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Abstract: Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic
and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO
detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to
their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power
consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further
progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating
temperature. Recently, different strategies have been implemented to improve the sensitivity and
selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO
demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in
this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing
applications. First, experimental studies on ZnO doped with transition metals, boron group elements,
and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing
theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and
some perspectives for future investigations in the context of advancements in CO sensing using
doped ZnO, which include room-temperature gas sensing.

Keywords: ZO doping; CO gas; ZnO sensors; sensitivity; selectivity; density functional theory

1. Introduction

Carbon monoxide (CO) is a pollutant gas that can be toxic if inhaled in large amounts,
and its release outdoors contributes to air pollution [1–3]. Exposure to CO levels above
70 ppm can cause headaches, dizziness, disorientation, and fatigue [4–6]. In this context,
prolonged exposure to higher CO levels (150–200 ppm) causes prejudicial cardiopulmonary
events, which may lead to death; however, it has been reported that in certain cases, short
exposure to levels of approximately 50 ppm can also be fatal [5–8]. It is worth keeping in
mind that CO is absorbed into the blood through the lungs, forming carboxyhemoglobin, re-
ducing the concentration of oxygen in the blood, preventing the binding to hemoglobin [9].
Considered as a silent killer [10,11], CO is an odorless, colorless, and tasteless gas [11,12]
produced by the incomplete combustion of fossil fuels [4,13,14], automobile exhaust emis-
sions [4,15–17], domestic fuel burning [18], gas fires [14], agriculture product burning,
volcanic activity [18], industrial exhaust emissions [16], and fault monitoring in large power
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equipment [19] and carbon-containing compounds, such as domestic appliances [4,14] and
coal mines [7,20]. Lately, CO emissions have been increasing, owing to accidental leakage
associated with technological advances in electrical appliances [21], greater environmental
pollution, industrialization activities [18], and incomplete combustion of wood, crude oil,
and natural gas derivatives with other pollutants [10]. Its detection and monitoring are of
great interest to prevent it from going unnoticed because of its characteristics mentioned
earlier [15,21]. Therefore, designing high-performance gas sensors for detecting this highly
toxic gas is necessary. According to Hulanicki et al., a gas sensor can be defined as a device
that detects the presence of volatile substances in the vapor phase, both qualitatively (kind)
and quantitatively (concentration), in a specific volume [22]. Following this definition,
in some cases, various hazardous gases are detected successfully and efficiently via the
parameters shown in Table 1 [22,23].

Table 1. The main parameters of a gas sensor.

Parameters Description

Response It is defined as a change in some physical properties when the
device is exposed to target species.

Selectivity
It is the ability of a gas sensor to detect high sensitivity to a
specific gas among various types of gases at the same
concentration level.

Sensitivity It is referred in the graph where slope represents the correlation
between gas response and the partial pressure of target gas.

Limit of detection It is the lowest and highest concentration of the target gas that the
sensor can detect.

Limit of detection It is the highest gas concentration that the sensor can detect.

Operating temperature It refers to the maximum temperature at which the device exhibits
its maximum sensitivity in the presence of a target gas.

Repeatability It is the response cycles of a sensor to be exposed to an analyte
gas flow for a long time.

Response time It is usually defined as the time it takes for gas sensor to respond
to a concentration change.

Stability
It is the ability of gas sensors to conserve the output response
measurement by a period, the level concentration of gas (ppm)
unchanged.

Recovery time

Time measured when the gas sensor response changes in the
interval of 90% to 10% when the sensor is exposed to a full-scale
concentration of the gas, implying that the sensor exhibits 90% of
the saturation value of resistance in seconds.

Metal oxide semiconductors (MOSs) have been successfully used to detect CO gas.
MOSs have low cost, high sensitivity [24–30], convenient operation, a rapid response
and recovery time, high physical and chemical stabilities [22], excellent electrical perfor-
mance [16], and a simple and portable design [2]. Among various MOSs, those based
on ZnO have become widely manufactured and utilized because of their outstanding
characteristics, such as a bandgap around 3.4 eV at room temperature [31–33], high optical
transparency in the visible region (>80%), n-type conductivity, and high exciton binding
energy in the order of 60 meV [31,34]. They also have a versatile morphology, rendering
them suitable for usage in different industrial applications, including gas sensor devices,
by their potential to detect various toxic gases. It is worth pointing out that though ZnO
belongs to wurtzite, with a hexagonal crystal structure and space group of P63 mc, it has
the following two other possible crystal structures: cubic zinc blende-type and rock salt
structure [32]. However, ZnO highly tends to crystallize in the wurtzite-type structure.
Concerning its morphology, ZnO has been obtained as nanostructures, which include
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nanoneedles, nanosticks, nanocouples, nanoflakes, nanosprings, nanotubes, nanorods, and
nanowires [31,34,35], as well as porous and dense films [36]; as gas sensing performance
is mainly dependent on the morphology of the material. Significant achievements have
been attained in the fabrication of gas sensors based on ZnO structures, including biosen-
sors [16,30,36–41]. Nevertheless, further research is needed to improve CO detection at low
operating temperatures (e.g., room temperature) and with excellent selectivity to differenti-
ate two gases with similar behaviors, considering the effect of the relative humidity on the
gas sensing performance [38,42,43].

Undoubtedly, to date, ZnO is a promising candidate for detecting CO gas; it offers
good sensitivity and selectivity, as well as a high surface area for excellent gas sensor
response and adsorption sites. For instance, the porous morphology of ZnO increases its
surface area, which, along with high electron mobility, excellent electrical properties, and
adsorption sites, allow an excellent gas sensor response [3,7,12,18,28–30,43,44]. However,
further research is needed to improve the selectivity and sensitivity for CO gas detection. In
this sense, increasing the resistance to humidity and working at lower temperatures should
be given more attention [10,16]. Consequently, several strategies have been implemented to
optimize the sensing properties of ZnO. These include different synthesis methods, doping,
surface modification, coatings, UV activation, functionalization, inclusion of carbonaceous
nanomaterials, use of nanocomposites, post-treatments, and high-energy irradiation meth-
ods [16,29,40,43]. Doping is the process that involves a metal atom replacement into the
crystal lattice of a metal oxide, and due to a small addition (usually at. %) of foreign atoms
several properties are modified, e.g., ZnO doping demonstrates favorable advantages for
improving the gas sensor performance. It is well-known that doping during synthesis and
deposition processes affects those properties that are significant for gas sensing applica-
tions. For instance, doped ZnO improves the detection limits and sensing performance
compared with those of pure ZnO. Furthermore, parameters such as the selectivity, sen-
sitivity, response time, and stability of the gas sensors are improved by adding different
dopant elements. To date, various sensors have been designed and fabricated using doped
ZnO to improve the operating conditions at low temperatures, and retain high sensitivity
at low concentrations, good selectivity, and fast response/recovery times, in addition to
good repeatability and stability [6,29,45–53].

Because of the critical role of doped ZnO in gas sensor design, numerous experimental,
theoretical, and combined experimental–theoretical studies have been conducted to inves-
tigate novel doped ZnO sensors used in CO gas detection. These illustrate doping as an
effective approach for improving the CO detection capacity with respect to undoped sam-
ples. Notwithstanding the sizeable number of studies published, there is a lack of detailed
and critical reviews on the current progress in experimental, theoretical, and combined
experimental–theoretical studies around the design of doped ZnO toward CO gas detection.
Therefore, in this review, we cover recent reports regarding the CO detection ability of
doped ZnO. First, experimental studies on ZnO doped with transition metals, boron group
elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then
focused on analyzing theoretical and combined experimental–theoretical studies. Finally,
we present conclusions, and the current challenges are outlined.

2. Experimental Studies

ZnO is an MOS that has been extensively studied as a gas sensor. However, several
research groups are investigating the potential of adding elements in the crystal lattice of
ZnO as doping materials. The research outcomes revealed that the doping elements change
the ZnO structure. For example, doping elements decrease the crystallite size, increase the
crystallinity, and modify the ZnO morphology [54–57]. The structural and morphological
changes increase the surface-to-volume ratio, creating a more active center at the grain
boundaries [58]. Consequently, the sensitivity [59], response/recovery time, selectivity,
and working temperature [60] are improved, which, in terms of practical applications, are
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desirable. Therefore, doping is a viable way of improving the ZnO sensing properties [61].
Given this, various types of doped ZnO gas sensors have been developed [62].

2.1. Transition Metals

In recent years, various transition metals have been explored for doping ZnO particles
and improving their sensitivity to CO gas. The sensing properties of the ZnO structures
are remarkably enhanced when they are doped with transition metals compared with
those of pure ZnO, which has limited sensitivity to chemically stable gases. Transition
metals, such as Cu, Mn, Ni, Pt, and Fe, have been used as dopants for CO sensors using
different synthesis routes (e.g., hydrothermal, sol-gel, sputtering, and in situ reduction).
Although so many techniques have been reported in the last years to obtain ZnO, here, we
strictly focused on the punctual synthetic approaches that provide a general idea about
some synthetic methods. A systematic introduction to the methods of synthesizing ZnO is
reported in the literature [63].

A key observation is that nanostructured Cu-doped ZnO sensors were obtained by
chemical synthesis, using a parallel reaction station with a Cu concentration of 1 at. %,
and were manufactured in the form of pellets [64]. The Cu-doped ZnO sensor evidenced
improved CO gas detection properties compared with those of the undoped material. It
is worth highlighting that ZnO powders showed a change in their morphology due to
doping. Moreover, the Cu-doped ZnO sensor presented an increase in sensitivity (60%)
compared with that of the undoped ZnO sensor (33%) at 100 ppm of CO gas. Another
interesting feature was the optimal operating temperature, as follows: 95 ◦C for the Cu-
doped ZnO sensors and 115 ◦C for the undoped ZnO sensor. The decrease in the working
temperature was associated with the thermal energy, that is, the doped sensors require
less thermal energy to excite the electrons on the conduction band. In this context, the
high sensitivity of the Cu-doped ZnO sensor was also attributed to the fact that Cu sites
improve the adsorption and reaction of CO with oxygen species [64]. In the same study [64],
Karaduman et al. obtained ZnO nanostructures doped with Mn at conditions similar to
those of Cu. Although Mn modified the ZnO shape and size, as shown in Figure 1a,b, it
only achieved a slight increment in CO gas sensitivity (40%) compared with that of the
undoped ZnO (33%). Accordingly, the results obtained by Karaduman et al. demonstrated
that Cu-doped ZnO sensors, compared with the Mn-doped and undoped ZnO sensors, are
better when sensitivity is a concern [64].
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Figure 1. SEM images of undoped ZnO (a) and Mn-doped ZnO (b) nanostructures. Modified from
Reference [65].

In another study, Shirage et al. investigated and constructed a sensor using ZnO
nanorods doped with Ni (5 and 10 at. %) [8]. A newly developed chemoresistive sensor
was prepared using a wet chemical synthesis, which exhibited CO gas sensitivity and
selectivity. The Ni-doped ZnO (5 at. %) sensor demonstrated the highest response to CO
compared with those of the undoped ZnO and Ni-doped ZnO (10 at. %) sensors at 250 ◦C.
The sensitivity values at 200 ppm were approximately 1.5, 5, and 2.75 R0/R (R0 represents
the reference resistance in the air atmosphere, and R represents the resistance in the target
gas atmosphere) for undoped ZnO, Ni-doped ZnO (5 at. %), and Ni-doped ZnO (10 at. %),
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respectively. It is important to notice that the Ni-doped ZnO (5 at. %) sensor at 250 ◦C
had a rapid response time (15 s) and a recovery time of less than 90 s. Figure 2 shows the
scanning electron microscopy images of the undoped and Ni-doped ZnO samples. These
images revealed changes in the ZnO morphology, caused by Ni doping. According to
Shirage et al., the good sensitivity of the Ni-doped ZnO (5 at. %) sensor is attributed to its
morphological and microstructural characteristics [8].
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Recently, Wang et al. synthesized Pt-doped ZnO nanosheets with various concentra-
tions of Pt (0, 0.25, 0.50, 0.75, and 1.00 at. %), using the hydrothermal method [59]. The
sensor response to 50 ppm of CO gas of the Pt-doped ZnO (0.50 at. %) was 3.57 R0/R. Also,
the sensor showed short response and recovery times of 6 and 19 s, respectively. The short
response and recovery times were attributed to the catalytic effect of Pt. In addition, a
decrease in the operating temperature (from 210 ◦C to 180 ◦C) was observed compared
with the undoped ZnO sensor. This decrease in the operating temperature is associated
with the addition of Pt in the ZnO, because the catalyst decreased the activation energy of
gas chemisorption [66].

Another approach has been investigated lately by researchers; it is the use of Fe as a
doping element. In this sense, Kumar et al. fabricated a gas sensor using Fe-doped ZnO thin
films on a conducting glass, using the spin-coating method [67]. This device demonstrated
significantly better CO gas detection sensitivity, excellent gas response, and better stability
than those of the undoped ZnO. This study proved the linear dependence relationship
between the sensor response and the operating temperature. However, in the case of the
pure ZnO gas sensor, the sensing response (4.25) increased up to 400 ◦C; subsequently,
the sensitivity decreased. In contrast, for the Fe-doped ZnO gas sensor, the sensitivity
(5.75) increased up to 500 ◦C and then decreased. The optimal operating temperature was
150 ◦C. In addition, the response and recovery times at 150 ◦C of the Fe-doped ZnO thin
films were shorter than those of the undoped ZnO thin films. Therefore, the researchers
confirmed that the Fe-doped ZnO thin films demonstrated sensitivity higher than those of
the undoped ZnO thin films, as the electrical conductivity was higher in the Fe-doped ZnO
than that in the undoped ZnO. Although Fe has an ionic radius close to that of Zn, which
allows retention of the lattice structure and favors its incorporation into the lattice (due
to the close electronegativity), researchers have observed a reduction in the crystallinity
levels because of the ionic radii contraction of Fe3+ to slightly less than the ionic radii of
Zn2+ [67].

Co-doped Fe and Ni zinc oxide (ZnO:Fe:Ni) gas sensors have also been reported to
detect CO gas. For instance, Jayaraman et al. reported the CO gas sensing response of
ZnO:Fe:Ni films [68]. In this study, Co-doped ZnO:Fe:Ni thin films were deposited on
glass substrates using the ultrasonic spray pyrolysis technique. Fe and Ni, with different
concentrations (1.5, 2.5, and 5 at. %) with respect to the Zn content, were used as dopants.
The undoped ZnO films show a hexagonal wurtzite structure, but a low-intensity peak
appeared in the co-doped ZnO films. This extra peak corresponds to magnetite in its
face-centered cubic phase. The undoped ZnO film showed irregular grains formed by
stacked planar hexagonal-shaped subgrains. For the ZnO:Fe:Ni films, the grain shape
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varies, as follows: orthorhombic shapes (1.5 at. %), no homogeneous grains (2.5 at. %),
and rock shapes (5 at. %) are obtained. The optimal gas sensing parameters were a gas
concentration of 300 ppm and a working temperature of 300 ◦C. The ZnO:Fe:Ni film at
1.5 at. % presented the best sensitivity (~10). Jayaraman et al. demonstrated that low
doping concentrations improve the CO gas sensing response, which favors the grain size
increment, creating agglomerates and suturing the surface of the ZnO:Fe:Ni films [68].

Generally, doping elements markedly improve the sensitivity of ZnO sensors. The
Ni-doped ZnO sensor showed the best response to CO gas. The sensitivity of the undoped
ZnO was 1.5, whereas that for the Ni-doped ZnO at 5 at. % was 5 [8]. The second-best
doping element was Pt. The sensitivity of the Pt-doped ZnO sensor at 0.5 at. % was
3.75 [59]. However, it should be noted that CO doping is an excellent option for improving
the sensor response in the presence of CO. A ZnO:Fe:Ni sensor, with a response of 10, has
been reported, and the response is considered high compared with that of the pure ZnO
sensor [68].

2.2. Boron Group

Other metals have also been reported in the literature, as dopants of ZnO are boron
group metals. However, only a few research studies on these doping elements, such as Al,
In, and Ga, have been reported. ZnO particles doped with these metals showed improved
sensing properties, such as selectivity and response and recovery times. Some synthesis
routes used to dope ZnO nanoparticles with Al, In, or Ga are the sol-gel, hydrothermal,
spin-coating, spray pyrolysis, and microemulsion techniques. For instance, Nuryadi
et al. evaluated the CO sensing properties of Al-doped ZnO nanorods grown directly on a
microcantilever (MC), using the hydrothermal method (Figure 3). Sensitivity measurements
were performed by changing the resonance frequency of the sensors based on doped and
undoped ZnO. When the CO gas flow was 200 mL min−1, a change in the resonance
frequency of the doped sensor was observed at approximately 29.3–30.4 kHz. In contrast,
the undoped sensor showed no response in the presence of the CO gas [69]. In another
study [63], the CO gas sensitivity of this sensor was evaluated under relative humidity
levels. A change in the resonance frequency, approximately between 30.55 and 30.57 kHz
of the sensor doped with Al at a CO gas flow of 100 mL min−1, was observed. Therefore, it
can be concluded that Al-doped ZnO sensors require greater attention to improve their
sensitivity at lower CO flow rates in the presence of low relative humidity levels [70].
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Another CO sensor based on Al-doped ZnO was designed by Jabbar et al. [71]. They
used n-type and p-type porous silicon as a substrate. In their study, enhanced CO gas
detection sensitivity was observed because of the liberation of electrons from the ZnO con-
duction band, and enhancement of the active layer of ZnO due to Al carriers. Consequently,
the resistance of the sensor decreased. Notably, increasing the Al concentration increases
the sensitivity from 1.4% to approximately 2.7% with respect to that of the undoped ZnO
sensor at 200 ◦C on the n-type substrate with a CO concentration of 1000 ppm. This is
attributed to the variation in the electrical phenomena present on the film surface [71],
as exemplified in Figure 4 [57]. A possible mechanism of CO adsorption onto the doped



Sensors 2021, 21, 4425 7 of 17

ZnO surface is shown in Figure 4. A possible explanation is that the ZnO band diagram is
represented as a flat band at equilibrium. Once the ZnO nanoparticles are doped, a band
deflection is observed, creating a zone of electron accumulation and increasing their work
function [57]. At room temperature, the film’s surface adsorbs the most stable O species
(O2) [71]. Then, the temperature is increased to create more reactive oxygen species and
facilitate the chemisorption of the CO molecules on the surface of the doped ZnO film. This
is shown in the band diagram as the capture of electrons from the conduction band, which
is interpreted as a change in electrical resistance [57].
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In addition, Lim et al. evaluated the sensing properties of undoped and Al-doped
ZnO nanorods at 5 at. %. The ZnO nanorods were synthesized using a microemulsion
method. The sensitivity of the undoped ZnO nanorods presented a 50% response at
an operating temperature of 300 ◦C. In contrast, for the Al-doped ZnO nanorods, the
maximum sensitivity (60% response) was obtained at 350 ◦C. The electrical conductivity
of ZnO increases as the concentration of aliovalent dopant carriers increases, whereas the
increase in the sensors’ working temperature follows the complex exothermic adsorption
of CO gas [72]. Likewise, Al has been evaluated along with Ga for doping ZnO sensors.
For instance, Al-Asedy et al. prepared thin films of ZnO doped with Al and Ga at 1 at. %
and 3 at. %, respectively, on the n-type Si substrate, using the spin-coated method. They
reported a maximum CO gas sensitivity of 279% at an exposure time of 60 min and a
working temperature of 100 ◦C. This point becomes particularly important because they
deduced that CO doping decreased the working temperature. In contrast, the pure ZnO
maintained a higher working temperature [73].

Further, Zhang et al. evaluated the sensitivity of Al-doped ZnO nanoparticles de-
posited on alumina substrates. Al-doped ZnO particles were synthesized with different
Al concentrations (1 at. %, 2 at. %, 3 at. %, and 4 at. %) using a colloid chemistry method.
The CO sensitivity response was evaluated at concentrations from 5 ppm to 80 ppm using
different working temperatures from 100 ◦C to 300 ◦C. The sensing response improved with
the addition of Al, with the best response at 1 at. %. This is because Al is ionized into Al3+

and replaces Zn2+, which in turn increases the electron concentration. However, if the Al
concentration increases, neutral interstitial defects are formed, thereby decreasing the free
electron concentration. A higher CO response for the Al-doped ZnO sensors was observed
at 80 ppm and 250 ◦C, with response and recovery times of 15 and 7 s, respectively. Zhang
et al. observed that if the working temperature is higher than 250 ◦C, the CO adsorption
decreases, and the gas response weakens [74].
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Hjiri et al. synthesized Al-doped ZnO nanoparticles (3 at. %) through the sol-gel
process. The nanoparticles were deposited on alumina substrates. These sensors were
evaluated for monitoring CO gas. According to Hjiri et al., the Al-doped ZnO sensor
showed excellent CO gas sensitivity (80% at 50 ppm). This high sensitivity was attributed
to an increase in the electrical conductivity due to the Al dopant [75].

Alternatively, Ga is another promising metallic element that can be used as a dopant
in ZnO-based sensors to improve CO gas detection. The incorporation of Ga (3 at. %)
into the crystal lattice of ZnO notably improves the sensitivity, because it decreases the
crystallite size, as reported by Hjiri et al. [76]. The sensor designed by these researchers
had the highest sensitivity to 50 ppm of CO compared with that of the undoped ZnO
sensor at an operating temperature of 250 ◦C. The increase in sensitivity is because of
the decrease in the average crystallite size (approximately 49 nm) of the Ga-doped ZnO
nanoparticles compared with that of the undoped ZnO nanoparticles (approximately
55 nm). This is a notable advancement compared with the undoped ZnO nanoparticles,
because the reduction in crystallite size helps increase the surface area. The Ga addition
improves the reaction of CO with oxygen species, which in turn improves the response
and recovery times of the sensor (7 s and 16 s, respectively) at 300 ◦C [76]. In another work,
Hjiri et al. analyzed a sensor with similar characteristics. They doped ZnO with different
concentrations of Ga (1, 3, and 5 at. %) and evaluated their CO gas sensing properties.
Figure 5 shows the sensitive values of the Ga-doped ZnO nanoparticles. The maximum
sensitivity of the Ga-doped ZnO sensor can be observed at 250 ◦C (1 at. %). Thereafter,
the sensitivity decreased when the operating temperature increased. A change in the
morphology of the particles with increased Ga concentrations was observed [77]. The study
also concluded that the solubility limit was 3 at. % Ga in ZnO. When this doping limit is
exceeded, the Ga atoms distort the lattice until they cause phase segregation [77].
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Another approach was reported by Dhahri et al., where In was used to dope ZnO (1,
2, 3 and 5 at. %) [78]. Interestingly, they all improved the sensitivity of the In-doped ZnO
sensor under a CO gas environment in comparison with the sensitivity of the undoped
ZnO sensor. This behavior has been attributed to the most active adsorption sites, assuming
the substitution of the Zn2+ cation by In3+. Therefore, the In sites favored the reaction
of CO with the different oxygen species. Sensors doped with 1 at. % and 2 at. % were
found to be more sensitive, with shorter response and recovery times, than those with
a high concentration of doping. The authors concluded that the incorporation of In in
the crystal lattice changes the oxygen stoichiometry of ZnO and influences the sensing
behavior of doped ZnO. Nonetheless, they suggested that doping should be performed
at low concentrations (less than 2 at. %). This is because at higher dopant concentrations,
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the oxygen species are strongly bound to the dopant sites, and, therefore, fewer sites are
available for interaction with CO [78].

Another attempt used B, which is considered a metalloid because it behaves as a metal
or nonmetal. Metalloids have also been investigated as doping materials to improve the
CO gas sensitivity and selectivity of ZnO structures. In this sense, undoped ZnO and
B-doped ZnO (2, 4, 6, and 8 at. %) thin films were deposited on n-type and p-type silicon
substrates, using the spray pyrolysis deposition method. The sensitivity increased as the
B concentration increased in the B-doped ZnO thin films. This can be attributed to the
electronic and structural modifications that B introduces in the B-doped ZnO thin films [79].
Among the analyzed doping elements of the B group, it is concluded that Al-doped ZnO
(1 at. %) was the best doping element, with a sensing response of 11.

2.3. Alkaline Earth Metals

Other metals reported in the literature that enhance the sensing properties of doped
ZnO are alkaline earth metals, namely, group II elements. In this respect, some alkaline
earth metals, such as Ca and Sr, have been explored in the development of sensors and
incorporated as active materials into the ZnO structure. In this context, Ghosh et al.
successfully developed a sensor that demonstrates cross-sensitivity to CO and CO2 in a
mixed H2 and CO2 environment. They incorporated a Ca-doped ZnO thin-film layer at 5 at.
% on a piezoelectric substrate of langasite to operate at a high temperature (400 ◦C) through
wet chemical synthesis [80]. Ghosh et al. demonstrated a predominant improvement in
the cross-sensitivity to CO gas at 500 ppm. This was observed through the mass loading
effect and conductivity of the thin-film coating on the substrate, because these are the
sensing principles of a surface acoustic wave (SAW) sensor. The mass loading effect
allowed the reduction in the resonant frequency to 6.627750 MHz in the Ca-doped ZnO
thin-film sensor in comparison with 7.89 MHz for the pure langasite. The cross-sensitivity
to CO had a response time of 87 s and a recovery time of 101 s, and the response was at
1.605 KHz. Comparison studies were conducted with commercial sensors that can operate
at temperatures exceeding 800 ◦C. They observed that langasite-based SAW gas sensors
are extremely beneficial because these can operate at temperatures exceeding 350 ◦C. They
concluded that the n-type-coated Ca-doped ZnO thin film enabled an increment in the
conductivity, reduced the wave velocity, and reduced the sensor resonant frequency [80].
Similar results were observed for a chemoresistive sensor with a layer of Ca-doped ZnO
thin film at 5 at. % and 350 ◦C in the presence of CO, H2, and CO2 gases [81].

A recent study reported that the Ca-doped ZnO nanoparticles used in electrochem-
ical sensors showed significant sensitivity, selectivity, and reproducibility, owing to the
increased surface area in the doped ZnO [82]. Another study evaluated different concen-
trations of Ca (as a dopant) used to modify the crystalline structure of the ZnO films in
Love wave sensors, confirming an increase in sensitivity due to the increase in the surface
roughness after the addition of Ca [83]. The rough surface of the film enables physical
phenomena, such as the nonlaminar movement of gas as it interacts with the surface of
the Ca-doped ZnO film, facilitating the chemisorption of the CO molecule. The doping
limit is 5 mol% of Ca. At higher percentages, the porosity of the surface decreases, that is,
it becomes smooth again (Figure 6) [83]. In addition, other authors have reported how Ca
modifies the ZnO properties when it is incorporated into the ZnO lattice (i.e., at 0 at. %, the
particle size was 38 nm and the lattice constant was 3.248 Å; at 3 at. %, the particle size was
53.5 nm, and the lattice constant was 3.260 Å). A linear trend for the lattice constant was
accompanied by increasing the crystallite sizes. With increasing Ca concentrations, a slight
decrease in the bandgap energy is observed, owing to the increased crystallite size [84].
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Shirage et al. [8] investigated and constructed a sensor using ZnO nanorods doped
with Sr. The newly developed chemoresistive sensor was prepared using a wet chemical
synthesis method, exhibiting sensitivity and selectivity to CO and CO2. As the response
increased toward lower temperatures, the detection of both gases was enhanced compared
with that of the undoped ZnO. They considered the incorporation of Sr in the nanorods as
excellent by the presence of lattice distortion in the crystalline structure of ZnO [8].

3. Density Functional Theory Studies on Doped ZnO-Based CO Sensors

At the experimental level, the design of novel doped ZnO sensors is widely affected
by the lack of rapid and economical synthesis routes that allow controlling the doping con-
centration in ZnO structures. Undoubtedly, such drawbacks can be overcome if sensor ma-
terials are modeled using first-principle or ab initio methods. In this context, first-principle
simulations based on the density functional theory (DFT) are essential for explaining and
understanding experimental results at the molecular level, or for predicting novel gas
sensors [85–88]. DFT-based simulations provide relevant critical information for designing
novel gas sensors. For instance, descriptors, such as the most stable adsorption sites, the
adsorption energy, charge transfer, electronic modification after gas adsorption, and feasi-
ble approaches to enhancing gas adsorption or desorption, are obtained via DFT [87,88].
Because of the critical role that DFT calculations play in the design of toxic gas sensors,
various DFT-based theoretical studies have been conducted to investigate novel ZnO-based
gas sensors with different dopants to detect CO gas [89–97]; see Table 2.

Table 2. Adsorption energies of CO on doped ZnO.

Material Eads (in eV) Functional Approach Ref.

Al −1.24 a, −0.71 b B3LYP Cluster (24 atoms) [89]
Al −0.79 PBE Triangular nanowire (132 atoms) [90]
Al −1.12 PBE Slab [91]
In −0.96 a, −0.48 b B3LYP Cluster (24 atoms) [92]
In −1.30 PBE Slab [93]
Pt − 3.54 PBE Cluster (24 atoms) [94]
Sc −0.86 B3LYP Cluster (24 atoms) [95]
Ti −1.44 B3LYP Cluster (24 atoms) [95]
V −1.67 B3LYP Cluster (24 atoms) [95]
Cr −2.80 B3LYP Cluster (24 atoms) [95]
Mn −1.45 B3LYP Cluster (24 atoms) [95]
Fe −1.79 B3LYP Cluster (24 atoms) [95]
Cu −1.01 PBE Triangular nanowire (132 atoms) [90]
Ga −0.61 c B3LYP Cluster (24 atoms) [96]

The a is ∆H and b is ∆G, c the reported value was obtained from the text of the article.
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Until now, more than ten metals have been investigated as doping elements to improve
the ZnO sensitivity to CO gas, among which Al is the most studied metal (Table 2). In this
context, general gradient approximation, specifically Perdew–Burke–Ernzerhof (PBE), has
been the most widely used method. It has also been observed that Zn12O12 clusters are
the most widely used to study doped ZnO as a CO gas sensor, because they have a stable
structure (Figure 7). Interestingly, several studies consider dispersion corrections in the
calculations, which allow better descriptions of the interaction between CO and doped ZnO.
Note that in the DFT calculations, the methodology and approaches used influence the
results obtained. For example, for the Al-doped ZnO, two types of approaches were used
in the calculations (triangular nanowire and slab). It is observed that the CO adsorption
energy on these systems changes, showing that the parameters used in the calculations
indeed influence the results obtained. According to the CO adsorption energy used to
evaluate the sensor sensitivity, the doped ZnO adsorbed CO better than the undoped ZnO.
It is also observed that the best doping materials are Pt, Cr, and Fe because they present the
highest adsorption energy, indicating that these could deliver the best CO gas sensitivity.
The excellent sensitivity of doped ZnO is attributed to its modified electronic and electrical
properties compared with those of the undoped ZnO [89–97]. These results show that the
doped ZnO is a good candidate for a CO sensor. Even though selectivity plays a vital role
in a sensor’s performance, to date, DFT selectivity analyses of doped ZnO for CO detection
are scarce. Therefore, future research should further investigate the selectivity of doped
ZnO for CO gas detection.
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4. Combined DFT and Experimental Investigations of Doped ZnO-Based CO Sensors

In the previous sections, experimental and theoretical contributions have been ana-
lyzed and discussed separately. However, because toxic gas sensing is a multidisciplinary
field involving different topics, various new ZnO-based CO sensors should undoubtedly be
found via combined theoretical–experimental studies to satisfy different demands. Hence,
the search for new doped ZnO-based CO sensors remains a priority for experimentalists
and theoretical researchers. In this sense, it has been shown that combining experimental re-
sults and DFT calculations is a good strategy for designing novel nanomaterials [98,99]. As
a result, the design of new doped ZnO-based CO sensors has expanded from experimental
findings to DFT calculations and vice versa.

In this context, there are some combined theoretical and experimental studies on
doped ZnO-based CO sensors [100,101]. Thereby, there are two ways to conduct combined
theoretical and experimental studies on doped ZnO-based CO sensors. First, DFT calcu-
lations are used to interpret the experimental results at the molecular level. Second, DFT
computations are used as a predictive tool for the rational design of novel gas sensors.
These are subsequently validated by experimental techniques. In this direction, a com-
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bined theoretical–experimental study was conducted to investigate the Co-doped ZnO
(0001) surface for CO sensing [100]. First, CO adsorption on the Co-doped ZnO (0001)
surface was investigated using the PBE functional (Figure 8). The CO adsorption energy
on the Co-doped ZnO (0001) surface was −2.31 eV. The adsorption energy and structural
change (Figure 8c) of CO indicated that it was adsorbed via chemisorption interactions.
Hence, such results suggest that the Co-doped ZnO (0001) surface is a good candidate for
CO detection. Consequently, CO sensing experimental measurements were conducted
to validate the theoretical results. Co-doped ZnO structures were synthesized using the
hydrothermal method. As shown in Figure 9, Co doping increased the specific surface area
and gas transport channels. These properties favor electron exchange between the gas and
the sensor surface. Likewise, experimental findings demonstrated that the Co-doped ZnO
is a good sensor for detecting CO gas [100].
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Another combined experimental–theoretical study investigated the use of Cr-doped
ZnO nanostructures for CO sensing [101]. First, the Zn12O12 and Cr-doped Zn11O12 cluster
properties were investigated using the B3LYP functional. Cr doping changed the structural,
optical, and electrical properties of the Zn12O12 cluster. The energy bandgap of the Zn12O12
cluster (4.14 eV) significantly decreased compared with that of the Cr-doped Zn11O12
cluster (1.68 eV), suggesting that the Cr-doped Zn11O12 cluster presents a higher reactivity
to the CO gas than that of the Zn12O12 cluster. Afterward, these theoretical results were
experimentally corroborated. For this purpose, the sol-gel method was used to produce
the undoped ZnO and 0.5 wt. % Cr-doped ZnO nanopowders. Subsequently, these
nanopowders were used to obtain ZnO and 0.5 wt. % Cr-doped ZnO films. The average
crystallite size of the undoped ZnO films (49.80 nm) significantly decreased compared
with that of the 0.5 wt. % Cr-doped ZnO films (20.04 nm). The undoped ZnO and the 0.5
wt. % Cr-doped ZnO films have spherical particles at the nanometer scale; see Figure 10.
The particle diameter distributions were ~40 nm for the undoped ZnO and ~25 nm for
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the 0.5 wt. % Cr-doped ZnO. This diminution in the particle size of the Cr-doped ZnO
enhances the specific surface area. Thus, the sensors were evaluated in the presence of N2
as the carrier gas and CO as the test gas in a flow rate range of 300–500 sccm at 50 ◦C. The
0.5 wt. % Cr-doped ZnO sensor had a higher sensitivity to CO than that of the undoped
ZnO sensor. For example, with a flow rate of 500 sccm, the 0.5 wt. % Cr-doped ZnO
presented a sensibility of 65.45%, whereas the undoped ZnO presented a sensibility of
9.65%. In addition, Cr doping causes a substantial decrease in the response and recovery
time. Therefore, the 0.5 wt. % Cr-doped ZnO is a better sensor than the undoped ZnO [101].
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5. Conclusions

This review presents a detailed and critical analysis of the recent progress on doped
ZnO for CO gas sensing. Based on this review, we conclude the following:

One important sensing parameter is the operating temperature, which is generally
reported as ranging to greater than 300 ◦C for the undoped ZnO. However, transition
metal-doped ZnO particles significantly reduce the operating temperature; the reported
range is about 95 ◦C–180 ◦C for CO concentrations between 15 and 100 ppm. Low doping
concentrations of transition metals between 1 and 5 at. % were used. These are considered
the solubility limit because particle agglomerates are created at higher concentrations,
which reduce the surface area.

Gas sensors doped with boron group metals exhibit improved response and recovery
times of approximately 7–20 s and 16–45 s, respectively. The highest sensitivity was
optimized under a CO atmosphere between 50 and 1750 ppm and an operating temperature
ranging from 100 ◦C to 350 ◦C. In addition, the solubility reported was approximately
3 at. %, which is relativity low in contrast with the limit for the transition metals.

In the case of alkaline earth metals, the operating temperatures reported were 350 ◦C
and 400 ◦C. These temperatures are higher than those of the transition metals, suggesting
a disadvantage in the doped ZnO. The doping concentration was 5 at. %, similar to that
of the transition metals. These findings open the door to exploring other alkaline metals
(group II elements) to improve the characteristics of doped ZnO and enhance the sensitivity,
selectivity, and reproducibility of ZnO gas sensors.

Selectivity plays an essential role in the performance of a sensor. However, to date,
at the DFT level, analyses of the CO gas selectivity of doped ZnO are scarce. Therefore,
future research should focus on the selectivity of doped ZnO for CO gas detection.

Combining theoretical and experimental studies is a good strategy for designing more
sensitive and selective doped ZnO-based CO gas sensors. However, in the last five years,
these types of research works have been scarce. Therefore, studies combining theory and
experiment should be done to design novel CO gas sensors based on doped ZnO.

We still notice the need to continue exploring ZnO doping in search of novel CO sen-
sors to improve the detection performance, repeatability, and stability, considering factors
such as the crystal structure, oxygen vacancy content, and bandgap. This is important for
CO monitoring as this gas is toxic even at low concentrations.
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