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Liver Enzymes and Risk of 
Ischemic Heart Disease and Type 
2 Diabetes Mellitus: A Mendelian 
Randomization Study
Junxi Liu1, Shiu Lun Au Yeung1, Shi Lin Lin1, Gabriel M. Leung1 & C. Mary Schooling1,2

We used Mendelian randomization to estimate the causal effects of the liver enzymes, alanine 
aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyltransferase (GGT), on 
diabetes and cardiovascular disease, using genetic variants predicting these liver enzymes at genome 
wide significance applied to extensively genotyped case-control studies of diabetes (DIAGRAM) and 
coronary artery disease (CAD)/myocardial infarction (MI) (CARDIoGRAMplusC4D 1000 Genomes). 
Genetically higher ALT was associated with higher risk of diabetes, odds ratio (OR) 2.99 per 100% 
change in concentration (95% confidence interval (CI) 1.62 to 5.52) but ALP OR 0.92 (95% CI 0.71 to 
1.19) and GGT OR 0.88 (95% CI 0.75 to 1.04) were not. Genetically predicted ALT, ALP and GGT were 
not clearly associated with CAD/MI (ALT OR 0.74, 95% CI 0.54 to 1.01, ALP OR 0.86, 95% CI 0.64 to 1.16 
and GGT OR 1.08, 95% CI 0.97 to 1.19). We confirm observations of ALT increasing the risk of diabetes, 
but cannot exclude the possibility that higher ALT may protect against CAD/MI. We also cannot exclude 
the possibility that GGT increases the risk of CAD/MI and reduces the risk of diabetes. Informative 
explanations for these potentially contradictory associations should be sought.

Observational studies usually show some measures of liver function, such as alanine aminotransferase (ALT), 
alkaline phosphatase (ALP) and gamma glutamyltransferase (GGT), associated with higher risk of cardiovascular 
disease (CVD) and type 2 diabetes mellitus (T2DM). Among these liver enzymes, gamma glutamyltransferase 
(GGT) is most strongly positively associated with both CVD1,2 and T2DM3,4, although GGT is a non-specific 
marker of liver function. Alanine aminotransferase (ALT) is more clearly positively associated with T2DM4,5 than 
with CVD6,7 while the role of alkaline phosphatase (ALP)8,9 is unclear. Apart from the difficulties of separating out 
the roles of these correlated liver enzymes, observational studies are open to unmeasured confounding by factors 
such as alcohol use, pre-existing disease, lifestyle and socioeconomic position, making it uncertain whether liver 
function could be a valid target of intervention or is even etiologically relevant to these major complex chronic 
diseases.

In this situation comparing the risk of CVD and T2DM by genetically determined liver function, i.e., 
Mendelian randomization (MR), provides a way forward. MR takes advantage of the random allocation of genetic 
endowment at conception to provide randomization analogous to the randomization in randomized controlled 
trials10,11 and is an increasingly popular means of obtaining un-confounded estimates. No previous MR study has 
examined the role of liver enzymes in CVD and T2DM. To clarify their roles, we assessed the association of genet-
ically predicted liver enzymes (ALT, ALP and GGT) with ischemic heart disease (IHD) using large extensively 
genotyped case-control studies of coronary artery disease (CAD)/myocardial infarction (MI) and T2DM12–15. 
Given the role of the liver in lipid and glucose metabolism, we also similarly assessed the associations of these 
liver enzymes with lipids and glucose metabolism using and large extensively genotyped cross-sectional studies 
of lipids16 and glycemic traits17.
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Results
At genome wide significance GWAS gave 4 SNPs independently predicting ALT, 14 SNPs independently predicting  
ALP and 26 SNPs independently predicting GGT18. One SNP, rs2954021 (TRIB1), predicted both ALT and ALP, 
meaning that it is pleiotropic. Supplementary Table 1 gives the information extracted for each SNP for CAD/MI 
and T2DM.

Genetic associations with CAD/MI.  Genetically predicted ALT was not clearly associated with CAD/MI 
using IVW and all SNPs (see Supplementary Fig. S1b), after excluding potentially pleiotropic SNPs or using more 
conservative methods, although all the estimates for ALT were in the direction of lower risk but with confidence 
intervals including the null value (Table 1). Genetically predicted ALP was inversely associated with CAD/MI 
using IVW (see Supplementary Fig. S2b) or any other method, but this association was not robust to exclu-
sion of potentially pleiotropic SNPs with the exclusion of rs579459 in ABO contributing most to the difference. 
Genetically predicted GGT was not clearly associated with CAD/MI using IVW (see Supplementary Fig. S3b) or 
any other method, although the direction was towards higher risk but the confidence intervals included the null 
value. There was no evidence that the MR-Egger intercepts differed from the null for the associations of ALT, ALP 
or GGT with CAD/MI, particularly after excluding potentially pleiotropic SNPs (Table 1).

Genetic associations with T2DM.  Genetically predicted ALT was positively associated with T2DM 
using IVW with directionally similar estimates for most SNPs (see Supplementary Fig. S1a). The estimate was 
very similar after excluding potentially pleiotropic SNPs but this association was not robust to the MR-Egger 
method which gave much less weight to the SNP (rs2954021) from PNPLA3. Genetically predicted ALP was not 
clearly associated with T2DM using IVW (see Supplementary Fig. S2a). Genetically predicted GGT was inversely 

Outcome data source
Liver 

Enzyme

All SNPs Excluding potentially pleiotropic SNPs‡

SNPs Method OR 95% CI

MR-Egger§

SNPs Method OR 95% CI

MR-Egger§

Intercept
Intercept 

p value Intercept
Intercept 

p value

CAD/MI

CARDIoGRAMplusC4D ALT 4 IVW 0.89 0.54 to 1.46 0.07 0.12 3 IVW 0.79 0.48 to 1.31 0.03 0.47

CARDIoGRAMplusC4D 
1000 genomes IVW 0.79 0.58 to 1.08 0.04 0.28 IVW 0.74 0.54 to 1.01 0.004 0.836

CARDIoGRAMplusC4D MR-Egger 0.18 0.01 to 5.75 — — MR-Egger 0.43 0.13 to 1.43 — —

CARDIoGRAMplusC4D 
1000 genomes MR-Egger 0.33 0.01 to 9.62 — — MR-Egger 0.68 0.10 to 4.73 — —

CARDIoGRAMplusC4D ALP 14 IVW 0.72 0.57 to 0.91 0.03 0.06 9 IVW 1.44 0.95 to 2.17 −​0.03 0.16

CARDIoGRAMplusC4D 
1000 genomes IVW 0.61 0.50 to 0.74 0.02 0.08 IVW 0.86 0.64 to 1.16 −​0.01 0.72

CARDIoGRAMplusC4D MR-Egger 0.38 0.17 to 0.86 — — WM 1.54 0.91 to 2.63 — —

CARDIoGRAMplusC4D 
1000 genomes WM 0.46 0.35 to 0.60 — — WM 0.94 0.60 to 1.48 — —

CARDIoGRAMplusC4D GGT 26 IVW 1.11 0.97 to 1.27 0.004 0.662 23 IVW 1.12 0.97 to 1.29 0.001 0.91

CARDIoGRAMplusC4D 
1000 genomes IVW 1.01 0.92 to 1.10 0.01 0.34 IVW 1.08 0.97 to 1.19 0.01 0.55

CARDIoGRAMplusC4D WM 1.16 0.94 to 1.42 — — WM 1.16 0.94 to 1.44 — —

CARDIoGRAMplusC4D 
1000 genomes WM 1.03 0.89 to 1.19 — — WM 1.05 0.91 to 1.23 — —

Diabetes

DIAGRAM
ALT 4 IVW 2.68 1.48 to 4.86 −​0.01 0.70 3 IVW 2.99 1.62 to 5.52 0.02 0.64

MR-Egger 3.54 0.17 to 73.79 — — MR-Egger 1.99 0.16 to 24.36 — —

DIAGRAM
ALP 14 IVW 0.91 0.70 to 1.18 0.01 0.28 13 IVW 0.92 0.71 to 1.19 0.01 0.24

MR-Egger 0.71 0.35 to 1.45 — — MR-Egger 0.68 0.32 to 1.44 — —

DIAGRAM
GGT 26 IVW 0.83 0.71 to 0.97 −​0.02 0.09 24 IVW 0.88 0.75 to 1.04 −​0.01 0.33

WM 0.82 0.62 to 1.10 — — WM 0.91 0.68 to 1.21 — —

Table 1.  Estimates of the effect of genetically predicted liver enzymes ALT, ALP and GGT (per 100% change 
in concentration)18 on coronary artery disease (CAD)/myocardial infarction (MI)12,14,22 and type 2 diabetes 
mellitus (T2DM)15 using Mendelian randomization with different methodological approaches with and 
without potentially pleiotropic SNPs. IVW: Inverse Variance Weighted, WM: Weighted Median. ‡CAD/MI 
related SNPs excluded for ALT: rs2954021 (TRIB1), excluded for ALP: rs174601 (C11orf10, FADS1, FADS2), 
rs314253 (ASGR1, DLG4), rs2954021 (TRIB1), rs579459 (ABO) and rs6984305 (PPP1R3B), excluded for GGT: 
rs516246 (FUT2), rs7310409 (HNF1A) and rs1260326 (C2orf16, GCKR). Diabetes related SNPs excluded for 
GGT: rs516246 (FUT2) and rs1260326 (C2orf16, GCKR); rs2954021 (TRIB1) excluded for ALT and ALP. §The 
intercept can be interpreted as an estimate of the average pleiotropic effect across the genetic variants where 
a corresponding p-value of <​0.05 indicates the presence of directional pleiotropy across the genetic variants 
included in the analyses.
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associated with T2DM using IVW (see Supplementary Fig. S3a), and the estimates were directionally similar 
using other methodological approaches, but the confidence intervals included the null value. There was no evi-
dence that the MR-Egger intercepts differed from the null for the associations of ALT, ALP or GGT with T2DM, 
particularly after excluding potentially pleiotropic SNPs (Table 1).

Genetic associations with lipids and glycemic traits.  Genetically predicted ALT, ALP and GGT 
tended to be inversely related to both LDL- and HDL- cholesterol (Table 2). Among people without diabetes, 
genetically predicted ALT, ALP and GGT tended to have associations with measures of glucose metabolism direc-
tionally consistent with the respective estimates for T2DM, but most confidence intervals included the null value 
(Table 3). There was no evidence that the MR-Egger intercepts differed from the null for the associations of ALT, 
ALP or GGT with lipids or glycemic traits (Tables 2 and 3).

Discussion
This novel study is consistent with most previous observational studies showing higher ALT associated with 
a higher risk of T2DM4,19. Our findings are also consistent with observed positive associations of GGT with 
ischemic heart disease (IHD)1,2. Our study is also suggestive of an inverse association of ALT with IHD, and of 
GGT with T2DM. As such, this study considering each liver enzyme independently has confirmed some previous 
observations but raised questions about the role of ALT in IHD and of GGT in diabetes which may previously 
have been obscured by correlations between markers of liver function.

MR provides a means of obtaining un-confounded estimates, because genetic make-up is randomly allocated 
at conception and so is unlikely to be influenced by confounders, such as lifestyle, heath status or socioeconomic 
position. The risk of chance associations generated by the underlying data structure is reduced by using separate 
samples for liver enzymes and the outcomes20, which is unlikely to be negated by the 5–6% overlap between the 
samples used to obtain genetic association with the exposures and with the outcomes. All the studies are largely 
of people of European descent with genomic control12,14–18,21–23 which reduces bias from hidden genetic relations. 
We used SNPs to predict liver enzymes which were from GWAS and were strongly associated with liver enzymes 
to reduce the risk of false positives. We also checked whether the SNPs used to predict liver enzymes could be 
associated with the outcomes directly rather than via liver enzymes and repeated the analysis with those poten-
tially pleiotropic SNPs excluded. Nevertheless despite checking the assumptions of Mendelian randomization 

Liver 
enzyme Lipid

All SNPs Excluding potentially pleiotropic SNPs related to lipids‡

SNPs Method Beta 95%CI

MR-Egger§

SNPs Method Beta 95%CI

MR-Egger§

Intercept
Intercept 

p value Intercept
Intercept  

p value

ALT

LDL cholesterol (SD) 4 IVW −​0.19 −​0.37 to −​0.01 0.05 0.3 3 IVW −​0.21 −​0.39 to −​0.03 0.003 0.861

MR-Egger −​1.20 −​5.68 to 3.28 — — MR-Egger −​0.29 −​5.25 to 4.66 — —

HDL cholesterol (SD) 4 IVW −​0.22 −​0.39 to −​0.06 −​0.03 0.43 3 IVW −​0.20 −​0.37 to −​0.03 0.003 0.908

MR-Egger 0.30 −​3.11 to 3.72 — — MR-Egger −​0.30 −​9.01 to 8.40 — —

Triglycerides (SD) 4 IVW −​0.10 −​0.17 to 0.15 0.04 0.48 3 IVW −​0.03 −​0.18 to 0.13 −​0.02 0.62

MR-Egger −​0.81 −​6.70 to 5.08 — — MR-Egger 0.36 −​8.34 to 9.06 — —

ALP

LDL cholesterol (SD) 14 IVW −​0.47 −​0.57 to −​0.36 0.01 0.65 9 IVW −​0.08 −​0.23 to 0.08 −​0.01 0.57

WM −​0.71 −​0.94 to −​0.49 — — WM −​0.11 −​0.33 to 0.10 — —

HDL cholesterol (SD) 14 IVW −​0.09 −​0.17 to −​0.01 −​0.01 0.48 9 IVW 0.11 −​0.04 to 0.25 0.01 0.53

MR-Egger −​0.05 −​0.75 to 0.66 — — WM −​0.03 −​0.23 to 0.18 — —

Triglycerides (SD) 14 IVW 0.50 −​0.03 to 0.13 0.01 0.67 9 IVW −​0.19 −​0.33 to −​0.04 −​0.01 0.3

MR-Egger 0.02 −​0.77 to 0.81 — — WM −​0.01 −​0.21 to 0.19 — —

GGT

LDL cholesterol (SD)
26 IVW −​0.05 −​0.10 to −​0.01 0.01 0.06 23 IVW −​0.04 −​0.09 to 0.02 −​0.0002 0.9511

WM −​0.06 −​0.14 to 0.02 — — WM −​0.05 −​0.14 to 0.03 — —

HDL cholesterol (SD)
26 IVW −​0.07 −​0.11 to −​0.03 0.002 0.588 23 IVW −​0.03 −​0.08 to 0.01 0.003 0.430

WM −​0.07 −​0.14 to −​0.01 — — WM −​0.04 −​0.11 to 0.02 — —

Triglycerides (SD)
26 IVW 0.03 −​0.01 to 0.07 0.02 0.21 23 IVW 0.01 −​0.04 to 0.06 0.002 0.842

WM −​0.02 −​0.08 to 0.04 — — WM −​0.04 −​0.11 to 0.04 — —

Table 2.  Estimates of the effects of genetically predicted liver enzymes ALT, ALP and GGT (per 100% 
change in concentration)18 on lipids16 using Mendelian randomization with different methodological 
approaches with and without potentially pleiotropic SNPs. IVW: Inverse Variance Weighted; WM: Weighted 
Median. ‡Lipids related SNPs excluded for ALT: rs2954021 (TRIB1), excluded for ALP: rs174601 (C11orf10, 
FADS1, FADS2), rs314253 (ASGR1, DLG4), rs2954021 (TRIB1), rs579459 (ABO) and rs6984305 (PPP1R3B), 
excluded for GGT: rs516246 (FUT2), rs7310409 (HNF1A) and rs1260326 (C2orf16, GCKR). §The intercept can 
be interpreted as an estimate of the average pleiotropic effect across the genetic variants where a corresponding 
p-value of <​0.05 indicates the presence of directional pleiotropy across the genetic variants included in the 
analyses.
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rigorously, limitations exist. First, given the use of separate samples we could not test whether the associations 
of liver enzymes with the outcomes vary by level of liver enzymes, by age or by sex, although causal relations are 
usually consistent. Second, we cannot be certain that the SNPs do not have unknown direct effects on IHD and 
T2DM. We excluded SNPs with known pleiotropic effects including the SNP (rs2954021) that predicted both ALT 
and ALP and the estimates were similar for GGT and ALT but less so for ALP, because of the role of rs579459 from 
the ABO gene. Third, estimates may be sensitive to analytic choices, but were generally similar, using weighted 
median estimates, although the MR-Egger estimates had much wider confidence intervals but gives consistent 
estimates in the unlikely event of all SNPs being invalid but satisfying the InSIDE assumption24. Although the 
exact functionality of all the SNPs used to predict liver enzymes is not entirely clearly, some of them are expressed 
in the liver, for example all the 4 SNPs (rs738409 (PNPLA3), rs2954021 (TRIB1), rs6834314 (MAPK10, HSD17B1) 
and rs10883437 (CPN1)) related to ALT are expressed mainly in liver according to data in the Human Protein 
Altas (http://www.proteinatlas.org/)25,26, making a causal role plausible and making MR-Egger estimates very 
conservative24. Fourth, canalization, i.e., compensatory mechanisms that drive some of the association of genetic 
variants with liver enzymes, might result in different associations in MR than would be obtained from interven-
tions changing liver enzymes. However, whether such canalization exists is unknown. Fifth, GGT, ALT and ALP 
are not only markers of liver disease but are also affected by bone diseases (Paget disease, osteomalacia, rickets), 
primary and secondary hyperparathyroidism, kidney and pancreatic dysfunction (GGT is primarily present in 
these cells) and drug use (phenobarbital and phenytoin), so although the estimates represent the effects of each 
specific liver enzyme they may not only represent liver function27,28.

The findings for these liver enzymes concerning T2DM show some consistency with observational studies, 
where ALT is usually positively associated with T2DM4,5 and has been found associated with death from diabetes 
related causes29. ALT is thought to cause diabetes via insulin resistance30 with hepatic steatosis aggravating insulin 
resistance and creating a vicious cycle31. Consistent with this hypothesis genetically predicted ALT also showed 

Liver 
enzyme Glycemic Traits

All SNPs
Excluding potentially pleiotropic SNPs related to obesity or another liver 

enzymes‡

SNPs Method Beta 95%CI

MR-Egger§

SNPs Method Beta 95%CI

MR-Egger§

Intercept
Intercept 

p value Intercept
Intercept p 

value

ALT

HbA1c (%) 4 IVW 0.006 −​0.105 to 0.118 −​0.003 0.765 3 IVW 0.03 −​0.08 to 0.14 0.01 0.42

MR-Egger 0.07 −​1.02 to 1.15 — — MR-Egger −​0.14 −​2.06 to 1.78 — —

Fasting glucose 
(mmol/L) 4 IVW 0.05 −​0.06 to 0.17 −​0.005 0.378 3 IVW 0.07 −​0.05 to 0.19 −​0.004 0.628

MR-Egger 0.17 −​0.07 to 0.41 — — MR-Egger 0.15 −​0.77 to 1.08 — —

Insulin resistance 4 IVW 0.08 −​0.04 to 0.21 −​0.003 0.546 3 IVW 0.09 −​0.04 to 0.22 −​0.004 0.639

MR-Egger 0.17 −​0.09 to 0.43 — — MR-Egger 0.18 −​0.60 to 0.96 — —

Beta cell function 4 IVW −​0.01 −​0.12 to 0.09 −​0.002 0.657 3 IVW −​0.02 −​0.13 to 0.09 −​0.004 0.552

MR-Egger 0.03 −​0.21 to 0.27 — — MR-Egger 0.08 −​0.25 to 0.42 — —

ALP

HbA1c (%) 14 IVW −​0.09 −​0.15 to −​0.02 0.001 0.636 13 IVW −​0.08 −​0.15 to −​0.01 0.003 0.222

MR-Egger −​0.12 −​0.30 to 0.05 — — MR-Egger −​0.156 −​0.312 to 0.001 — —

Fasting glucose 
(mmol/L) 14 IVW −​0.12 −​0.19 to −​0.04 0.001 0.800 13 IVW −​0.12 −​0.19 to −​0.04 0.002 0.766

MR-Egger −​0.14 −​0.49 to 0.21 — — MR-Egger −​0.15 −​0.52 to 0.23 — —

Insulin resistance 14 IVW −​0.09 −​0.17 to −​0.01 −​0.001 0.827 13 IVW −​0.09 −​0.17 to −​0.01 −​0.001 0.781

MR-Egger −​0.06 −​0.31 to 0.20 — — MR-Egger −​0.05 −​0.33 to 0.23 — —

Beta cell function 14 IVW −​0.004 −​0.068 to 0.061 −​0.002 0.537 13 IVW −​0.004 −​0.069 to 0.061 −​0.002 0.521

MR-Egger 0.05 −​0.17 to 0.27 — — MR-Egger 0.06 −​0.18 to 0.29 — —

GGT

HbA1c (%) 26 IVW −​0.01 −​0.04 to 0.03 −​0.003 0.152 24 IVW −​0.002 −​0.035 to 0.032 −​0.002 0.279

WM 0.02 −​0.03 to 0.07 — — WM 0.02 −​0.03 to 0.07 — —

Fasting glucose 
(mmol/L) 26 IVW −​0.01 −​0.05 to 0.02 −​0.01 0.11 24 IVW −​0.001 −​0.038 to 0.036 −​0.003 0.253

WM 0.03 −​0.02 to 0.08 — — WM 0.03 −​0.02 to 0.09 — —

Insulin resistance 26 IVW −​0.02 −​0.06 to 0.02 −​0.003 0.331 24 IVW −​0.01 −​0.05 to 0.03 0.00 0.97

WM −​0.03 −​0.08 to 0.03 — — WM −​0.03 −​0.08 to 0.03 — —

Beta cell function 26 IVW −​0.01 −​0.04 to 0.02 0.001 0.696 24 IVW −​0.005 −​0.038 to 0.028 0.001 0.454

WM −​0.04 −​0.10 to 0.01 — — WM −​0.04 −​0.08 to 0.01 — —

Table 3.  Estimates of the effects of genetically predicted liver enzymes ALT, ALP and GGT (per 100% 
changes in concentration)18 on glycemic traits17,23 using Mendelian randomization with different 
methodological approaches with and without potentially pleiotropic SNPs. IVW: Inverse Variance Weighted; 
WM: Weighted Median. ‡Excluding SNP (rs2954021 (TRIB1)) for ALT and ALP, excluding glycemic traits 
related SNPs for GGT: rs516246 (FUT2) and rs1260326 (C2orf16, GCKR). §The intercept can be interpreted as 
an estimate of the average pleiotropic effect across the genetic variants where a corresponding p-value of <​0.05 
indicates the presence of directional pleiotropy across the genetic variants included in the analyses.

http://www.proteinatlas.org/
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indications of a positive association with insulin resistance (Table 3). However, the reason for ALT causing insulin 
resistance remains elusive. Observationally, ALP is not clearly associated with T2DM11,32, consistent with these 
results. Observationally, GGT is also usually positively associated with diabetes3,4, even using methods that enable 
correlated exposures, such as liver enzymes to be disentangled4. However, our analysis suggests the association for 
genetically predicted GGT might be in the other direction; confirmation of this result is required.

The findings for the associations of genetically predicted ALT and GGT with IHD are somewhat consistent 
with observational studies. GGT is often positively associated with IHD1,2, and our findings are consistent with 
this interpretation, although the confidence intervals included the null value. ALT usually has a neutral associa-
tion with IHD6, our findings are consistent with a neutral association but cannot rule out an inverse association. 
The findings for the association of genetically predicted ALP with IHD are difficult to interpret because the nega-
tive association depends on rs579459 (near ABO) when the reasons for blood groups being associated with IHD 
are not currently fully understood. It is not clear whether rs579459 is operating via alterations in liver function, 
is directly functionally relevant to IHD by some yet to be identified mechanism or is a correlate of other factors 
directly causing IHD.

Overall, these findings indicate complex relations of liver enzymes with IHD and diabetes that may be direc-
tionally different even though diabetes is a strong risk factor for IHD. However, it has recently been discov-
ered that key causal factors for IHD may have directionally different relations with IHD and diabetes, such as 
LDL cholesterol or statins33,34, which clearly has important implications for prevention and treatment of both 
conditions. No accepted mechanistic explanation for these paradoxical relation exists, a mechanism via LDL 
receptor-mediated transmembrane cholesterol transport has been suggested35, which is plausible but does not 
clearly relate to liver function. We have previously suggested a mechanism via sex hormones36. Sex hormone 
receptors are expressed in the liver37 and the liver is an important site for sex hormone metabolism38 and catab-
olism39,40. Randomized controlled trials have shown that estrogen reduces the risk of diabetes41 and testosterone 
improves glucose metabolism42,43; regulators have warned of the cardiovascular risk of testosterone44. However, 
such an explanation might not explain the different effects of statins, because uncertainties remain as to whether 
statins affect the liver or cause liver injury or dysfunction45, although statins lower sex hormones46.

This novel Mendelian randomization study has confirmed some observations concerning poorer liver function,  
such as ALT likely causing diabetes, but has also raised the possibility of complex effects on IHD. Liver function 
has complex enzyme and disease specific effects on major non-communicable diseases. Greater understanding of 
the underlying etiology is needed. As such whether intervening on liver function would improve diabetes with-
out affecting its major consequence, i.e., cardiovascular disease, is unclear. This study also shows the importance 
of using genetic evidence to identify and select targets of intervention, but leaves several unanswered questions 
concerning the role of liver function in diabetes and cardiovascular disease. Further investigation is required.

Methods
Genetically predicted liver enzymes.  Single nucleotide polymorphisms (SNPs) strongly associated with 
ALT, ALP and GGT at genome wide significance (p-value <​ 5 ×​ 10−8) were obtained from genome wide associa-
tion studies (GWAS). Any highly correlated SNPs (in linkage disequilibrium) (r2 ≥​ 0.8) were discarded to retain 
SNPs with a smaller p-value and/or larger effect size. SNP Annotation and Proxy Search (http://www.broad.mit.
edu/mpg/snap/ldsearchpw.php) was used to ascertain these correlations (linkage disequilibrium) using the same 
catalog as the relevant GWAS. Whether any of the selected SNPs were related to CAD/MI or T2DM directly 
rather than through liver enzymes (pleiotropic effects) was assessed from their known traits/phenotypes obtained 
from a comprehensive genotype to phenotype cross-reference, Ensembl (http://www.ensembl.org/index.html).

Genetically predicted CAD/MI, diabetes, lipids and glycemic traits.  Data on CAD/MI 
have been contributed by CARDIoGRAMplusC4D investigators and have been downloaded from www.
CARDIOGRAMPLUSC4D.ORG. CARDIoGRAMplusC4D provides two large overlapping case-control studies 
largely in people of European descent, one genotyped using 1000 Genomes (60,801 CAD cases, 123,504 controls) 
and the other genotyped using Hapmap with limited genotyping (63,746 CAD/MI, 130,681 controls) but with more 
extensive genotyping for a subset (22,233 CAD/MI cases, 64,762 controls)12,14,22. Genetic associations with T2DM 
are from an extensively genotyped case (n =​ 34,840)-control (n =​ 114,981) study largely of people of European 
descent from the DIAbetes Genetics Replication and Meta-analysis consortium, http://diagramconsortium.org/
index.html.15 Genetic associations with lipids (inverse normal transformed effect sizes) are from the Global Lipids 
Genetic Consortium Results of 188,577 people mainly of European ancestry http://csg.sph.umich.edu//abecasis/
public/lipids2013/ including low-density lipoprotein (LDL)- cholesterol, high-density lipoprotein (HDL)-cholesterol 
and triglycerides16. Data on glycemics glycemic traits, including glycated hemoglobin (HbA1c) (%) (n =​ 46,368)23, 
fasting glucose (FG) (mmol/L) (n =​ 122,743)17, log transformed β​-cell function (HOMA-B) (n =​ 98,372)17, and insu-
lin resistance (HOMA-IR) (n =​ 98,372)17, are in people of European descent without diabetes, and have been con-
tributed by MAGIC investigators and have been downloaded from www.magicinvestigators.org.

Statistical analyses.  Un-confounded estimates of the association of each liver enzyme with CAD/MI, 
T2DM, lipids and glycemic traits were obtained from separate sample instrumental variable analysis by combining  
SNP-specific Wald estimates47, with the standard error approximated using Fieller’s theorem48, using inverse var-
iance weighting (IVW) with fixed effects49. The Wald estimate is the ratio of the estimate of SNP on outcome to 
SNP on liver enzyme.

Sensitivity analyses.  We conducted two sensitivity analyses to assess whether the estimates were robust 
to methodological choices. First, we repeated the analysis excluding SNPs that might be associated with 
the relevant outcome directly rather than via liver enzymes, i.e., pleiotropic effects which might violate the 

http://www.broad.mit.edu/mpg/snap/ldsearchpw.php
http://www.broad.mit.edu/mpg/snap/ldsearchpw.php
http://www.ensembl.org/index.html
http://www.CARDIOGRAMPLUSC4D.ORG
http://www.CARDIOGRAMPLUSC4D.ORG
http://diagramconsortium.org/index.html
http://diagramconsortium.org/index.html
http://csg.sph.umich.edu//abecasis/public/lipids2013/
http://csg.sph.umich.edu//abecasis/public/lipids2013/
http://www.magicinvestigators.org
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exclusion-restriction assumption of instrumental variable analysis. Second, when each SNP contributed less than 
50% of the weight, we used a weighted median estimate which may generate correct estimates even when 50% of 
the SNPs included violate the instrumental variable assumptions50. When a single SNP contributed more than 
50% we used MR-Egger regression because it may generate correct estimates even when all the SNPs are invalid 
instruments as long as the instrument strength independent of direct effect (InSIDE) assumption is satisfied24. We 
also examined the value of the intercept term from the MR-Egger regression which gives the average directional 
pleiotropic effect across genetic variants, i.e., the average direct effect of a variant on the outcome. A p-value 
of <​0.05 indicates the presence of directional pleiotropy across the genetic variants included in the analysis50. 
MR-Egger has a lower false positive rate than IVW but a higher false negative rate24.

All statistical analyses were conducted using Stata version 13.1 (StataCorp LP, College Station, TX) and R 
version 3.3.0 (R Foundation for Statistical Computing, Vienna, Austria). Ethical approval from an Institutional 
Review Board is not required, since this study only uses publicly available data.
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