. The XRD patterns of BiOBr and
BiOBr-G nanocomposites were consistent with the standard card number of pure tetragonal
phase BiOBr (JCPDS 09-0393) [36]. The main peaks of the XRD pattern were observed at
2θ = 10.9◦, 25.3◦, 31.7◦, 32.3◦, 39.3◦, 46.3◦, and 57.2◦, corresponding to the (001), (101), (102),
(110), (112), (200), and (212) crystal planes, respectively [37]. However, the (001) crystal plane
of GO was not observed in the XRD patterns of all the BiOBr-G samples, confirming the
successful reduction of GO. Furthermore, the typical diffraction peaks of RGO at 2θ = 25.0◦

and 43.1◦ were not observed in the XRD patterns of the BiOBr-G nanocomposites, which
could be attributed to the relatively low diffraction peak intensity of RGO [38].
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Figure 2. The XRD spectra of GO, RGO, BiOBr, and BiOBr-G samples (Black arrow show a standard
card JCPDS 09-0393 of pure BiOBr).

3.1.2. Raman Spectrum

Figure 3 shows the Raman spectrum of GO, RGO, and BiOBr-G. Two notable bands,
the D and G bands, were observed in the Raman spectra of GO and RGO, respectively. The
D band corresponded to the k-point phonon mode, which could be attributed to the sp3

defects in the carbon material, such as vacancies and edge effect. The G band could be
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attributed to the sp2 carbon atoms vibration model [39,40]. The D and G bands of GO were
observed at 1348 cm−1 and 1587 cm−1, respectively. In addition, the D and G bands of RGO
were observed at 1343 cm−1 and 1572 cm−1, respectively. However, no notable peak was
observed in the Raman spectrum of BiOBr. In addition, two bands were observed in the
Raman spectrum of BiOBr-G at 1365 and 1601 cm−1. The D band to G band intensity ratio
of BiOBr-G (ID/IG = 0.99) was slightly lower than that of the pure GO (ID/IG = 1.01). This
confirms the decrease in the sp3 domain of the carbon atoms in BiOBr-G and the increase
in the production of the graphene sp2 structure in BiOBr-G. According to the literature,
these results correspond to the high electron transport rate of BiOBr-G [41,42]. In addition,
the ID/IG value of BiOBr-G was higher than that of RGO (ID/IG = 0.89), indicating that the
RGO loaded with BiOBr has more defects than RGO. The shift of the D and G band in the
BiOBr-G Raman spectrum confirmed that the microwave-assisted synthesis achieved both
the reduction of GO and the formation of Bi-OBr-G [24,43].
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Figure 3. Raman spectra of the GO, RGO, BiOBr, and BiOBr-G nanocomposites. ID / IG is the ratio of
the integrated intensities of the D and G bands.

3.1.3. FTIR Spectroscopy

The FT-IR spectra of BiOBr and BiOBr-G nanocomposites are shown in Figure 4. A
notable band was observed in the FT-IR spectra of the BiOBr nanosheets at 514 cm−1,
which could be attributed to the typical symmetric A2u type of the Bi–O bond vibrations.
In addition, a similar band was observed in the FT-IR spectra of the BiOBr-G nanocom-
posite [44,45]. Furthermore, a wider absorption band was observed in the FT-IR spectra
of these samples at 3404 cm−1, which could be attributed to the O–H stretching mode of
adsorbed water or hydroxyl groups [46,47]. Moreover, the BiOBr-G sample exhibited the
typical FT-IR spectrum of BiOBr-G. This indicates that the addition of GO to BiOBr during
the microwave-assisted synthesis had no effect on the crystal structure of BiOBr [48].

3.1.4. Morphological Characterization

Figure 5a,b show the SEM image of BiOBr and BiOBr-G nanocomposites. The pure
BiOBr exhibited a thin flake structure with a two-dimensional relatively smooth surface,
which was assembled to flower-like microstructures [49]. However, the BiOBr-G nanocom-
posite exhibited a spherical structure formed by the assembly of smaller and denser
nanosheets. This indicates that the addition of RGO affected the crystallization process of
BiOBr and destroyed the existing micro-flower nanostructure of BiOBr, thus increasing the
dispersion and photocatalytic activity of BiOBr-G [50]. Furthermore, TEM was conducted
to investigate the structural characteristics of the BiOBr and BiOBr-G nanocomposites,
and the results are shown in Figure 5c, d. As shown in Figure 5c, BiOBr exhibits a thin
sheet stacked structure with a flat surface, which is consistent with the SEM results and
observation [51]. After the addition of RGO, the particle size of BiOBr reduced significantly,
and the dispersion on the wrinkled RGO increased. This indicated the successful prepara-
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tion of BiOBr-G. This is because RGO effectively controlled the crystal size of BiOBr and
prevented the agglomeration of nanoparticles [52]. In addition, after the addition of RGO,
the surface area of the BiOBr-G nanocomposite in contact with dye increased compared to
that of pure BiOBr owing to its smaller particle size. Consequently, the electron transfer
and photocatalytic activity of BiOBr were significantly enhanced [53].
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Figure 5. SEM images of (a) BiOBr and (b) BiOBr-G. TEM images of (c) BiOBr and (d) BiOBr-G.

3.1.5. UV-Vis Diffuse Reflectance Spectra

Figure 6a shows the UV-Vis diffuse reflectance spectra (DRS) results of BiOBr and
BiOBr-G nanocomposites. As shown in the image, both BiOBr and BiOBr-G exhibit a
wide and high absorption in the visible light range. In addition, the absorption peak of
BiOBr was observed at 445 nm. After adding RGO, the BiOBr-G absorption edge slightly
red-shifted to 462 nm. The optical band gap (Eg) of the BiOBr and BiOBr-G composites was
obtained using the Tauc relation, as follows [54]:

αhν = A(hν − Eg)n/2 (2)

where A is a constant, which depends on the transition probability; h is the Planck constant;
ν is the frequency of light; α is the absorption coefficient; and n is based on the transi-
tion property of the semiconductor [55]. For example, n = 2 corresponds to the indirect



Materials 2021, 14, 4577 8 of 14

transition of the semiconductor, whereas n = 1/2 corresponds to the direct transition of
the semiconductor. Previous studies have reported that the n of BiOBr is 2, indicating
that the transition property of BiOBr is indirect [56]. The plot of (αhν)1/2 vs. the photon
energy is shown in Fig. 6b. As shown in the image, the Eg value of the BiOBr and BiOBr-G
nanocomposites are 2.83 and 2.69 eV, respectively. The Eg value of the BiOBr is similar to
the previous study [24].
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3.1.6. PL Analysis

The PL spectra of BiOBr and BiOBr-G were obtained to investigate their electron–hole
recombination properties. With an increase in the PL intensity of a sample, its photon
separation rate decreases, thus increasing the electron–hole pair recombination. Conse-
quently, this reduces the photocatalytic activity of the sample [57]. Figure 7 shows the
PL spectrum of the as-synthesized BiOBr and BiOBr-G nanocomposites at an exciting
wavelength (λex) of 300 nm. The highest peaks of BiOBr and BiOBr-G were observed at
468 nm. However, the PL spectral intensity of the pure BiOBr was significantly stronger
than that of BiOBr-G. With an increasing in the RGO content, the intensity of the BiOBr-G
emission peak decreased, indicating that the addition of RGO enhanced the separation
of carriers. These results confirmed that photoelectrons moved from BiOBr to RGO and
that RGO facilitated the suppression of the electron–hole pair recombination [58]. This
indicates that a higher quantum efficiency can be achieved during photocatalytic reactions
by utilizing the hierarchical structure of BiOBr-G.

Materials 2021, 14, x FOR PEER REVIEW 9 of 15 
 

 

Figure 6. (a) Diffuse reflectance spectra (DRS) and (b) Tauc plots of the BiOBr and BiOBr-G nano- 335 
composites. 336 

3.1.6. PL Analysis 337 
The PL spectra of BiOBr and BiOBr-G were obtained to investigate their electron– 338 

hole recombination properties. With an increase in the PL intensity of a sample, its photon 339 
separation rate decreases, thus increasing the electron–hole pair recombination. Conse- 340 
quently, this reduces the photocatalytic activity of the sample [57]. Figure 7 shows the PL 341 
spectrum of the as-synthesized BiOBr and BiOBr-G nanocomposites at an exciting wave- 342 
length (λex) of 300 nm. The highest peaks of BiOBr and BiOBr-G were observed at 468 nm. 343 
However, the PL spectral intensity of the pure BiOBr was significantly stronger than that 344 
of BiOBr-G. With an increasing in the RGO content, the intensity of the BiOBr-G emission 345 
peak decreased, indicating that the addition of RGO enhanced the separation of carriers. 346 
These results confirmed that photoelectrons moved from BiOBr to RGO and that RGO 347 
facilitated the suppression of the electron–hole pair recombination [58]. This indicates that 348 
a higher quantum efficiency can be achieved during photocatalytic reactions by utilizing 349 
the hierarchical structure of BiOBr-G. 350 

 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 

Figure 7. PL spectra of the as-synthesized samples. λex is the wavelength of fluorescence excitation 368 

3.2. Photocatalytic Activity 369 
To investigate the photocatalytic properties of the fabricated samples, the MB degra- 370 

dation properties of commercial TiO2 (P25), BiOBr, and each BiOBr-G sample under visi- 371 
ble light were investigated (Figure 8a). The results revealed that the pure MB did not ex- 372 
hibit self-degrading properties under visible light; however, the addition of the photocata- 373 
lyst significantly improved the removal efficiency [59]. The order of MB removal percent- 374 
age of each material was: TiO2 P25 (29.74%) < BiOBr (67.25%) < BiOBr-G0.5 (71.37%) < 375 
BiOBr-G1 (90.80%) < BiOBr-G5 (96.41%). The photocatalytic activity of P25 under visible 376 
light was lower than those of the other samples, which could be attributed to the fact that 377 
the band gap of P25 is higher than that of BiOBr and BiOBr-Gs. This indicates that the P25 378 
sample exhibited the lowest MB removal rate compared to the other samples. In addition, 379 
the photocatalytic activity of all the BiOBr-G nanocomposites was significantly higher 380 
than that of BiOBr. These findings are consistent with the PL spectra in Figure 7. Further- 381 
more, the photoelectron–hole pair separation efficiency of the BiOBr-G sample was higher 382 
than that of the BiOBr sample, and it also exhibited an optimum photocatalytic activity 383 
performance. The addition of RGO to BiOBr significantly enhanced the photocatalytic ac- 384 
tivity of BiOBr, with the optimum RGO concentration being 5 wt%. In addition, the photo- 385 

Figure 7. PL spectra of the as-synthesized samples. λex is the wavelength of fluorescence excitation.



Materials 2021, 14, 4577 9 of 14

3.2. Photocatalytic Activity

To investigate the photocatalytic properties of the fabricated samples, the MB degra-
dation properties of commercial TiO2 (P25), BiOBr, and each BiOBr-G sample under visible
light were investigated (Figure 8a). The results revealed that the pure MB did not exhibit
self-degrading properties under visible light; however, the addition of the photocatalyst
significantly improved the removal efficiency [59]. The order of MB removal percentage of
each material was: TiO2 P25 (29.74%) < BiOBr (67.25%) < BiOBr-G0.5 (71.37%) < BiOBr-G1
(90.80%) < BiOBr-G5 (96.41%). The photocatalytic activity of P25 under visible light was
lower than those of the other samples, which could be attributed to the fact that the band
gap of P25 is higher than that of BiOBr and BiOBr-Gs. This indicates that the P25 sample
exhibited the lowest MB removal rate compared to the other samples. In addition, the
photocatalytic activity of all the BiOBr-G nanocomposites was significantly higher than that
of BiOBr. These findings are consistent with the PL spectra in Figure 7. Furthermore, the
photoelectron–hole pair separation efficiency of the BiOBr-G sample was higher than that
of the BiOBr sample, and it also exhibited an optimum photocatalytic activity performance.
The addition of RGO to BiOBr significantly enhanced the photocatalytic activity of BiOBr,
with the optimum RGO concentration being 5 wt%. In addition, the photo-induced electron
transfer rate from the BiOBr surface to the RGO surface increased with an increase in the
RGO loading, thus increasing the photocatalytic activity of the BiOBr-G nanocomposite.
The prepared photocatalyst follows the first-order kinetic model (Figure 8b), which can be
expressed using the following equation [60]:

− ln
C0

Ct
= kt (3)

where k and t are the rate constant and lighting time, respectively. The k values of
P25, BiOBr, BiOBr-G0.5, BiOBr-G1, and BiOBr-G5 are 0.00426, 0.0090, 0.0313, 0.0370, and
0.0392 min−1, respectively. The increase in the k value of BiOBr-G compared to that of
BiOBr indicates the short-term degradation of MB dye. In addition, the BiOBr-G5 nanocom-
posite exhibited the optimum photocatalytic effect, which was 4.36 times higher than that of
BiOBr. This result indicates that the addition of graphene to BiOBr significantly improved
the photocatalytic efficiency of BiOBr [61]. Table 1 shows the comparison of the MB re-
moval and rate constant of BiOBr-G5 to those of different materials investigated in previous
studies. The MB-removal percentage of BiOBr-G5 was similar to that of other materials;
however, the rate constant of BiOBr-G5 was higher than those of the other materials. This
result illustrates the enhanced MB-removal efficiency of BiOBr-G5.
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Table 1. MB removal rate and kinetic constant of various catalysts reported in previous studies.

Atalyst MB Removal (%) Rate Constant (min−1) References

BiOBr-G5 96.41 0.0392 This work
NiFe2O4-RGO 99.1 0.0199 [20]

Ag-ZnO ~100 — [27]
Ag/TiO2 36~90 0.001~0.008 [28]

BG-6 100 0.0087 [31]
NiFe0.5Nd1.5O4 93.4 — [62]

MnFe2O4-graphene ~99 0.0097 [63]
WO3/g-C3N4 95 0.01897 [64]

Fe2TiO5 ~100 0.016 [65]
T-BVO-600 98.93 0.0184 [66]

3.3. Photocatalytic Mechanisms

Figure 9 shows the photocatalysis mechanism of BiOBr-G under visible light irradia-
tion. The excitation of the electrons (e−) of the VB into the CB under visible light irradiation
leads to the generation of electron–hole pairs. The ECB and EVB of BiOBr were evaluated
using the equation below [67]:

EVB = χ − Ee + 0.5Eg (4)

ECB = EV − Eg (5)
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Figure 9. The photocatalytic mechanism diagram.

According to the DRS measurements, Ee is 4.5 eV, and it represents the energy of free
electrons on the hydrogen scale. In addition, EVB and ECB correspond to the edge potentials
of VB and CB, respectively. From the DRS results, χ is semiconductor electronegativity.
The χ of BiOBr was 6.17 eV, and the Eg of BiOBr-G was 2.69 eV. Using the afore-mentioned
equation, the EVB and ECB of BiOBr are approximately 3.02 and 0.33 eV, respectively [68].
The VB position of BiOBr is above OH−/•OH (2.38 eV to Normal Hydrogen Electrode,
NHE) and H2O/•OH (2.72 eV to NHE) [69]. The photogenerated electron-hole of BiOBr can
oxidize OH− and H2O to the •OH free radicals, and •OH can degrade the MB molecules.

The RGO exhibits an extremely efficient electron collection and separation structure.
After the charge separation of BiOBr, the excited electrons were transferred to the RGO
surface, thus decreasing the rate of electron–hole recombination [70]. Photogenerated
electrons reacted with O2 molecules adsorbed on the surface of the RGO to produce
O2
− radicals. Simultaneously, the OH− and H2O reacted with the holes in the VB, thus

generating •OH radicals. The RGO nanosheets enhanced the electron–hole pair separation
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and also increased the adsorption of reactants owing to π–π interactions and electrostatic
force effects. In addition, the high surface area of RGO facilitated the adsorption of MB
and the active oxides (O2

− and •OH radicals), thus enhancing the contact probability with
radical and dye molecules and enhancing the photocatalytic activity of the catalyst. Finally,
the MB molecules were degraded by O2

− and •OH radicals, thus producing non-toxic
small molecules (H2O, CO2, SO4

2−, NO3
−, and NH4

+). This photocatalytic process can be
represented using the following chemical equation [20,71].

BiOBr + hν→ e− (BiOBr) + h+ (BiOBr) (6)

e− + O2 → O2
− (7)

h++ OH−/H2O→ •OH (8)

h+/ O2
−/ •OH + C16H18N3ClS→ H2O + CO2 + SO4

2− + NO3
− + NH4

+ (9)

4. Conclusions

In summary, in this study, BiOBr-G nanocomposites were successfully synthesized us-
ing a facile one-step microwave-assisted method and characterized by XRD, Raman, FTIR,
SEM, TEM, UV-vis DRS, and PL. The XRD analysis confirmed the successful synthesis
of GO, RGO, BiOBr, and all the BiOBr-G nanocomposites. However, the RGO diffraction
peak was not observed in the XRD pattern of BiOBr-G. In addition, D and G bands were
observed in the Raman spectrum of the BiOBr-G nanocomposites, indicating the graphene
structure of the synthesized nanocomposite. Furthermore, a Bi–O vibrational peak was
observed in the FT-IR spectra of BiOBr and Bi-OBr-G. The SEM and TEM results revealed
that the presence of RGO in the BiOBr-G nanocomposites prevented the nanoparticles’
agglomeration and reduced the particle size. In addition, the band gap of BiOBr-G was
lower than that of BiOBr, indicating that the addition of RGO to BiOBr enhanced the photo-
catalytic activity of BiOBr. The PL results revealed that BiOBr-G exhibited higher quantum
efficiency during the photocatalytic process compared to BiOBr. The photocatalytic activity
of the as-synthesized nanocomposites under visible light irradiation was investigated.
BiOBr-G5 exhibited the optimum photocatalytic activity, and the removal percentage of
MB achieved more than 96% in 75 min. The prepared photocatalyst follows the first-order
kinetic model, and the rate constant of BiOBr-G5 (0.0392 min−1) was higher than those of
the other materials. These results were also superior to those of various catalysts reported
in previous studies. The BiOBr-G nanocomposite synthesized in this study is an efficient,
cost-effective, and environmentally friendly photocatalyst, with promising potential for
wastewater treatment.
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