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Abstract

The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a
precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific
for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be
further elucidated. S. cerevisiae Lhp1 is an abundant protein that functions as an RNA chaperone in a variety of biologically
important processes. It localizes almost exclusively to the nucleus and is imported by Kap108. We show that mutation of 3
of the 275 residues in Lhp1 alters its import pathway to a Kap121-dependent process. This mutant does not retain wild-type
function and is bound by several chaperones. We propose that Kap121 also acts as a chaperone, one that can act as a
genetic buffer by transporting mutated proteins to the nucleus.
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Introduction

The first step in the majority of nuclear import/export pathways

is the recognition of targeting signals by soluble transport receptors

(Karyopherins, or Kaps). The Kapa/b heterodimer, the best

characterized carrier, transports proteins containing short stretch-

es of basic amino acid residues, the so-called classical nuclear

localization sequences (NLSs) [1]. Karyopherins other than the

Kapa/b heterodimer are most often found to recognize large

NLSs. Each Kap binds to different localization sequences, and

thus the affinity of the Kap/signal interaction is a critical factor in

determining transport efficiency and selectivity. Despite the recent

advances in the field, this step is still poorly understood and the

binding specificities for all but a few Kaps remain largely

unknown. This is the case for the S. cerevisiae Kap121, a Kap for

which many substrates have been identified, since the NLSs

recognized by Kap121 do not share significant amino acid

identity. It could be that Kap121 has more than one cargo binding

site. It is also possible that Kap121 (as well as the other Kaps)

recognizes structural rather than sequence elements in its cargoes.

In support of this, mutation of a number of residues in Kap121

NLSs does not always result in a readily observed phenotype [2],

suggesting that binding to the Kap may not be restricted to a few

specific residues. It remains to be determined whether this is the

case for the majority of large NLSs. We thus set out to characterize

the Lhp1 NLS, which consists of 112 residues and is targeted to

the nucleus in a Kap108-dependent manner [3,4].

Lhp1 is the S. cerevisiae homologue of La. The La protein, also

known as SS-B, was originally identified as an autoantigen in

patients with the rheumatic diseases systemic lupus erythematosus

and Sjorgen’s syndrome [5,6]. Since then, homologues have been

identified in other eukaryotes [7–9]. It is an RNA binding protein

with a preference for RNAs with the sequence UUUOH at their 39

ends [10,11]. It therefore binds all newly synthesized RNA

polymerase III transcripts, as well as other RNAs ending in this

sequence. Several studies have revealed that La’s major role is to

protect the 39 end of nascent small RNAs from exonuclease

digestion. Thus, it plays an important role in a variety of crucial

processes, such as stabilization of RNA structure, retention of

small RNAs in the nucleus, facilitation of RNP assembly, and

accurate tRNA processing [12]. La proteins can essentially be

divided into 3 regions. The N terminus contains a La motif, which

is also found in several unrelated proteins. This domain appears to

be important for RNA binding specificity, even though it is not

sufficient to confer RNA binding. The middle portion contains an

RNA recognition motif (RRM, also called RNP motif), followed

by a more weakly conserved, highly charged C terminus. The C

terminal domain of La varies in length and has probably evolved

into additional functional domains [12].

Most of the functional roles attributed to La take place in the

nucleus, and, as expected, Lhp1 is almost exclusively localized to

the nucleus [3,4]. However, the signal directing nuclear import

and the pathway utilized by Lhp1 to enter the nucleus differ from

those of the other homologues. Human La contains a classical

NLS and is imported into the nucleus via the Kap a/b
heterodimer [4,13]. In contrast, Lhp1 contains a rather large

NLS, which overlaps with the RRM, and is imported in a
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Kap108-dependent manner [3,4]. Here, in attempting to

characterize the Lhp1 NLS in the context of the intact protein,

we have found that an Lhp1 mutant containing just 3 point

mutations, named RNP1.3, interacts with Kap121 instead of

Kap108 and is transported in a Kap121-dependent manner. In

contrast, wild type Lhp1 is imported by Kap108 and does not

appear to interact with Kap121 in vivo. This mutant protein is

unstable, specifically interacts with chaperones, and is not fully

functional. These results suggest its conformation likely differs

from that of wild type Lhp1. Structural studies will be necessary to

determine how Kap121 is able to recognize general structural

elements.

Results

Mutations in full length Lhp1 alter its import pathway
The Lhp1 NLS has been mapped to amino acids 112-224 [4].

However, this region confers a weak nuclear accumulation. It is

possible this reflects the existence of additional NLSs. Alternative-

ly, larger domains of Lhp1 could provide a better structural

scaffold, resulting in stabilization of the Kap interaction. We

therefore sought to characterize this NLS further by mutating

several residues in the context of the full-length protein. There are

2 sequences in the RRM that are conserved in proteins containing

this RNA-binding motif, RNP1 and RNP2 [14]. We started our

approach by altering several residues in one of these, RNP1. In

Fig. 1A, RNP1 sequences from several proteins are aligned and

conserved residues are highlighted. A schematic representation of

the different mutations is shown in Fig. 1B. Mutations were made

in residues likely on the protein surface (RNP1.1 and RNP1.2), as

well as in conserved residues predicted to fold into the

hydrophobic core and therefore with an essential structural role

(RNP1.3) [15]. Fig. 1C shows the structure of the human La

RRM1 with the conserved residues mutated in RNP1.3

highlighted (VVF). The different mutants were cloned in frame

with GFP and their localization was assessed in living cells. As seen

in Fig. 2, the localization of the RNP mutants in wild-type cells was

indistinguishable from that of Lhp1. Although mutation of these

residues had no apparent effect on NLS function in wild type cells,

the localization of the mutants in Dkap108 cells revealed that the

import pathway had switched. In this strain, as previously

reported, wild type Lhp1 localizes throughout the cell. The

RNP1.1 mutant mimics this localization. In contrast, RNP1.2 is

only slightly mislocalized to the cytosol, while RNP1.3 retains an

almost exclusive nuclear localization. Instead, RNP1.3 is signifi-

cantly mislocalized in pse1-1, a temperature sensitive strain bearing

a mutation in Kap121, whereas the localization of the other

fusions is unaffected in this strain. The mislocalization of RNP1.3

seen in the pse1-1 strain is consistent with that seen for other

Kap121 substrates in this strain under identical conditions

[2,16,17]. Western blot of whole cell extracts showed the GFP

fusions are not degraded (Fig. 2B), indicating the fluorescence

observed corresponds to that of full-length proteins.

RNP1.3 is unstable and interacts with protein folding
chaperones

It is often found that nuclear proteins and their partner

Karyopherins form a stable complex in the cytosol prior to their

import into the nucleus. We thus sought to determine which proteins

interact with the cytosolic pool of the Lhp1 mutant proteins. All

Figure 1. Schematic representation of Lhp1. A) Alignment of RNP1 sequences from different proteins. Conserved residues are highlighted B)
The different domains of Lhp1 are indicated (La motif with a grid, RRM with crossbars, NLS with a solid line). Solid black boxes represent RNPs.
Residues altered to alanine in the different mutants are shown in bold lower case. C) Ribbon diagram of the human La protein RRM domain (PDB
code 1S79) with amino acids mutated to Ala in RRM1.3 shown as tubes.
doi:10.1371/journal.pone.0016846.g001
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mutants were expressed as GST fusions in yeast. The cytosolic fraction

of the different strains was incubated with glutathione sepharose, and

bound proteins were eluted with sample buffer (Fig. 3). We found that

RNP1.3 mainly breaks down into smaller degradation products.

Degradation was reduced when the length of the purification

procedure was decreased, and mostly full-length protein was detected

by Western blot when a cell extract was prepared quickly (not shown,

Fig. 4A). This suggests RNP1.3 is unstable out of its normal cellular

environment. We also identified 2 proteins interacting with RNP1.3 as

Ssb1 and Sse2 (Fig. 3), which have been shown to function as

chaperones [18,19]. This raised the possibility that Kap121 acts as a

chaperone for misfolded Lhp1, but we did not detect binding of

Kap121 to GST-RNP1.3. However, we also could not detect binding

of Kap108 to GST-Lhp1 at the Coomassie level. One possibility was

that the GST tag and/or presence of an N-terminal tag interfered with

binding. Since Lhp1 tagged with ProteinA (PrA) had been shown to

interact with Kap108, we subsequently cloned all mutants in frame

with PrA at the C-terminus. However, binding of Kap108 to

overexpressed Lhp1-PrA was still not detected by Coomassie blue

staining (not shown). It therefore appears that overexpression of Lhp1

from a plasmid interferes with the ability to detect binding to its partner

Karyopherin.

RNP1.3 interacts with Kap121
In view of the above results, we proceeded to genomically insert

the RNP1.2 and RNP1.3 mutations in the Lhp1 coding sequence,

in frame with Protein A. Lhp1-PrA had previously been described

[3]. Since RNP1.1 mimics the behavior of wild-type Lhp1, this

mutant was excluded from further analysis. Kap108 was tagged at

the C terminus with a FLAG epitope in these strains, to allow

identification of Kap108 by Western blot. Proteins interacting with

the cytosolic pool of the different fusions were isolated by

incubation with IgG sepharose. Bound proteins were eluted with

0.25 M MgCl2, which is sufficient to disrupt the Lhp1/Kap108

interaction [3], and the remaining sepharose-bound proteins were

eluted with 4.5M MgCl2. Collected fractions were precipitated,

separated by SDS-PAGE, and transferred to nitrocellulose. The

membrane was first probed with an anti-IgG antibody, to detect

Protein A fusions, and then with an anti-FLAG antibody to detect

FLAG-tagged Kap108. After stripping, the membrane was re-

Figure 2. Localization of Lhp1 mutants. A) Localization of Lhp1 mutants was assessed in wild type (DF5a), Dkap108 and the Kap121 mutant
strain pse1-1, grown at room temperature. GFP fusion proteins were visualized in living cells by virtue of the fluorescent GFP (right panels). Coincident
Nomarski (DIC) images are shown (left panels). B) Whole cell extracts of the indicated strains were were separated by SDS-PAGE, transferred to
nitrocellulose and probed with an anti-GFP antibody. Molecular weights in kDa are shown.
doi:10.1371/journal.pone.0016846.g002
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probed with an anti-Kap121 antibody. As seen in Fig. 4, the

FLAG tag did not interfere with the Lhp1/Kap108 interaction.

We also found that Kap108 binds to RNP1.2, but was not

associated with RNP1.3. In contrast, Kap121 interacts with

RNP1.3, but not Lhp1 or RNP1.2. Western blot of whole cell

extracts showed the degradation pattern of all PrA fusions is

identical (Fig. 4B), indicating Kap121 does not interact with a

degradation product of RNP1.3 in the cell. We could not detect

binding of Kap121 to Lhp1 even in the absence of Kap108 (not

shown). These results support the hypothesis that mutation of

specific residues in Lhp1 changes its Karyopherin preference.

RNP1.3 does not maintain wild-type Lhp1 function
Based on sequence homology to other RRM-containing

proteins whose structure was known, we predicted the residues

mutated in RNP1.3 were buried in the core of the protein. Thus, it

is likely that the entire RNA binding domain of Lhp1 has been

disrupted in this mutant. If this is indeed the case, normal function

of Lhp1 should be impaired in RNP1.3. We therefore sought to

determine whether the mutants we constructed were functional.

Lhp1 is not an essential protein, but it becomes indispensable for

viability in strains harboring specific additional mutations. For

instance, cells where the anticodon stem of tRNACGA is mutated

require Lhp1 [20]. Strains containing both this mutation and an

LHP1 disruption become dependent on a plasmid containing

LHP1 for growth. We therefore transformed this strain with the

different RNP-GFP fusions in order to determine whether these

could functionally substitute for Lhp1. The original plasmid

containing LHP1 carries the URA3 gene. Since 5-fluoro-orotic acid

(5-FOA) is toxic for cells expressing URA3, it was possible to

counter-select this plasmid. As expected, we found that GFP alone

cannot substitute for Lhp1 (Fig. 5). In addition, the GFP tag does

not interfere with Lhp1’s normal function. RNP1.1 and RNP1.2

were also functional but, in contrast, RNP1.3 could not substitute

for Lhp1 in this assay (Fig. 5). This indicates that this mutant

cannot perform at least one of Lhp1’s original functions.

Discussion

Import of Lhp1 into the nucleus is a Kap108-dependent

process. We have found that mutation of 3 residues in the Lhp1

RNP1 motif results in a switch of the main carrier utilized for

import from Kap108 to Kap121. This mutant (RNP1.3) interacts

with Kap121 but not Kap108 in vivo, and is mislocalized to the

cytoplasm in a strain defective in Kap121 function, but not in a

Kap108 deficient strain. In contrast, we could not find any

evidence implicating Kap121 in the import of wild type Lhp1 into

the nucleus, even as a backup Kap. These results indicate that

RNP1.3 is a specific cargo for Kap121, whereas wild type Lhp1 is

not.

It seems evident that the switch in the Lhp1 import pathway is

not a general effect of mutations in RNP1. We could not detect

binding of Kap121 to RNP1.2, with 3 different residues in RNP1

altered, nor did we observe mislocalization of this mutant in pse1-1.

However, our results indicate that the RNP1.3 structure differs

from that of RNP1.2 and wild-type Lhp1. RNP1.3 interacts with

protein folding chaperones, suggesting that it is not properly

folded, and it is unstable outside the cellular environment. In

RRM-containing proteins whose structure is known, the conserved

RNP1 residues altered in RNP1.3 are part of the hydrophobic

core of the RRM motif [15]. Thus, these mutations likely caused

more than a slight structural change in this domain and disrupted

its structural integrity. This is consistent with the finding that

RNP1.3 does not complement Lhp1 in a functional assay and it

interacts with chaperones. Therefore, the change in import

pathways likely results from destabilization of the Lhp1 structure.

In support of this, Lhp1 mutants where 8 residues in either RNP1,

RNP2, or both RNPs are replaced with alanine are mislocalized in

pse1-1 but not Dkap108 or different Kap mutants (not shown).

Both RNP1 and RNP2 form central strands in the b sheet that

is characteristic of the RRM motif. Mutation of all residues in

either of these conserved sequences undoubtedly prevents correct

folding of this domain. At the present, it is unclear how this would

result in a higher affinity of Kap121 for Lhp1. One possibility is

that Kap121 specifically recognizes the overall surface properties

of certain proteins, rather than particular sequence or structural

elements. This is reminiscent of the way chaperones interact with

their substrates. Chaperones recognize peptides containing

hydrophobic residues and/or polypeptide backbone regions, both

structural features of unfolded or partially unfolded proteins

[21,22]. Such binding specificity allows them to distinguish

between native and non-native conformations, so that they can

assist in protein folding. Kap121 has been shown to function as a

backup Kap in several pathways [16,23,24], but it also displays a

high degree of specificity towards its main transport substrates

[25,26]. It is therefore likely that Kap121 binding specificity and

cargo selectivity are determined by several mechanisms.

As mentioned above, RNP1.3 is likely to contain a misfolded

RRM. It was therefore surprising that this protein is still targeted

to the nucleus. Why would a Kap transport a misfolded protein

into the nucleus? Nuclear proteins are synthesized in the

cytoplasm, where they are not likely to meet their binding

partners. It is therefore possible that Kaps associate with proteins

for which they have affinity in the cytoplasm and maintain them in

Figure 3. Purification of Lhp1 mutants. Cytosol from an equivalent
number of yeast cells expressing GST-tagged Lhp1 mutants was
incubated with glutathione sepharose. Bound proteins were washed
with transport buffer (TB) and eluted with sample buffer. Proteins of
collected fractions were separated by SDS-PAGE and stained with
Coomassie Blue. The bands representing GST, the different GST fusions,
Ssb1, and Sse2 are indicated. The major degradation product in the
preparation, which contains GST, is marked with an asterisk. Molecular
weights in kDa are shown.
doi:10.1371/journal.pone.0016846.g003
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a protected state until they can deliver them to their proper

location in the nucleus. In this sense, they would function as

chaperones. It has been suggested that Kaps function as

chaperones for exposed basic domains, as the presence of several

Karyopherins suppressed the aggregation of their basic import

cargoes in polyanionic environments [27]. The notion that Kaps

recognize basic residues seems to be favored in the literature. Yet,

this has only been clearly demonstrated for Kap a, which

recognizes proteins containing classical NLSs [28]. It seems likely

that individual Kaps have a strong preference for distinct features.

For instance, Crm1, the best-studied export factor, binds to

leucine-rich sequences [28]. In addition, Kap142 has been shown

to export phosphorylated cargoes [1]. On the other hand, the M9

NLS recognized by Kapb2 is rich in glycine residues [29,30].

Nonetheless, since only a limited number of NLSs recognized by

each Kap have been mapped, it is not yet possible to generalize a

mechanism for cargo recognition by distinct Karyopherins. It has

been suggested that several proteins with a chromatin-related

function possess a consensus basic sequence for import by Kap121

and Kap123 [31]. However, it has also been reported that Kap121

recognizes arginine and glycine-rich NLSs in addition to lysine-

rich NLSs [32]. Our results show that Kap121 specifically

recognizes a protein whose core structure has been disrupted.

Thus, it is possible that Kap121 also has affinity for newly exposed

hydrophobic residues.

It had been shown that the nuclear import mechanism of S.

cerevisiae La differs from that of homologues in higher eukaryotes,

whose transport is mediated by the Kap a/b heterodimer. In

contrast, Lhp1 is imported via Kap108. Rosenblum and coworkers

Figure 4. RNP1.3 interacts with Kap121. A) Cytosol from cells expressing Lhp1-PrA, RNP1.2-PrA or RNP1.3-PrA was incubated with IgG
sepharose. Bound proteins were washed with transport buffer (TB) and eluted with 0.25M and 4.5M MgCl2. The fractions containing the 0.25M MgCl2
elution are shown. Proteins of collected fractions were separated by SDS-PAGE, transferred to nitrocellulose and probed with an anti-IgG antibody
(lower), an anti-FLAG antibody (middle) or an anti-Kap121 antibody (upper). The bands representing the PrA fusions, Kap108-FLAG and Kap121 are
indicated. Molecular weights in kDa are shown. B) Whole cell extracts of the indicated strains were were separated by SDS-PAGE, transferred to
nitrocellulose and probed with an anti-IgG antibody. Molecular weights in kDa are shown.
doi:10.1371/journal.pone.0016846.g004

Figure 5. Functional analysis of Lhp1 mutants. Strain CY9T, which
depends on a plasmid expressing LHP1 (URA3) for viability, was
transformed with pYX242-GFP, Lhp1-GFP, pRNP1.1-GFP, pRNP1.2-GFP
and pRNP1.3-GFP. Transformants were streaked on plates containing 5-
FOA and allowed to grow for 3–5 days. Results from a representative
experiment are shown.
doi:10.1371/journal.pone.0016846.g005
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proposed that evolution of La to attain additional functionality might

have included a change in the NLS [4]. In order to change the region

of La that functions as an NLS and the Kap used, a common

ancestor of yeast and human La would have had to undergo

mutation while retaining nuclear localization. We have shown that

mutation of merely 3 residues in Lhp1 changes its import pathway

and, accordingly, its affinity for Karyopherins. This finding provides

an example of how Karyopherins may provide buffering from

genetic variation by adjusting transport pathways. It is generally

accepted that chaperones control the expression of genetic variation

as phenotypic variation by assisting in the folding of structurally

unstable mutant proteins [33]. So, while deleterious effects of

particular alleles are masked, functionally advantageous mutations

can arise. In parallel, the Kap network could allow proteins to

acquire mutations in a region that disrupts a localization signal for

one pathway without compromising their proper localization.

Materials and Methods

Plasmids
PCR fragments containing mutations in LHP1 were created by

the overlap extension method and cloned into pYX242-GFP [4] by

homologous recombination to generate pRNP1.1-GFP, pRNP1.2-

GFP, and pRNP1.3-GFP. Oligonucleotides that introduced alanine

codons in place of wild-type sequences were used. Lhp1-GFP was

described previously [4]. LHP1, RNP1.1, RNP1.2, and RNP1.3

were PCR-amplified from Lhp1-GFP, pRNP1.1-GFP, pRNP1.2-

GFP, and pRNP1.3-GFP and ligated into the bacterial expression

vector pGEX4T1 using primer-encoded BamHI and XhoI sites,

resulting in N-terminal fusions with GST. GFP was replaced with

the coding sequence of four and a half IgG binding repeats of S.

aureus protein A in Lhp1-GFP, pRNP1.1-GFP, pRNP1.2-GFP, and

pRNP1.3-GFP by homologous recombination to generate

pRNP1.1-PrA, pRNP1.2-PrA, and pRNP1.3-PrA. All constructs

were verified by sequencing analysis. XL1-blue (Stratagene, La

Jolla, CA) was used for general cloning and expression purposes.

Bacterial cells were transformed by heat shock.

Yeast strains
The procedures for S. cerevisiae manipulation were as described

[34]. pse1-1 [35], Dkap108 and Lhp1-PrA [3], and CY9 [20] have

been described. The auxotrophy marker of CY9 was switched from

LEU to TRP by transformation with a fragment from pLT11 [36]

to generate CY9T. A strain expressing RNP1.2-PrA was obtained

using the method delitto perfetto [37]. Briefly, Lhp1-PrA was streaked

on plates containing 5-FOA to induce mutations in the URA3 gene.

A URA- colony was selected and nucleotides 301 to 588 of LHP1

deleted in this strain by replacement with KAN and URA3 amplified

from pCORE [37], resulting in LHP1::CORE-PrA. A fragment of

LHP1 containing the RNP1.2 mutation was obtained by digestion of

pRNP1.2-GFP with EcoRI and transformed into LHP1::CORE-

PrA. Cells were plated on YPD, grown overnight at 30uC, and

replica plated onto plates containing 5-FOA to select for loss of

URA3. Cells were allowed to grow an additional 2 days and resulting

colonies were tested for the loss of the KAN marker. Proper

integration of RNP1.2 was assessed by PCR, western blot, and

sequencing analysis. We could not obtain RNP1.3-PrA using this

method and therefore used a different strategy: Nucleotides 301 to

588 of LHP1 were deleted in DF5a by replacement with KAN and

URA3 amplified from pCORE to obtain LHP1::CORE. A PCR

fragment containing RNP1.3-PrA and the HIS5 gene from S. pombe

(RNP1.3-PrA/HIS5) was created by overlap extension. Templates

for this reaction were RNP1.3-PrA amplified from pRNP1.3-PrA

and the HIS5 gene amplified from pBxA [38] containing the last 40

nucleotides of PrA at the 59 end and the 60 nucleotides immediately

downstream of the LHP1 stop codon at the 39 end. Transformation

of RNP1.3-PrA/HIS5 into LHP1::CORE yielded RNP1.3-PrA.

Proper integration of RNP1.3 was confirmed by PCR, western blot,

and sequencing analysis. RNP1.2-PrA and RNP1.3-PrA expressing

Kap108-FLAG were obtained by integrative transformation. The

cassette used contained the FLAG epitope coding sequence and the

TRP gene flanked by the 60 nucleotides immediately upstream and

60 nucleotides directly downstream of the KAP108 stop codon, and

was PCR amplified from pESC-TRP (Stratagene, La Jolla, CA).

Proper integration was confirmed by PCR and western blot.

Cell Fractionation and Immunoisolation
Post-nuclear, post-ribosomal cytosol was prepared from Protein

A or GST tagged strains grown to an OD600 of 1.8 as described

[39]. Tagged proteins and proteins with which they interact were

isolated by incubation of cytosol with IgG sepharose or glutathione

sepharose at 4uC. After washing with TB (20 mM HEPES pH 7.5,

110 mM KOAc, 2 mM MgCl2, 0.1% Tween-20), proteins were

eluted with either sample buffer or a step gradient of MgCl2
followed by concentration using methanol-chloroform precipita-

tion. Fractions were analyzed by SDS-PAGE, and gels were

stained with Commassie blue. Proteins of interest were excised,

digested and analyzed by MALDI-TOF mass spectrometry [40].

Alternatively, gels were transferred to nitrocellulose.

Western blotting
Western blotting procedures and subsequent chemilumines-

cence detection were as described by the manufacturer (Pierce).

The primary antibodies used were anti-FLAG (Sigma#F-3165),

anti-IgG (Sigma#A-9044), anti-GFP (Roche#11814460001), and

anti-Kap121 (a generous gift from Dr. Rick Wozniak, University

of Alberta).

Fluorescent microscopy
GFP was visualized after overnight growth of yeast strains in

medium or on agar selective for the respective plasmid. 5 ml of culture

or one colony resuspended in 5 ml of water was placed on a slide. All

images were viewed with a 63x oil objective on a Zeiss Axiophot

microscope. Images were collected with a Hamamatsu video imaging

system using Openlab software and transferred to Adobe Photoshop.
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