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Abstract

Although many phenotypic traits are determined by a large num-

ber of genetic variants, how a polygenic trait adapts in response to

a change in the environment is not completely understood. In the

framework of diffusion theory, we study the steady state and the

adaptation dynamics of a large but finite population evolving under

stabilizing selection and symmetric mutations when selection and mu-

tation are moderately large. We find that in the stationary state, the

allele frequency distribution at a locus is unimodal if its effect size is

below a threshold effect and bimodal otherwise; these results are the

stochastic analog of the deterministic ones where the stable allele fre-

quency becomes bistable when the effect size exceeds a threshold. It

is known that following a sudden shift in the phenotypic optimum, in

an infinitely large population, selective sweeps at a large-effect locus

are prevented and adaptation proceeds exclusively via subtle changes

in the allele frequency; in contrast, we find that the chance of sweep

is substantially enhanced in large, finite populations and the allele

frequency at a large-effect locus can reach a high frequency at short

times even for small shifts in the phenotypic optimum.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525607
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Understanding the genetic basis of phenotypic variation and the phe-

notypic adaptation dynamics are central and challenging questions in

evolution, and have attracted considerable interest, especially in the

last two decades (Barton and Keightley, 2002; Rockman, 2012;

Jain and Stephan, 2017a; Sella and Barton, 2019; Barghi et al.,

2020). The phenotypic variation depends on the genetic architecture

of a trait which refers to the number of genetic variants underlying

a phenotype, the effect and frequency of these variants on the phe-

notype, the interaction between these genetic variants and with the

environment, etc. (Timpson et al., 2018).

In monogenic and oligogenic traits such as insecticide resistance in

Drosophila (Ffrench-Constant et al., 2002), industrial melanism

in peppered moth (van’t Hof et al., 2011) and lactase persistence

in humans (Ségurel and Bon, 2017), one to few loci are associ-

ated with the phenotype, and adaptation in such traits is driven by

large and rapid changes in the frequency of the selected allele (May-

nard Smith and Haigh, 1974; Hermisson and Pennings, 2017).

On the other hand, from genome-wide association studies (GWAS)

(Visscher et al., 2017), it has been established that a large number

of loci are required to explain the heritability or within-population

genetic variance of many traits including human height (Shi et al.,

2016; Yengo et al., 2022) and several complex diseases (Loh et al.,

2015). For such polygenic traits, in response to a change in the en-
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vironment, the change in the allele frequencies is correlated to each

other.

Although many phenotypic traits have a polygenic basis (Boyle

et al., 2017; Wray et al., 2018), the adaptation dynamics of such

traits are not well understood (Pritchard and Di Rienzo, 2010;

Pritchard et al., 2010), and both empirical and theoretical routes

have been taken to make progress. In recent studies, polygenic adap-

tation has been investigated experimentally in Drosophila (Burke

et al., 2010; Turner et al., 2011; Barghi et al., 2019), in natu-

ral populations (Therkildsen et al., 2019) and in the framework of

quite general theoretical models. Specifically, theoretical studies deal

with models that allow one to explore various genetic architectures

underlying a quantitative trait and have focused on understanding

the allele frequency dynamics and their connection to phenotypic dy-

namics, assuming infinite population size (Lande, 1983; Chevin and

Hospital, 2008; de Vladar and Barton, 2014; Jain and Stephan,

2015, 2017b), and more recently, finite populations (Höllinger et al.,

2019; Hayward and Sella, 2022). In an infinite population under

stabilizing selection, it has been shown that the selective sweeps at

large-effect loci are prevented (Chevin and Hospital, 2008; Jain

and Stephan, 2017b), and in small populations where the dynamics

are drift-dominated, the large-effect alleles are almost never found to

sweep to fixation (Sella and Barton, 2019; Hayward and Sella,

2022).
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This leaves the question of polygenic adaptation dynamics in mod-

erately large populations; to fill this gap in our understanding, here we

revisit the deterministic model studied in de Vladar and Barton

(2014); Jain and Stephan (2015, 2017b) but now assuming that the

population size is finite to address how random genetic drift affects the

chance of sweep. We find that as in previous studies, the initial fre-

quency of a large-effect locus plays an important role in determining if

its allele frequency can reach a high frequency at short times. Naïvely,

one expects that in a large population, the allele frequency follows a

Gaussian-distribution centred about the deterministic result. How-

ever, using the exact stationary state distribution (Wright, 1937;

Kimura, 1964, 1965; de Vladar and Barton, 2011), we find that

the tail of the initial distribution is fatter than that of a Gaussian

distribution and leads to an enhanced probability of a large change in

the allele frequency of a large-effect locus when selection and mutation

are moderately strong.

2 Model

We consider a polygenic trait controlled by ℓ diallelic loci in a panmic-

tic, finite, diploid population of size N in linkage equilibrium. The

phenotype-genotype map is assumed to be additive, and the trait

value z receives contributions from + and − allele at the ith locus

whose effect size are ±γi/2 and are present in frequency xi and 1−xi,

respectively, in the population. Then the trait mean (averaged over
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the population) in a single stochastic trajectory can be written as,

z =
ℓ∑
i=1

γi(2xi − 1) (1)

On averaging over independent stochastic trajectories, we obtain ⟨z⟩ =∑ℓ
i=1 γi(2⟨xi⟩−1). We also assume that the mutation between + and

− allele occurs at an equal rate µ at each locus. The phenotypic

trait evolves under stabilizing selection (Robertson, 1956; King-

solver et al., 2001; Sanjaka et al., 2018; de Villemereuil et al.,

2020; Sodeland et al., 2022) with the phenotypic fitness w(z) ≈

1−(s/2)(z−zopt)2 which falls quadratically from a (time-independent)

optimal trait value zopt with the strength of the selection being s (here,

s−1 denotes the sum of genetic and environmental contributions to the

phenotype). In much of the discussion, we assume that the effect sizes

are chosen from an exponential distribution with mean γ̄ (Orr, 1998;

Mackay, 2004; Goddard and Hayes, 2009).

Under these assumptions, the evolution of the joint distribution of

the allele frequency vector, x⃗ = {x1, ..., xℓ} can be expressed by the

following Fokker-Planck equation (Kimura, 1964; Ewens, 2004),

∂P (x⃗, t)

∂t
=

ℓ∑
i=1

[
− ∂

∂xi

(
Mi(x⃗)P (x⃗, t)

)
+

1

4N

∂2

∂x2i

(
Vi(x⃗)P (x⃗, t)

)]
(2)
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with

Mi =
xi(1− xi)

2w̄

∂w̄

∂xi
+ µ(1− 2xi) (3)

= −sxi(1− xi)

2

[
2γi(z − zopt) + γ2i (1− 2xi)

]
+ µ(1− 2xi)(4)

Vi = xi(1− xi) (5)

on using that the population-averaged phenotypic fitness

w̄ = 1− s

2
(υ + (z − zopt)

2) (6)

with genetic variance

υ = 2

ℓ∑
i=1

γ2i xi(1− xi) (7)

In the following sections, we will study the allele frequency distribu-

tion analytically.

The stochastic model described above is also studied numerically

using the nonlinear Langevin equation corresponding to the Fokker-

Planck equation (2). Using Itô prescription, we obtain

dxi(t) =Mi(x⃗)dt+

√
Vi(xi)

2N
dWi(t) (8)

where dWi is the Wiener process [refer to Sec. 4.3.5, Gardiner (1997)].

Dividing the time t into t/δt intervals of equal length δt, the allele fre-
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quency at the ith locus is updated as (Sec. 4.3.1, Gardiner (1997))

xi(n+ 1) = xi(n) +Mi(x⃗(n))δt+

√
Vi(xi(n))

2N
η , 0 ≤ n ≤ t

δt
(9)

where η is a random variable chosen independently at each time step

from a normal distribution with mean zero and variance δt. In all the

numerical data presented in this article, we have used δt = 0.1.

We are interested in the situation where the population is initially

equilibrated to a phenotypic optimum at z0 and then adapts in re-

sponse to a sudden shift in the optimum when mutation is strong

(4Nµ > 1). The dynamics of adaptation are studied by tracking

the frequency of + allele for zf > z0 (or, − allele for zf < z0). As

the initial allele frequency distribution plays a crucial role in the dy-

namics, we first study the stationary state in detail followed by the

time-dependent properties of the allele frequencies.

In the following, we will denote the deterministic quantities by cal-

ligraphic symbols and use an asterisk for quantities in the stationary

state.

3 Steady state distribution

At mutation-selection-drift balance, the exact joint distribution of the

allele frequencies when the phenotypic optimum is at z0 can be ob-

tained by setting the left-hand side (LHS) of the Fokker-Planck equa-
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tion (2) to zero. We then obtain (Sec. 9, Kimura (1964))

P ∗(x⃗) ∝ w̄2N
ℓ∏
i=1

(xi(1− xi))
4Nµ−1 (10)

= e−Ns(z−z0)
2

ℓ∏
i=1

(xi(1− xi))
4Nµ−1e−2Nsγ2i xi(1−xi) (11)

which does not factorize due to epistatic interactions in the phenotypic

fitness.

To understand the allele frequency distribution at a locus, the

marginal distribution ψ∗(xi) of the frequency at the ith locus can

be obtained by integrating the joint distribution P ∗(x⃗) over all the

allele frequencies except xi. For a large number of loci, as shown in

Appendix A, the single-locus distribution can be approximated by

ψ∗(xi) ∝ (xi(1− xi))
4Nµ−1e−2Nsγ2i xi(1−xi)e

−Ns[γi(2xi−1)−z0]
2

1+2Nsκ2,i (12)

where

κ2,i =
ℓ∑

j=1,j ̸=i

γ2j
(1 + 8Nµ)

1F1(
3
2 , 4Nµ+ 3

2 ,
Nsγ2j

2 )

1F1(
1
2 , 4Nµ+ 1

2 ,
Nsγ2j

2 )
(13)

increases linearly with ℓ and depends on the effect size of all the loci

except that of the ith locus, and 1F1(a, b, z) is the Kummer confluent

hypergeometric function (Olver et al., 2022, Chapter 13)

9
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3.1 Phenotypic optimum at zero

It is instructive to first consider the case when the phenotypic opti-

mum, z0 = 0 and the number of loci, ℓ → ∞. Since the last factor

on the right-hand side (RHS) of (12) approaches one as ℓ → ∞, we

obtain

ψ∗(xi)
ℓ→∞−→

44NµΓ(4Nµ+ 1
2)

2
√
πΓ(4Nµ)

e−2Nsγ2i xi(1−xi)(xi(1− xi))
4Nµ−1

e−
Nsγ2

i
2 1F1(

1
2 ; 4Nµ+ 1

2 ;
Nsγ2i

2 )

(14)

The above expression is also obtained if the first term on the RHS of

(4) can be ignored so that the + allele is underdominant and subject

to symmetric mutations (Hayward and Sella, 2022). For Nsγ2i ≪

2 (weak selection), the above marginal distribution reduces to the

well known result, viz., beta distribution for a neutral allele (Ewens,

2004).

For weak mutation (4Nµ < 1), the marginal distribution (14) is U-

shaped (see also Fig. S1). But for strong mutation (4Nµ > 1), which

is the parameter regime of interest here, the distribution ψ∗(xi) has

the following interesting property: it is unimodal if the effect size is

below the threshold effect γ̂N and bimodal otherwise. As shown in

Appendix B, the threshold effect for z0 = 0 and ℓ→ ∞ is given by

γ̂N =

√
8µ

s
− 2

Ns
=

√
2

Ns
(4Nµ− 1) (15)

10
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The maxima of the allele frequency distribution occur at

x∗i =


1

2
, γi < γ̂N (16a)

1

2

(
1±

√
1−

γ̂2N
γ2i

)
, γi > γ̂N (16b)

and for γi > γ̂N , the maxima of the bimodal distribution are separated

by a minimum at frequency 1/2.

For exponentially-distributed effects, the fraction of large-effect

loci is equal to

fL =

∫ ∞

γ̂N

dγγ̄−1e−γ/γ̄ = e
− γ̂N

γ̄ (17)

Figure 1 shows our numerical results for the marginal distribution

when the phenotypic optimum is at zero, the number of loci are finite

and most effects are small (γ̂N ≫ γ̄), and we find them to agree

well with (12). The distribution is seen to have one maximum for a

small-effect locus (γi < γ̂N (ℓ)) and two maxima for a large-effect locus

(γi > γ̂N (ℓ)) where the threshold effect γ̂N (ℓ) for finite number of loci

is given by (B.7) and is larger than γ̂N given in (15); the corrections to

the mode frequencies due to finite ℓ can also be obtained (see (B.4)).

3.2 Nonzero phenotypic optimum

We now consider the case of nonzero z0 and large ℓ.

Marginal distribution: The numerical results for the marginal distri-

bution displayed in Fig. 2 when most effects are small (see Fig. S2

when most effects are large) are found to be in good agreement with
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(12). As for z0 = 0, the distribution is unimodal below a threshold

effect and bimodal above it; however, the stationary marginal distri-

bution is no longer symmetric about the allele frequency one half (as is

also evident from (12)). The asymmetry in the marginal distribution

results in a qualitatively different behavior of the central moments

of the allele frequency compared to when the phenotypic optimum

is at zero; the mean, variance and skewness of the allele frequency

distribution are discussed in detail in Sec. S1.

Threshold effect and modes: As derived in Appendix B and shown in

Fig. S4, when the number of loci are much larger than the phenotypic

optimum, the modes of the allele frequency distribution at a locus with

effect size away from the threshold effect γ̂N (ℓ) are well approximated

by the result (16) for infinite loci. But close to the threshold effect,

they are substantially different; in particular, for positive (negative)

phenotypic optimum, the maximum in the frequency distribution of

the small-effect locus increases (decreases) with the effect size and

occurs at a frequency which is substantially larger (smaller) than one

half (see also Fig. 2).

For small z0 and large ℓ, (B.6) shows that the threshold effect

does not differ much from the infinite-loci result (15) when selection

is strong (Nsγ̄2 ≫ 2); this behavior holds for large z0 also as shown

in the inset of Fig. 3. Furthermore, (B.6) predicts that the threshold

effect for large but finite number of loci is always larger than γ̂N

and increases with the magnitude of the phenotypic optimum. Thus,
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a locus classified as a large-effect locus for a phenotypic optimum

at zero can become a small-effect locus if the phenotypic optimum is

large enough as illustrated in Fig. 3. This is because for large, positive

(negative) phenotypic optimum, population will be well-adapted if the

+ (−) allele frequency at most loci is close to fixation.

Trait mean: In Appendix C, using (11), we reproduce the well known

result that the stationary state distribution of the trait mean is a

Gaussian (Bulmer, 1972; Lande, 1976), and focus on the effect of

genetic architecture on the average deviation of the trait mean. Equa-

tion (C.7) shows that in a large population, the population is better

adapted, on an average, when many large-effect loci are involved than

if the quantitative trait is composed of mostly small effects.

Genetic variance: The equilibrium genetic variance, ⟨υ∗⟩ is obtained

using (12) in Sec. S2. When effects are equal and the phenotypic

optimum is zero, an expression for ⟨υ∗⟩ has been obtained in Bulmer

(1972); here, for nonzero z0 and exponentially-distributed effects, we

find that ⟨υ∗⟩ is weakly affected by the location of the phenotypic

optimum.
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3.3 Comparison to the deterministic station-

ary state

In an infinitely large population, the deterministic allele frequency xi

obeys (de Vladar and Barton, 2014; Jain and Stephan, 2017b)

dxi(t)

dt
=Mi(xi) =

−sxi(1−xi)

2

[
2γi(z− zopt) + γ2i (1− 2xi)

]
+ µ(1− 2xi)(18)

with the deterministic trait mean z(t) =
∑ℓ

i=1 γi(2xi− 1). Assuming

that the trait mean deviation is zero in the stationary state, it has

been shown that the deterministic allele frequency is in stable equi-

librium below a threshold effect γ̂ =
√

8µ/s and is bistable above it

(de Vladar and Barton, 2014), and given by

x∗
i =


1

2
, γi < γ̂ (19a)

1

2

(
1±

√
1− γ̂2

γ2i

)
, γi > γ̂ (19b)

Our (15) and (16), respectively, generalize the above results for thresh-

old effect and equilibrium frequency to large, finite populations when

average trait mean deviation is zero [refer to (C.6)].

However, there are key differences in the stationary state of infinite

and finite populations: The stationary state solution of the Fokker-

Planck equation (2) is unique [refer to Chapter 5 of van Kampen

(1997)]; that is, it is independent of the initial allele frequencies for

both small- and large-effect loci. Furthermore, as Fig. S6 illustrates,

14
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in a finite population, the allele frequency of a large-effect locus spends

a long time (presumably, exponentially long in population size) near

one of the maxima before shifting to the other maximum. In contrast,

in an infinite population, the stationary state allele frequency of a

large-effect locus depends on the initial condition and does not shift

between the two solutions given by (19b).

These points are further illustrated in Fig. 4 where the stationary

state frequencies in the deterministic and stochastic model, starting

from the same initial condition, are found to be quite close for small

effect loci but not for the large-effect ones. However, the N → ∞

limit of the stochastic model can be obtained if one averages over

the initial conditions in the deterministic model. Equations (B.4a)

and (B.4b) for the modes of the distribution can also be written in

terms of the average trait mean deviation using (C.6); a comparison

between the resulting expression for large N and the corresponding

results in the deterministic model shows that while (B.4a) for the

mode frequency matches the deterministic result (B2) of de Vladar

and Barton (2014) for small-effect loci, (B.4b) does not agree with

the corresponding result for large-effect loci. But, on averaging over

both modes in (B.4b) [which amounts to averaging over the allele

frequency distribution] and both equilibria in (B2) of de Vladar

and Barton (2014), we obtain an agreement for large N .

Due to shifts in the equilibria for large-effect loci, the numerical

results for the stationary state distribution (such as those shown in

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525607
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figs. 1 and 2) were obtained by averaging over many initial conditions

(ensemble-averaging) as well as long time periods in the stationary

state (time-averaging) as this allowed us to sample the distribution

near both the allele frequency peaks efficiently. For small N , we have

checked that as expected, the marginal distribution obtained by time-

averaging alone matches the result (12).

4 Dynamics after a sudden shift in op-

timum

We now turn to the allele frequency dynamics when the population

initially equilibrated to the phenotypic optimum at z0 adapts in re-

sponse to a sudden shift in the optimum to zf. In an infinitely large

population, previous work has shown that at short times, selective

sweep at a large-effect locus is unlikely if most effects are small but

they can occur if most effects are large (Jain and Stephan, 2017b).

Here, we wish to evaluate if genetic drift enhances the chance of sweep

in the former class of genetic architectures and therefore, in this and

the following section, we work in the parameter regime where the

quantitative trait is determined by a large number of small-effect loci

and a few large-effect loci so that γ̄ ≪ γ̂N (ℓ) [see (17)]; this also means

that selection is weak, that is, Nsγ2i ≪ 2 for most loci. However, this

does not imply that the dynamics are neutral for such loci as, at least

at short times, the allele frequency at any locus is subject to direc-

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525607
http://creativecommons.org/licenses/by-nc-nd/4.0/


tional selection with a time-dependent selection coefficient [refer to

the first term on the RHS of (4)].

4.1 Stochastic trajectories

The stochastic dynamics of the phenotypic trait mean, genetic vari-

ance and allele frequencies are illustrated in Fig. 5 when all loci are

equilibrated to an optimum at zero and their initial frequency is kept

fixed for independent stochastic runs. When the optimum is suddenly

shifted to zf = 1, the average trait mean deviation, |⟨z(t)⟩−zf| initially

decreases rapidly with time reaching a value close to zero at t ≈ 50,

and then equilibrates slowly to the stationary state at t ∼ 103. In the

stationary state, the trait mean deviation fluctuates about the aver-

age trait mean deviation given by (C.6) [on replacing z0 by zf] with a

width proportional to (Ns)−1/2 [refer to (C.5)]. The genetic variance

is seen to increase but only mildly as there is a substantial initial ge-

netic variance (when averaged over initial conditions, v∗ ≈ ℓγ̄2, see

(S2.6a)).

Figure 5 also shows the allele frequency dynamics of a small- and a

large-effect locus. In the stationary state, while the frequency of small-

effect locus exhibits small fluctuations about its average trajectory, as

discussed in the last section, peak shifts in the allele frequency occur

at the large-effect locus. These figures also suggest that at short times

when the trait mean deviation is large, the width of the fluctuations

in the allele frequency about the average trajectory increases with
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time; the dynamics of the variance of the allele frequency and the

time-dependent allele frequency distribution are discussed below.

5 Allele frequency distribution: linear

noise approximation

To obtain some insight into the time-dependent distribution of the

allele frequencies, we employ van Kampen’s system-size expansion

method for a large population which assumes that the fluctuations in

the number of individuals with + allele are of the order of the square

root of the population size [refer to Chapter X, (van Kampen, 1997)].

Therefore, the allele frequency can be written as

xi(t) = xi(t) +
ξi(t)√
2N

(20)

where ξi ∼ O(1) is a stochastic variable with mean zero that captures

the fluctuations about the deterministic frequency xi(t) in a large

finite population. This approximation is valid when the fluctuations

are small (that is,
√
⟨x2i ⟩ − ⟨xi⟩2 ≪ xi), and therefore, due to shift in

the equilibria for large-effect loci, we do not expect (20) to work close

to, or in the stationary state for such loci. However, at short times,

the fluctuations are expected to be small at any locus and (20) is

valid; this is indeed supported by the data in Fig. 4 where the average

allele frequency is well approximated by the deterministic result for
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both small- and large-effect locus.

Then, far from the stationary state, as summarized in Appendix D

and discussed in detail in Sec. S3, the time-dependent marginal dis-

tribution of the allele frequency at the ith locus can be approximated

by a Gaussian centred about the deterministic allele frequency xi(t)

and variance ⟨ξ2i ⟩
2N . Given the initial frequencies {xj(0)}, we then have

ψ(xi, t|xi(0)) =

√
2N

π⟨ξ2i (t)⟩
exp

[
−N(xi −xi(t))

2

⟨ξ2i (t)⟩

]
(21)

where, xi(t) is obtained from (18) and, as detailed in Appendix D, ⟨ξ2i ⟩

are determined by ℓ(ℓ + 1)/2 coupled ordinary differential equations

given by (D.6).

Although it does not appear possible to obtain exact results for

the time-dependence of the variance as (D.6) is coupled and the coeffi-

cients Aij and Bi are time-dependent (see also Sec. S3), numerics sug-

gest that at short times, the allele frequency variance increases linearly

with time; in other words, the rate of change of allele frequency vari-

ance is constant in time. For a fixed set of initial frequency, the RHS

of (D.6a) can be approximated by Bi(0) which immediately yields

⟨x2i ⟩ − ⟨xi⟩2 ≈
xi(0)(1− xi(0))t

2N
(22)

The above expression suggests that one may approximate the short

time dynamics of the allele frequency by that of Brownian motion

with time-dependent mean, xi(t). As desired, the variance vanishes
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when the population size is infinitely large.

As the variance in the allele frequency increases linearly with time

and the linear noise approximation is valid when the fluctuations are

much smaller compared to the deterministic frequency, the Gaussian

distribution (21) describes the dynamics over the time scales that

diverge with the population size. Thus the average and deterministic

allele frequencies are expected to match for a longer time for a larger

population size, as verified in Fig. S7, and for all times in the limit

of infinite population size as the time to shift the peak will also be

infinite.

6 Selective sweeps at large-effect loci

In this section, we continue to focus on quantitative traits that are

determined by mostly small-effect and a few large-effect loci. For a

large-effect locus, due to the bimodal nature of the stationary state

marginal distribution, the allele frequency trajectory starting at a

frequency below the minimum of the distribution can ‘sweep’ to a fre-

quency above the minimum of the distribution with some probability.

6.1 When does a sweep occur?

More precisely, we define the probability of sweep to be the probability

that a large-effect locus with initial allele frequency below one half

reaches a frequency above one half on time scales over which the trait
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mean deviation becomes negligible (see Fig. 6 for such representative

allele trajectories). This definition of a sweep in a large population is

motivated by the corresponding one in an infinite population where

the + allele’s trajectory at a large-effect locus reaches a high frequency

if it manages to exceed a frequency one half by the time the trait mean

deviation becomes close to zero as due to disruptive selection (second

term on the RHS of (4)), it is then guaranteed to fix (Chevin and

Hospital, 2008; Jain and Stephan, 2017b). We therefore write

Psweep =

∫ ∞

0
dτProb(τ)

∫ 1/2

0
dxψ∗(x = x(0))

∫ 1

1/2
dx′ψ(x′, τ |x(0))

(23)

where Prob(τ) is the distribution of time when the trait mean devia-

tion lies in a small interval about zero for the first time and we have

dropped the subscript of the large-effect locus for brevity. To make

analytical progress, below we will make a series of approximations.

In an infinitely large population and for mostly small-effects ge-

netic architecture, the trait mean given by

∆z(t; {xi(0)}) = ∆z(0) exp [−sυ∗(0)t] (24)

approaches the phenotypic optimum over a time determined by the

initial genetic variance (Jain and Stephan, 2017b). In the following

discussion, we assume that at short times, this is a good approxima-

tion in finite populations as well (see Fig. 6) and the distribution of τ

is sharply peaked around (sυ∗(0))−1 where υ∗(0) is the initial genetic
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variance in a finite population at phenotypic optimum z0 and can be

approximated by ⟨υ∗⟩ given by (S2.4) for large ℓ.

We next approximate the allele frequency distribution ψ(x′, τ |x(0))

at time τ by (21) which is a Gaussian centred about the deterministic

allele frequency given by (Jain and Stephan, 2017b)

xτ ≈
[
1 +

1− x(0)

x(0)
exp

(
γ(z(0)− zf)

υ∗(0)

)]−1

(25)

ℓ≫1
≈

[
1 +

1− x(0)

x(0)
exp

(
γ(z0 − zf)

⟨υ∗⟩

)]−1

(26)

(where the last expression is obtained on using (C.7)) and whose vari-

ance can be approximated by (22). On integrating over the final

frequency x′, we then obtain

Psweep ∝
∫ 1/2

0
dxψ∗(x = x(0))erfc

[√
N

x(0)(1− x(0))τ

(
1

2
−xτ

)]
(27)

where erfc(x) is the complementary error function which decreases

monotonically from 2 towards 0 as x is increased from −∞ to ∞.

For consistency, like the final distribution, the initial distribution

in the above equation should also be obtained in the linear-noise ap-

proximation. But, as already discussed in the preceding sections, this

approximation is not valid for a large-effect locus in the stationary

state. If, however, one still insists on using the Gaussian approxima-

tion about the low-frequency mode, it is found to grossly underesti-

mate the sweep probability as the main contribution to Psweep comes
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from the right tail of the stationary state distribution which is fat-

ter than that of the Gaussian distribution. We will therefore use the

marginal distribution (12) in the above expression of sweep proba-

bility. Furthermore, for large populations, the complementary error

function in the integrand of (27) can be approximated by 2 if xτ > 1/2

and zero otherwise. This implies that a large-effect locus can sweep if

the initial frequency of + allele exceeds a critical value, xc:

1

2
> x(0) > xc =

[
1 + exp

(
γ(zf − z0)

⟨υ∗⟩

)]−1

(28)

In an infinitely large population, the criterion (28) reduces to

1

2
> x∗ > xc =

[
1 + exp

(
γ(zf − z0)

v∗

)]−1

(29)

where x∗ = 1
2(1−

√
1− γ̂2

γ2
) and v∗ ≈ ℓγ̄2. The criterion (29) obtained

in previous work (Chevin and Hospital, 2008; Jain and Stephan,

2017b) shows that sweeps are unlikely unless the shift in the pheno-

typic optimum is very large or the number of loci is small.

6.2 Probability of sweep

Using (28), we finally obtain a simple expression for the sweep prob-

ability in a large finite population to be

Psweep ≈
∫ 1/2
xc

dxψ∗(x)∫ 1/2
0 dxψ∗(x)

(30)
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which is normalized such that Psweep lies between zero and one for

xc = 1/2 and 0, respectively. In Fig. 6, the probability of sweep is

measured numerically where if the + allele’s frequency at the major

locus crosses one half by the time (sℓγ̄2)−1, it is counted as the sweep

event. The result (30) is compared against the sweep probability

obtained numerically when there is a single large-effect locus, and we

observe a good agreement.

The integrals in (30) do not appear to be exactly solvable but one

can obtain some insight into the nature of Psweep for large ℓ. As the

stationary genetic variance is proportional to the number of loci, the

critical frequency is close to one half for large ℓ. Then to leading order

in ℓ−1, from (30) and (12), we obtain

Psweep ≈
[(x(1− x))4Nµ−1e−2Nsγ2x(1−x)]|x= 1

2

(
1
2 − xc

)
∫ 1/2
0 (x(1− x))4Nµ−1e−2Nsγ2x(1−x)dx

(31)

=
4Γ(4Nµ+ 1

2)√
πΓ(4Nµ)

1
2 − xc

1F1(
1
2 ; 4Nµ+ 1

2 ;
Nsγ2

2 )
(32)

≈
Γ(4Nµ+ 1

2)√
π⟨υ∗⟩Γ(4Nµ)

γ(zf − z0)

1F1(
1
2 ; 4Nµ+ 1

2 ;
Nsγ2

2 )
(33)

on using (28) to obtain the last expression.

The above expression shows that the sweep probability decreases

with increasing number of loci as the initial genetic variance is large

and the contribution of a single large-effect locus is negligible for adap-

tation. But it is higher for larger shift in the optimum zf−z0 and same

for a given optimum shift on using that the stationary genetic variance
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is independent of the location of the phenotypic optimum (however,

(30) and numerics show that the sweep probability can depend on z0

and zf for small ℓ, refer to Fig. S10). If the effect of major locus is much

higher than the threshold, using Olver et al. (2022, Eq. 13.7.1), we

find that the sweep probability decays exponentially with the scaled

selection, as e−Nsγ2/2; this is because for very large effect size, the

initial distribution is very narrow and therefore the contribution from

the tails is negligible. As expected, the sweep probability decreases

with increasing population size. Thus the chance of a large change in

the allele frequency of a large-effect locus is possible if Nsγ2/2 is not

too large.

In an infinitely large population with other parameters as in Fig. 6,

a sweep can not occur for the locus with effect size γ = 0.8 and new

optimum zf = 1 but the criterion (29) is satisfied when, for example,

zf = 15. However, in a finite population with size N = 1000 and

zf = 15, (30) predicts that the chance to sweep is less than one (≈

0.968) as the initial frequency must exceed the critical frequency xc ≈

0.066. This example thus illustrates that the chance of sweep is not

necessarily higher in a finite population.

To see this point more generally, we first note that as the station-

ary genetic variance in a finite population is smaller than the standing

variation in an infinitely large population, from (28) and (29), it fol-

lows that xc < xc. Two cases need to be considered: if xc < xc < x∗,

the frequency at the large-effect locus sweeps for sure in an infinite
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population but there is small probability that the sweep does not oc-

cur in a finite population due to the lack of contribution from the left

tail of the distribution to (28); on the other hand, for xc < x∗ < xc or

x∗ < xc < xc, a sweep does not occur in an infinitely large population

but there is a nonzero chance for this to happen in a finite population

due to the contribution from the right tail of the distribution. This

suggests that with increasing N , the sweep probability increases in

the former case and decreases in the latter case as verified in Fig. S9.

The data in Fig. S9 also show that 1− Psweep in the former case and

Psweep in the latter case decay exponentially with the population size.

When there are nℓ > 1 large-effect loci, the probability that at

least one of them sweeps can be written as

Πsweep = 1−
nℓ∏
i=1

(1− Psweep,i) (34)

The above expression assumes that the sweeping probability of each

large-effect locus is independent of other large-effect loci present in

the population. The inset of the Fig. 6 shows a substantial difference

between the numerical results and (34) which suggests that these loci

may not be independently sweeping. As the above expression overes-

timates the numerics, this indicates selective interference between the

sweeping loci that is reducing each effect’s sweeping probability and

needs a more careful investigation.
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7 Discussion

In this article, we studied the stationary state and dynamical proper-

ties of a quantitative trait when a large but finite population is under

stabilizing selection and strong mutation (4Nµ > 1). The determin-

istic analogue of this model (de Vladar and Barton, 2014; Jain

and Stephan, 2015, 2017b) and a closely related stochastic model

which assumes 4Nµ < 1 (Hayward and Sella, 2022) have already

been studied. Below we present a synthesis of the results obtained in

these models, and discuss the differences and similarities in adapta-

tion dynamics when the population size is small, moderately large or

infinite.

Phenotypic properties: While the phenotypic mean deviation is

observed to decay rapidly towards zero or a small finite value in all

the parameter regimes (rapid phase), the genetic variance has been as-

sumed to be nearly constant in many studies (see, for example, Lande

(1976); Chevin and Hospital (2008)). Although this is shown to be

a good approximation for genetic architectures where most effects are

small (Jain and Stephan, 2017b), the genetic variance is seen to

rise substantially in course of time when the initial genetic variance

is small due to weak mutation; more precisely, this occurs in an in-

finite population when most effects are large (Jain and Stephan,

2017b) and in a finite population when scaled mutation rate is small

(Hayward and Sella, 2022). Here, we find that the average genetic

variance remains roughly constant.
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Allele frequency properties: For large scaled mutation rate, a

threshold effect that depends on the population-genetic parameters

exists relative to which an effect can be classified as large or small.

The threshold effect has been obtained from the stationary state prop-

erties in de Vladar and Barton (2014) for infinitely large popu-

lation and extended here to large finite populations. In contrast, for

small mutation rates, such a classification is done on the basis of the

dynamical properties of the allele frequency (Höllinger et al., 2019;

Hayward and Sella, 2022).

In an infinitely large population, the stationary state allele fre-

quency at a large-effect locus is bistable. But, in a finite popula-

tion, the allele frequency distribution at such a locus is bimodal and

the frequency can switch between the two modes of the stationary

state distribution (see Fig. S6 for 4Nµ > 1) spending a time which

is presumably exponentially long in N close to either mode [refer to

Barton and Rouhani (1987); Barton (1989) for 4Nµ < 1].

Linear noise approximation: Previous work has focused on the ef-

fect of genetic background presented by a large number of small-effect

loci on the chance of sweep of a large-effect locus either by treating

the focal locus and the background loci deterministically (Chevin

and Hospital, 2008; Jain and Stephan, 2017b), or the focal locus’

dynamics stochastically but neglecting stochastic fluctuations in the

background (Matuszewski et al., 2015). Here, we have captured the

effect of random genetic drift in a large population at all loci using the
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so-called linear noise approximation (van Kampen, 1997) which is of-

ten used in biophysical and chemical problems and typically involves

only a few random variables (Boland et al., 2008; Garai et al., 2012;

Schnoerr et al., 2017); to our knowledge, this method has not been

used in the population-genetics literature and we applied it here when

the number of random variables (allele frequencies) is large. This ap-

proximation is valid so long as the fluctuations about the deterministic

frequency are small. For this reason, it is not expected to work in the

stationary state where peak shifts may occur and even at short times

for small mutation rates due to the absorption of the allele frequency.

Probability of sweep: While some studies do not support sweeps

during polygenic adaptation (Chevin and Hospital, 2008; Jain and

Stephan, 2017b; Hayward and Sella, 2022), these are predicted

in other work (Stetter et al., 2018; Thornton, 2019; Höllinger

et al., 2019) and in this article. The adaptive response of a polygenic

trait crucially depends on the genetic architecture of the trait and the

initial allele frequency distribution.

In an infinitely large population, the rate of change of allele fre-

quency is proportional to its effect size suggesting that a large-effect

locus can sweep but, for zf > z0, the initial frequency of the + allele

at this locus is small (see (18) and (19b)). Then it is not obvious if

the allele frequency can sweep but detailed analyses have shown that

a large change in the allele frequency can occur provided the initial al-

lele frequency exceeds a critical allele frequency that depends on the
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effect size, optimum shift and the initial standing genetic variation

(Chevin and Hospital, 2008; Jain and Stephan, 2017b). This cri-

terion is, however, satisfied for rather extreme parameters when, for

example, the effect size or optimum shift are very large.

On the other hand, in small populations, although the allele fre-

quency of a locus with larger effect size also changes faster, all the

loci contributing to adaptation start at low frequency as the station-

ary state distribution is U-shaped (see Fig. S1). However, the initial

standing genetic variation is dominated by moderate- and large-effect

loci which, importantly, is independent of the effect size (Bürger,

2000); as a result, the rate of change of allele ferquency is inversely

proportional to the effect size. Thus the intermediate-effect loci by

virtue of larger change in their frequency dominate by the end of rapid

phase and therefore the large-effect alleles fail to sweep (Sella and

Barton, 2019; Hayward and Sella, 2022).

For moderately large population considered here, the criterion for

a sweep to occur is found to be essentially the same as for an infinitely

large population. However, the key difference is that the deterministic

stationary distribution for a large-effect locus is not merely replaced

by a Gaussian centred about the deterministic frequency, and instead

it has a fatter tail which leads to a wider range of initial allele frequen-

cies that can rise to a moderately high frequency by the end of the

rapid phase and continue to rise (due to disruptive selection) towards

appreciable frequency. Höllinger et al. (2019) have considered a
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binary polygenic trait to explore the role of redundancy, and found

that adaptation dynamics display sweeps and subtle shifts in allele

frequency when the background mutation rate is, respectively, low

and high; however, the connection between their results for a binary

trait and our results for a quantitative trait is not clear.

Footprints of selective sweeps?: While selective sweeps for mono-

genic traits leave a clear footprint on linked neutral diversity, it has

been difficult to observe these for polygenic adaptation (Berg and

Coop, 2014), and the current emphasis is on developing techniques

that are powerful enough to resolve the signals due to polygenic adap-

tation or other evolutionary forces such as genetic drift. Our work

shows that sweeps can occur when mutation is moderately strong

(4Nµ > 1), most effects are small (Nsγ̄2 ≲ 2) but the large-effect lo-

cus is under moderate selection (Nsγ2i > 2) as the probability of sweep

decays exponentially fast with selection strength of the large-effect lo-

cus. Although a few numerical studies of models where neutral regions

are linked to selected region have been carried out (Stetter et al.,

2018; Thornton, 2019), these have not been done in the moderate

mutation-moderate selection regime and are clearly highly desirable

to judge if the sweeps observed here play a significant role in the

dynamics of adaptation.
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Appendix A Stationary state marginal

distribution

The marginal distribution ψ∗(xi) of the allele frequency in the sta-

tionary state can be found by integrating the joint distribution P ∗(x⃗)

given by (11) over the frequencies of all but the ith locus; this gives

ψ∗(xi) ∝ g∗(xi)
∏
j ̸=i

∫ 1

0
dxjg

∗(xj)e
−Ns(∆z∗)2

ℓ−1 (A.1)

where

g∗(xi) ∝ e−2Nsγ2i xi(1−xi)(xi(1− xi))
4Nµ−1 (A.2)

and ∆z∗ = z∗ − z0 =
∑ℓ

j=1 γj(2xj − 1)− z0. To evaluate the multiple

integrals in (A.1), we rewrite its RHS as

ψ∗(xi)

g∗(xi)
∝
∫ Γ′

−Γ′
dX ′e−Ns(X

′+γi(2xi−1)−z0)2Prob(X ′ =
∑
j ̸=i

γj(2xj − 1))

where Γ′ =
∑

j ̸=i γj , andX ′ is a sum of independent but non-identically

distributed random variables chosen from g∗(xj). We then obtain

ψ∗(xi)

g∗(xi)
∝

∫ Γ′

−Γ′
dX ′e−Ns(X

′+γi(2xi−1)−z0)2

×
∫ 1

0
...

∫ 1

0
δ[X ′ −

∑
j ̸=i

γj(2xj − 1)]
∏
j ̸=i

dxjg
∗(xj)(A.3)

The inner integral on the RHS of the above equation can be cal-

culated by appealing to the central limit theorem for large ℓ, and we
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get

ψ∗(xi)

g∗(xi)

ℓ≫1∝
∫ ∞

−∞
dX ′e−Ns(X

′+γi(2xi−1)−z0)2e
−

(X′−κ1,i)
2

2κ2,i (A.4)

∝ exp

[
−Ns(γi(2xi − 1)− z0)

2

1 + 2Nsκ2,i

]
(A.5)

where κ1,i and κ2,i are, respectively, the mean and variance of the

sum X ′ =
∑

j ̸=i γj(2xj − 1) when averaged over the (normalized)

distribution
∏
j ̸=i g

∗(xj). Since g∗(xi) is symmetric about xi = 1/2, it

follows that the mean κ1,i = 0; furthermore, the variance κ2,i increases

linearly with ℓ and its properties are discussed in detail below (see

(A.9)).

If the phenotypic optimum is small (that is, z0 ∼ O(1)), the ex-

ponential on the RHS of (A.5) can be expanded in powers of ℓ−1;

however, as explained in Sec. S4, corrections to the central limit theo-

rem are required to obtain the correct expression for ψ∗/g∗ to O(ℓ−1)

which finally yields

ψ∗(xi)

g∗(xi)
∝ 1 +

κ4 − 4κ2(γi(2xi − 1)− z0)
2

8κ22
+ O(ℓ−2) (A.6)

where κ2 =
∑ℓ

j=1 ⟨γ2j (2xj − 1)2⟩
g∗

and κ4 =
∑ℓ

j=1 ⟨γ4j (2xj − 1)4⟩
g∗

−

3⟨γ2j (2xj − 1)2⟩2
g∗

are, respectively, the second and fourth cumulant

of the random variable γj(2xj − 1) obtained using the (normalized)

distribution g∗(xj). On the other hand, if the phenotypic optimum is
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large (that is, z0 ∼ O(ℓ)), from (A.5), we obtain

ψ∗(xi)

g∗(xi)
∝ e

− γiz0(1−2xi)

κ2 (A.7)

on using that the variance κ2,i depends linearly on ℓ. As (A.5) is sim-

pler and quite accurate for most purposes, unless specified otherwise,

we work with it for much of the discussion.

In the marginal distribution ψ∗(xi), the effect of other ℓ − 1 loci

due to epistatic interactions in the phenotypic fitness appears through

the variance κ2,i. Since ⟨xi⟩g∗ = 1/2 for all loci, the variance κ2 =∑ℓ
j=1 4γ

2
j (⟨x2j ⟩g∗ − ⟨xj⟩2g∗) which shows that κ2 is simply a weighted

sum of the variance of the distribution g∗(xi). Performing the integrals

over the allele frequency, we obtain

κ2 =

ℓ∑
j=1

4γ2j

 1

4(1 + 8Nµ)

1F1(
3
2 , 4Nµ+ 3

2 ,
Nsγ2j

2 )

1F1(
1
2 , 4Nµ+ 1

2 ,
Nsγ2j

2 )

 (A.8)

≈ ℓ

∫ ∞

0

p(γ)γ2

1 + 8Nµ

1F1(
3
2 , 4Nµ+ 3

2 ,
Nsγ2

2 )

1F1(
1
2 , 4Nµ+ 1

2 ,
Nsγ2

2 )
(A.9)

where p(γ) is the distribution of effects and 1F1(a, b, z) is the Kum-

mer confluent hypergeometric function. For exponentially-distributed

effect size with mean γ̄, we have

κ2 ≈ ℓγ̄2

1 + 8Nµ

∫ ∞

0

1F1(
3
2 , 4Nµ+ 3

2 ,
Nsγ̄2

2 y2)

1F1(
1
2 , 4Nµ+ 1

2 ,
Nsγ̄2

2 y2)
y2e−ydy (A.10)

As the above integral does not appear to be exactly solvable, we esti-

mate it by noting that the ratio of the Kummer confluent hypergeo-
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metric function in the above integrand is a monotonically increasing

function of its argument, and for fixed U , this ratio may be approxi-

mated by (Olver et al., 2022)

1F1(
3
2 , U + 3

2 , a)

1F1(
1
2 , U + 1

2 , a)
=


1 +

4Ua

4U2 + 8U + 3
, a≪ 1 (A.11a)

(2U + 1)

(
1− U

a

)
, a≫ 1 (A.11b)

For a given 4Nµ, we then have

κ2 ≈


ℓγ̄2

1 + 8Nµ

(
2 +

1536γ̄2N2µ2

γ̂2(8Nµ+ 1)(8Nµ+ 3)

)
, Nsγ̄2 ≪ 2 (A.12a)

ℓγ̄2
(
2− γ̂2

γ2

)
, Nsγ̄2 ≫ 2 (A.12b)

When selection is weak (Nsγ̄2 ≪ 2) or most effects are small [γ̄2 ≪

(4Nµ − 1)γ̄2 ≪ γ̂2N on using (15) and (17)], (A.12a) shows that κ2

approaches zero with increasing population size as 1/N ; in contrast,

when selection is strong or most effects are large, due to (A.12b),

the variance κ2 remains nonzero in the deterministic limit. This

can be understood as follows: as the width of g∗(xi) about a maxi-

mum is expected to decrease with N , for large N , one may approx-

imate g∗(xi) by a Dirac delta function centred at 1/2 for small ef-

fect locus, and an average of two Dirac delta functions located at

xi,± = 1
2

(
1±

√
1− γ̂2

γ2i

)
for large-effect locus (de Vladar and Bar-

ton, 2014). Thus, for small-effect locus, as the distribution is uni-

modal and sharply-peaked in large populations, the variance vanishes

in the deterministic limit. But for large-effect locus, as a conse-
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quence of the bimodality, the distribution remains broad resulting

in a nonzero variance. In Fig. S8, it is verified that κ2 increases with

increasing selection strength in accordance with (A.12).

Appendix B Threshold effect size and

mode frequency

According to (A.5), the stationary state allele frequency distribution

at the ith locus is given by

ψ∗(xi) ∝ e−2Nsγ2i xi(1−xi)(xi(1− xi))
4Nµ−1e

−Ns[γi(2xi−1)−z0]
2

1+2Nsκ2,i (B.1)

The modes of the distribution, x∗i can be found on setting the deriva-

tive dψ∗

dxi
equal to zero which yields the following cubic equation in

x∗i :

(4Nµ−1)
(1− 2x∗i )

x∗i (1− x∗i )
−2Nsγ2i (1−2x∗i )+

4Nsγi(z0 − γi(2x
∗
i − 1))

1 + 2Nsκ2,i
= 0

(B.2)

The above equation has two complex roots and one real root below

the threshold effect γ̂N (ℓ) and three real roots above it. This change

in the behavior of x∗i occurs when the discriminant of the above cubic

polynomial is equal to zero:

D = a22a
2
1 − 4a3a

3
1 + 18a0a2a3a1 − a0

(
4a32 + 27a0a

2
3

)
= 0 (B.3)
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where ai, i = 0, 1, 2, 3 are the coefficients of xi in (B.2). The resulting

equation is a 3rd order equation in γ̂2N (ℓ) and can be solved numeri-

cally to obtain the threshold effect for finite N and ℓ.

One can, however, obtain an analytical expression for γ̂N (ℓ) when

the number of loci are very large. Since κ2 grows linearly with ℓ, for

infinite number of loci, the last term on the LHS of (B.2) vanishes

yielding (15) and (16) for the threshold effect γ̂N and mode allele

frequency x∗i , respectively, which are independent of z0. For large ℓ

but small z0, using (A.6), we find that the steady state distribution

has maximum at

x∗i (ℓ) =


1

2
+

1

2Nsκ2

γiz0
γ̂2N − γ2i

, γi < γ̂N (ℓ) (B.4a)

1

2

(
1∓

√
1−

γ̂2N
γ2i

)
+

1

2Nsκ2

γ̂2N (z0 ±
√
γ2i − γ̂2N )

2γi(γ2i − γ̂2N )
, γi > γ̂N (ℓ) (B.4b)

where γ̂N (ℓ) denotes the threshold effect for finite ℓ. For γi > γ̂N (ℓ),

the minimum in the allele frequency is given by the expression on the

RHS of (B.4a).

As shown in Fig. S4, a threshold effect exists below which (B.2) has

only one real root and corresponds to the maximum in the unimodal

distribution. But, above the threshold effect, two additional real roots

of (B.2) appear which give the allele frequency at which the minimum

and the second maximum of the bimodal distribution occur. Thus, at

the threshold effect, for positive (negative) z0, the minimum and the

low-frequency (high-frequency) maximum of the bimodal distribution

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525607
http://creativecommons.org/licenses/by-nc-nd/4.0/


coincide. On matching the solutions (B.4a) and (B.4b), we get

± 2Nsκ2∆
3 = 3γ̂2Nz0 ± γ̂2N∆+ 2z0∆

2 (B.5)

where ∆2 = γ̂2N (ℓ)− γ̂2N decreases with increasing ℓ. The above cubic

equation for ∆ is exactly solvable, and has two complex roots and one

real root. Here, we estimate the real root by noting that the first term

on the RHS which is independent of ℓ can be balanced if κ2∆3 is also

independent of ℓ thus yielding

γ̂N (ℓ) ≈ γ̂N +
1

2γ̂N

(
3γ̂2N |z0|
2Nsκ2

)2/3

+ O(ℓ−1) , z0 ̸= 0 (B.6)

which shows that the deviation γ̂N (ℓ)− γ̂N decays rather slowly with

ℓ. The above expression also shows that the threshold effect always

increases with the absolute value of the phenotypic optimum. But it

does not change if the phenotypic optimum shifts between z0 and −z0.

The threshold effect is also larger when selection is weaker (Nsγ̄2 ≪ 2)

or the quantitative trait is controlled mostly by small-effect loci. For

phenotypic optimum at zero, (B.5) gives

γ̂N (ℓ) ≈ γ̂N +
γ̂N

4Nsκ2
(B.7)

so that the deviation γ̂N (ℓ)− γ̂N is of order ℓ−1.
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Appendix C Stationary state trait mean

distribution

In the stationary state, using the joint distribution (11) for ℓ loci, we

find that the distribution of trait mean is given by

Pr(z∗) =

∫ 1

0
dx1...

∫ 1

0
dxℓP (x⃗)δ(z − z∗) (C.1)

∝ e−Ns∆z
∗2
∫ 1

0
...

∫ 1

0
δ(z∗ −

∑
i

γi(2xi − 1))
ℓ∏
i=1

dxig
∗(xi)(C.2)

∝ e−Ns∆z
∗2
e
− z∗2

2κ2 (C.3)

where ∆z∗ = z∗ − z0 and the last expression is obtained using the

central limit theorem for large ℓ (Bulmer, 1972; Lande, 1976). The

above distribution gives the average and variance of the trait mean to

be (see also Sec. S4)

⟨z∗⟩ =
2Nsκ2z0
1 + 2Nsκ2

≈ z0

(
1− 1

2Nsκ2
+ O(ℓ−2)

)
(C.4)

⟨(z∗ − ⟨z∗⟩)2⟩ =
κ2

1 + 2Nsκ2
≈ 1

2Ns
− 1

4N2s2κ2
+ O(ℓ−2)(C.5)

Here, we are interested in understanding how the average deviation

in the trait mean depends on the number of loci and the genetic

architecture of the trait. From (C.4), we find the deviation in the
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trait mean to be

⟨∆z∗⟩ ≈ − z0
2Nsκ2

= − z0

4ℓ× Nsγ̄2

2 × κ2
ℓγ̄2

(C.6)

which shows that if the magnitude of phenotypic optimum does not

increase with the number of loci, the deviation in the mean pheno-

type tends to vanish and the population is perfectly adapted (on an

average). But, if the phenotypic optimum varies linearly with ℓ, the

average trait mean also increases but the average deviation remains

unchanged.

When most loci have small effect, due to (A.12a), 2Nsκ2 → con-

stant when N → ∞, and therefore, the average mean deviation re-

mains finite in the deterministic limit. But, when most effects are

large, as 2Nsκ2 increases linearly with N (see (A.12b)), we expect

the average mean deviation to vanish in an infinitely large popula-

tion. These conclusions are verified numerically in Fig. S8, and are

also consistent with the fact that for weak selection, the average trait

mean deviation and the variance in trait mean are large as stabilizing

selection is ineffective in keeping the population close to the pheno-

typic optimum while for strong selection, the population stays close

to z0 (Bulmer, 1972; Lande, 1976). Using (A.12a) and (A.12b), we

may therefore write

⟨∆z∗⟩ ≈ − z0

1 + 4ℓfS γ̄2

γ̂2
+ 4ℓfLNsγ̄2

(C.7)
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where fL = e
− γ̂N (ℓ)

γ̄ and fS = 1− fL, respectively, denote the fraction

of small- and large-effect loci in a quantitative trait. The variance

in ∆z∗ given by (C.5) is, however, independent of the details of the

genetic architecture.

In an infinitely large population, the correction to stationary allele

frequency due to nonzero mean deviation has been found, assuming

that this deviation is small (de Vladar and Barton, 2014). How-

ever, the number of loci and the genetic architecture for which the

mean deviation will be small is not stated. Our result (C.7) show

that this would be the case when the number of loci are large and

selection is strong or a finite fraction of effects are large.

Appendix D Time-dependent marginal

distribution

As described in Sec. S3, the joint distribution of the deviation {ξi}, i =

1, ..., ℓ in allele frequencies obeys the following approximate equation

(see (S3.12)):

∂Π(ξ⃗, t)

∂t
= −

ℓ∑
i,j=1

Aij(t)
∂

∂ξi
(ξjΠ(ξ⃗, t)) +

1

2

ℓ∑
i=1

Bi(t)
∂2Π(ξ⃗, t)

∂ξ2i
(D.1)
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where

Aij(t) =
∂Mi(x⃗)

∂xj
(D.2)

Bi(t) = Vi(x⃗) (D.3)

Thus, Π(ξ⃗, t) is the distribution of multivariate Ornstein-Uhlenbeck

process with time-dependent coefficients, and whose exact solution

is a multivariate Gaussian distribution with time-dependent mean

and variance; from (S3.25), it then follows that the time-dependent

marginal distribution of the allele frequency at the ith locus is also

a Gaussian. Thus, within linear noise approximation, the stochastic

trajectory of an allele frequency is centred about the deterministic one

with fluctuations of the order N−1/2 as the variance ⟨(xi −xi(t))
2⟩ =

⟨ξ2i ⟩
2N .

The variance and covariance of the deviation ξi defined as

⟨ξ2k(t)⟩ =

ℓ∏
i=1

∫ ∞

−∞
dξiξ

2
kΠ(ξ⃗, t) (D.4)

⟨ξk(t)ξj(t)⟩ =
ℓ∏
i=1

∫ ∞

−∞
dξiξkξjΠ(ξ⃗, t) , k ̸= j (D.5)

obey a set of coupled differential equations that can be derived from

(D.1). On multiplying both sides of (D.1) by ξ2k, integrating over all
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ξi’s and carrying out integration by parts, we obtain,

d⟨ξiξk⟩
dt

=



2
∑
j ̸=i

Aij(t)⟨ξiξj⟩+ 2Aii(t)⟨ξ2i ⟩+Bi(t) , i = k (D.6a)

∑
j ̸=k

Aij(t)⟨ξjξk⟩+
∑
j ̸=i

Akj(t)⟨ξiξj⟩

+Aik(t)⟨ξ2k⟩+Aki(t)⟨ξ2i ⟩ , i ̸= k (D.6b)

In the above equations,

Aij =
∂Mi

∂xj
=

−sγi(1− 2xi)∆z− sγ2i
2

(1− 2xi(1−xi))− 2µ , i = j (D.7a)

−2sγiγjxi(1−xi)(1− δ∆z,0) , i ̸= j (D.7b)

and

Bij = Viδij =

{
xi(1−xi) , i = j (D.8a)

0 , i ̸= j (D.8b)

where ∆z = z− zf is the trait mean deviation in an infinitely large

population.

A formal solution of these coupled equations can be written (see

(S3.27)) but it seems difficult to find an exact solution.
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Figure 1: Stationary state marginal allele frequency distribution for ℓ = 100
(red) and 500 (green) at a locus with effect size (a) smaller (γ = 0.1), (b)
close to (γ = 0.5) and (c) larger (γ = 0.7) than the threshold size γ̂N = 0.53
for ℓ → ∞. The other parameters are N = 1000, s = 0.05, and µ = 0.002,
γ̄ = 0.1, and z0 = 0. The points are obtained by solving the Langevin
equation (9) numerically for 104 independently chosen initial conditions and
averaged until t = 105 after a burn-in period of t = 4 × 104. The solid
line represents the analytical expression for marginal distribution (12) where
κ2,i ≈ 0.76(ℓ = 100) and 1.4(ℓ = 500) are calculated from the effect sizes used
in this plot. The black dashed line represents the marginal distribution (14)
for ℓ → ∞. The trait is composed of mostly small effects (∼ 1% large-effect
loci). For different ℓ, different set of effects were generated keeping the effect
size of the loci shown here to be the same.
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Figure 2: Stationary state marginal allele frequency distribution for a locus
with effect size (a) smaller (γi = 0.05), (b) close to (γi = 0.4 ) and (c)
larger (γi = 0.5) than the threshold size γ̂N(ℓ) ≈ 0.42. The parameters are
N = 1000, s = 0.1, µ = 0.002, ℓ = 1000, γ̄ = 0.08, and zf = 2. For the set of
effects used here, there were 7 large-effects loci. The points are obtained by
numerically solving the Langevin equation (9) and averaging over 105 steady-
state time average data and 103 ensemble avearge data after a burn-in period
of t = 4 × 104. The red solid line represents the analytical expression (12)
where κ2 ≈ 1.24 is calculated from the effect sizes used in this plot, and the
black dashed line represents the marginal distribution (14) for ℓ → ∞.
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Figure 3: The inset shows the threshold effect, γ̂N(ℓ) obtained using (B.3)
for weak selection (Nsγ̄2 = 0.64, black), and strong selection (Nsγ̄2 = 16,
orange) where N = 1000, µ = 0.002, s = 0.1, ℓ = 1000. The threshold
effect increases with the phenotypic optimum for weak selection but it is
mildly affected when selection is strong. For weak selection, the marginal
distribution at a locus with effect size γ = 0.45 is bimodal when z0 = 2
(blue) but it is unimodal and heavily skewed towards high frequency when
the optimum is at 10 (red).
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Figure 4: Comparison of deterministic allele frequency (solid lines) obtained
by numerically solving (18) and average allele frequency (points) obtained
by numerically solving (9) for 5000 independent stochastic runs for effect
size 0.24 (yellow), 0.36 (green), 0.52 (red), 0.8 (blue), keeping the initial
frequencies to be the same in both deterministic and stochastic model. The
other parameters are ℓ = 200, s = 0.05, µ = 0.002, N = 200. The threshold
frequency γ̂N(ℓ) is 0.359 and 0.493 for z0 = 0 and zf = 1, respectively.
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Figure 5: Stochastic trajectories of (a) magnitude of deviation in the trait
mean, |z(t) − zf|, (b) scaled genetic variance υ(t)/υ∗, (c) allele frequency of
a small-effect locus and (d) large-effect locus, keeping the initial frequencies
of all loci fixed. The data are obtained by solving the Langevin equation (9)
numerically and the solid lines in each plot show the data averaged over 103

independent stochastic runs. The set of effects and the parameters are the
same as in Fig. 4 except that N = 1000 and therefore the threshold effect
γ̂N(ℓ) ≈ 0.537. The effect size of small- and large-effect locus is, respectively,
≈ 0.36 and 0.8. For the set of effects used here, κ2 ≈ 0.616 and (C.6) predicts
the stationary state average trait mean deviation to be ≈ 0.016; the initial
average genetic variance is 1.75 while the stationary state genetic variance
v∗ ≈ 2.1.
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Figure 6: Left: Stochastic trajectories of the allele frequency (red) of a large-
effect locus with effect size 0.7 that cross a frequency one half when the
trait mean deviation |z(t) − zf| (blue) is (sv∗)−1 ≈ (sℓγ̄2)−1 for N = 1000,
s = 0.05, ℓ = 200, µ = 0.002, γ̄ = 0.1, γ̂N = 0.537, z0 = 0, and zf = 1. The
blue dashed line shows the trait mean deviation (24) in the deterministic
model and the red dashed line is at an allele frequency equal to one half.
Main of Right: Probability of sweep as a function of effect size (> γ̂N(ℓ)) for
three population sizes; the rest of the parameters are the same as in the left
figure. The points are obtained numerically from 104 independent stochastic
runs in which the initial allele frequency was below one half and the lines
show (30). In this plot, there is only one large-effect locus and the effect sizes
of all ℓ− 1 small-effect loci are kept fixed while the effect of the large-effect
is varied. The large-effect locus sweeps when its initial frequency exceeds
xc ≈ 0.42, 0.4, 0.39, 0.38 for γ = 0.6, 0.7, 0.8, 0.9, respectively. Inset of Right:
Probability of sweep as a function of population size N when several loci
have large effect. The parameters are s = 0.05, ℓ = 200, µ = 0.002, γ̄ = 0.15,
γ̂ = 0.56, z0 = 1, and zf = 5. The orange points represent the numerical
results when at least one large effect locus out of 4 large-effect loci crosses
1/2 at τ ≈ 1/(sℓγ̄2) and the black points show (34). Here, the effect sizes
are kept fixed for all the population sizes and the data are obtained using
104 independent runs.
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Figure S1: Stationary state marginal allele frequency distribution when the
mutation rate is small for a locus with effect size (a) γi = 0.01, (b) γi = 0.05
and (c) γi = 0.7. The parameters are N = 1000, s = 0.05, µ = 0.00002, ℓ =
200, γ̄ = 0.1, and z0 = 1. The deterministic threshold size γ̂ = 0.056 for these
parameters whereas stochastically, there is no threshold effect. The points
are obtained by numerically solving the Langevin equation (9) numerically by
averaging over 103 independently chosen initial conditions and until t = 105

for each initial condition after a burn-in period of t = 4× 104. The red solid
line represents the analytical expression (12) where κ2 ≈ 4.8 is calculated
from the effect sizes used in this plot.
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Figure S2: Stationary state marginal allele frequency distribution for a locus
with effect size (a) smaller (γi = 0.1), (b) just below (γi = 0.23), (c) just
above (γi = 0.3) and (d) larger (γi = 0.7) than the threshold size γ̂N(ℓ) =
0.24. The parameters are N = 1000, s = 0.1, µ = 0.001, ℓ = 200, γ̄ = 0.7,
and z0 = 1. For the set of effects used here, there were 137 large-effects loci.
The points are obtained by numerically solving the Langevin equation (9)
numerically by averaging over 104 independently chosen initial conditions and
until t = 105 for each initial condition after a burn-in period of t = 4× 104.
The red solid line represents the analytical expression (12) where κ2 ≈ 235
is calculated from the effect sizes used in this plot.
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S1 Stationary state moments

Here, we numerically study the stationary state cumulants of the allele fre-

quency at a locus; in particular, we study the first three central moments,

viz., mean, variance and skewness (which is a measure of the asymmetry of

the distribution). These central moments are calculated using the marginal

stationary distribution ψ∗(xi) given by (12).

Figure S3a shows the mean allele frequency for various phenotypic opti-

mum for small- and large-effects. When the phenotypic optimum is at zero,

as the marginal distribution (12) is symmetric about one-half, the mean allele

frequency is equal to 1/2 for all loci. But for nonzero z0, the average allele

frequency deviates from one-half to push the average trait mean towards the

optimum which introduces asymmetry in the marginal distribution of the

allele frequency. For z0 > 0(< 0), the distribution for a large-effect locus is

skewed with the mode at allele frequency > 1/2 carrying more (less) weight

than the mode at allele frequency < 1/2.

When the phenotypic optimum is at zero and the effect size is large,

as shown in Fig. S3b, the variance approaches one-quarter with increasing

effect size; this is because for γi ≫ γ̂N(ℓ), the mutational pressure is low and

therefore the distribution is close to zero or one with equal weight, and may be

approximated by δ(xi)+δ(1−xi)
2

which immediately leads to the observed result.

In contrast, for nonzero z0, as the bimodal distribution is dominated by the

peak at allele frequency close to one with relatively smaller weight close to

3
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Figure S3: First three central moments of the allele frequency obtained using
(12) for z0 = 0 (gray), 2 (blue), −2 (red), and N = 1000, µ = 0.002, s =
0.1, γ̄ = 0.08, ℓ = 1000. The stochastic threshold effect is ≈ 0.416 for these
parameters.
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frequency zero, the allele frequency variance decreases with increasing effect

size for effects larger than the threshold effect.

Similarly, for nonzero z0 and effect sizes above the threshold effect, due

to the asymmetry in the marginal distribution, the skewness (here measured

by the third central moment) is nonzero. For positive z0, as the mean allele

frequency is close to the higher peak, the contribution from the lower peak

results in negative third moment. The case of negative z0 can be understood

by a similar argument.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525607
http://creativecommons.org/licenses/by-nc-nd/4.0/


○
○○
○

○ ○ ○ ○ ○

○
○○○

○ ○ ○ ○ ○

0.0 0.2 0.4 0.6 0.8
γi

0.2

0.4

0.6

0.8

1.0

Modes

Figure S4: Allele frequency at which the modes in the stationary state
marginal allele frequency distribution occur for zf = 2 (blue) and −2 (red).
The points are obtained by numerically solving the cubic equation (B.2) for
the modes with closed (open) symbols denoting the maximum (minimum).
The dotted and dashed lines, respectively, show the approximate expressions
in (B.4a) and (B.4b) for the mode frequency for finite number of loci while
the gray lines show (16) for infinite number of loci. The parameters are the
same as in Fig. 2, viz., N = 1000, s = 0.1, µ = 0.002, γ̄ = 0.08, and ℓ = 1000.
The threshold effect γ̂N(ℓ) for finite loci obtained from the cubic equation
(B.3) and the approximation (B.6) are, respectively, 0.416 and 0.401, while
(15) yields γ̂N(ℓ→ ∞) = 0.374.
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S2 Stationary state genetic variance

We consider the genetic variance (7) when averaged over the stationary state

distribution (12). For z0 ≪ ℓ, using (A.6), we can write

⟨xi(1− xi)⟩ =

∫ 1

0

dxixi(1− xi)ψ
∗(xi) (S2.1)

≈

∫ 1

0
dxixi(1− xi)g

∗(xi)

(
1− (γi(2xi−1)−z0)2

2(κ2+
κ4
8κ2

)
+ ...

)
∫ 1

0
dxig∗(xi)

(
1− (γi(2xi−1)−z0)2

2(κ2+
κ4
8κ2

)
+ ...

) (S2.2)

=

∫ 1

0
dxixi(1− xi)g

∗(xi)∫ 1

0
dxig∗(xi)

+
1

2(κ2 +
κ4

8κ2
)

∫ 1

0
dxixi(1− xi)g

∗(xi)
∫ 1

0
dxig

∗(xi)(γ
2
i (2xi − 1)2 + z20)

[
∫ 1

0
dxig∗(xi)]2

− 1

2(κ2 +
κ4

8κ2
)

∫ 1

0
dxixi(1− xi)g

∗(xi)(γ
2
i (2xi − 1)2 + z20)∫ 1

0
dxig∗(xi)

(S2.3)

which, on summing over all loci, gives

⟨υ∗⟩
ℓ

=
U

1 + 2U

∫ ∞

0

dγγ2p(γ)
F(3

2
, γ)

F(1
2
, γ)

+
1

(κ2 +
κ4

8κ2
)

U

1 + 2U

∫ ∞

0

dγγ4p(γ)

(
U + 1

2U + 3

F(5
2
, γ)

F(1
2
, γ)

− U

2U + 1

F2(3
2
, γ)

F2(1
2
, γ)

)
(S2.4)

where, for brevity, we have defined F(α, γ) = 1F1

(
1
2
, 4Nµ+ α, Nsγ2

2

)
and

U = 4Nµ.

The first term on the RHS of (S2.4) is independent of z0 and is, in fact, the

result obtained in Bulmer (1972) for equal effects and phenotypic optimum
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at zero; the second term which is of order ℓ−1 is also seen to be independent of

the phenotypic optimum. Thus, when z0 ≪ ℓ, the stationary genetic variance

(to O(ℓ−1)) does not depend on the location of the phenotypic optimum.

From (S2.4), we find that the stationary genetic variance for exponentially-

distributed effects is given by

⟨υ∗⟩ = 4Nµℓγ̄2

1 + 8Nµ

∫ ∞

0

1F1(
1
2
; 4Nµ+ 3

2
; Nsγ̄2

2
x2)

1F1(
1
2
; 4Nµ+ 1

2
; Nsγ̄2

2
x2)

x2e−xdx (S2.5)

where we have ignored the second term on the RHS of (S2.4). For fixed 4Nµ,

the above integral can be approximated by

⟨υ∗⟩ ≈


8Nµℓγ̄2

1 + 8Nµ

(
1− 12Nsγ̄2

(1 + 8Nµ)(3 + 8Nµ)

)
, Nsγ̄2 ≪ 2 (S2.6a)

4ℓµ

s
, Nsγ̄2 ≫ 2 (S2.6b)

Thus the genetic variance is an increasing function of selection strength, and

saturates to 4ℓµ/s for strong selection or when most effects are large, as

expected from the House-of-Cards model (Bürger, 2000). For finite ℓ, the

correction to the genetic variance found above can also be approximated but

are not particularly illuminating.

As mentioned above, the stationary genetic variance is independent of

z0 when the phenotypic optimum is small. Figure S5 shows that not only

the total genetic variance but the contribution of small- and large-effect loci

to ⟨υ∗⟩ also depends weakly on the phenotypic optimum when z0 is large,

irrespective of selection strength.
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Figure S5: Stationary state genetic variance shown by # and obtained using
(12) as a function of the phenotypic optimum for γ̄ = 0.08 (blue) and 0.4
(red), and N = 1000, µ = 0.002, s = 0.1, ℓ = 1000. The contribution of small-
and large-effect loci to the total genetic variance is shown, respectively, by ▽
and △. For weak selection (Nsγ̄2 = 0.64), the contribution from large-effect
loci is negligible as the threshold effect increased substantially on increasing
z0 (from 0.37 for z0 = 0 to 1.2 for z0 = 100) resulting in a vanishing fraction
of large-effect loci contributing to a quantitative trait.
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Figure S6: The main figure shows the stationary state dynamics of the al-
lele frequency of a major effect locus while the inset shows the stationary
state distribution (12) when the phenotypic optimum is at one. The al-
lele frequency shifts between the two peaks and spends considerable time
at either peak. The rest of the parameters are the same as in Fig. 5, viz.,
ℓ = 200, N = 1000, s = 0.05, µ = 0.002, γ̄ = 0.1.
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Figure S7: Comparison of deterministic allele frequency (solid lines) obtained
by numerically solving (18) and average allele frequency (points) obtained by
numerically solving (9) for 5000 independent stochastic runs for for effect size
0.8 (blue), 0.24 (yellow), 0.35 (green), 0.52 (red). The other parameters are
ℓ = 200, γ̄ = 0.1, s = 0.05, µ = 0.002, N = 1000. The effect size set used is the
same in Fig. 4, but due to larger N , the threshold frequency is γ̂N(ℓ) = 0.54
and 0.66 for z0 = 0 and zf = 1, respectively.
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Figure S8: (a) Scaled variance κ2 given by (A.10) as a function of scaled
selection strength for 4Nµ = 20. The dotted and dashed lines, respectively,
show the result 2

1+8Nµ
for weak selection and 2 for strong selection. (b) In

accordance with (A.12a) and (A.12b), the contribution to 2Nsκ2 from the
small-effect loci (red) remains roughly constant while that from the large-
effect loci (blue) increases linearly with the population size for z0 = 10,
ℓ = 1000, µ = 0.002, s = 0.1, γ̄ = 0.1. The threshold effect γ̂N(ℓ) was
calculated for each N , as discussed in Appendix B. (c) Average trait mean
deviation (magenta) given by (C.6) decreases while the fraction of large-
effect loci in a quantitative trait (blue) increases when the population size is
increased (keeping all the other parameters same).
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S3 Allele frequency distribution within linear

noise approximation

Consider the joint distribution P (x⃗, t) that obeys the following Fokker-Planck

equation:

∂P (x⃗, t)

∂t
= −

∑
i

∂

∂xi
(Mi(x⃗)P (x⃗, t)) +

ϵ2

2

∑
i,j

∂2

∂xi∂xj
(Vij(x⃗)P (x⃗, t)) (S3.7)

On changing the variables from xi to ξi =
xi−xi(t)

ϵ
, we find that the proba-

bility distribution Π(ξ⃗, t) = ϵℓP (x⃗, t) obeys the following partial differential

equation:

∂Π(ξ⃗, t)

∂t
= −

∑
i

∂

∂ξi

[
Mi(x⃗+ ϵξ⃗)−Mi(x⃗)

ϵ
Π(ξ⃗, t)

]

+
1

2

∑
i,j

∂2

∂ξi∂ξj

[
Vij(x⃗+ ϵξ⃗)Π(ξ⃗, t)

]
(S3.8)

where, the deterministic frequency obeys dxi(t)
dt

=Mi(x⃗).

The distribution and the coefficients are now expanded in a power series
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in small parameter ϵ, that is,

Π(ξ⃗, t) =
∞∑
n=0

Π(n)ϵn (S3.9)

Mi(x⃗+ ϵξ⃗, t) =
∞∑
n=0

A
(n)
i (ξϵ)n (S3.10)

Vij(x⃗+ ϵξ⃗, t) =
∞∑
n=0

B
(n)
ij (ξϵ)n (S3.11)

Using these expansions in (S3.8) and matching terms with the same order

in ϵ on both sides of (S3.8), one can obtain partial differential equations for

Π(n)(ξ⃗, t). Here, we will work only to the leading order in ϵ which results

in a linear Fokker-Planck equation (linear noise approximation) in the sense

that the first sum on the RHS of (S3.8) is linear in ξ and the second sum

is constant [refer to Chapter VIII, van Kampen (1997)], and find that Π(0)

is solution of the following equation (see Chapter X, van Kampen (1997),

Sec. 6.3 of Gardiner (1997)),

∂Π(0)(ξ⃗, t)

∂t
= −

∑
i,j

A
(1)
ij (t)

∂

∂ξi
(ξjΠ

(0)(ξ⃗, t)) +
1

2

∑
i

B
(0)
ij (t)

∂2Π(0)(ξ⃗, t)

∂ξi∂ξj

(S3.12)

where

A
(1)
ij (t) =

∂Mi(z⃗)

∂zj

∣∣∣∣∣
z⃗=x⃗

(S3.13)

B
(0)
ij (t) = Vij(x⃗) (S3.14)
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Note that the coefficient of the first derivative term on the RHS of (S3.12)

depends linearly on ξi and that of the second derivative term is constant in

ξi. Thus, the joint distribution Π(ξ, t) is the distribution for the multivari-

ate Ornstein-Uhlenbeck process with time-dependent coefficients which, as

described below, can be solved exactly using the method of characteristics

(van Kampen, 1997; Gardiner, 1997).

For the diffusion equation of interest here, viz., (2), as Bij is diagonal, we

do not consider the cross terms in the second term on the RHS of (S3.12)

in the following discussion. Furthermore, we also drop the superscripts in

(S3.12). Consider the Fourier transform, G(k⃗, t) =
∫∞
−∞ e−ik⃗.ξ⃗Π(ξ⃗, t)

∏
i dξi

which, due to (S3.12), obeys

∂G(k⃗, t)

∂t
=

∑
i,j

Aij(t)ki
∂G(k⃗, t)

∂kj
− 1

2

∑
i

Bi(t)k
2
iG(k⃗, t) (S3.15)

The characteristic curves obey dkj
dt

= −
∑

i kiAij(t) and therefore, k⃗T =

c⃗TUT (t, 0) where T denotes the transpose of the column vector k⃗, and the

time evolution operator U(t, t0) is given by

U(t, t0) = I+
∞∑
n=1

(−1)n
∫ t

t0

dt1

∫ t1

t0

dt2...

∫ tn−1

t0

dtnA
T (t1)...A

T (tn)(S3.16)

= I+
∞∑
n=1

(−1)n

n!

∫ t

t0

dt1...

∫ t

t0

dtnT(AT (t1)...A
T (tn)) (S3.17)

In the above equation, Tdenotes the time-ordered product of matrices, and is

required when the matrix A at different times do not commute: A(t1)A(t2) ̸=
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A(t2)A(t1). Along the characteristic curves, the solution of (S3.15) is

G(k⃗, t) = exp[−1

2

∫ t

0

k⃗T UT (t′, t)B(t′)U(t′, t)k⃗dt′]

× C(U−1(t, 0)k⃗) (S3.18)

where the function C is determined by the initial condition G(k⃗, 0).

For the initial joint distribution, Π(ξ⃗, 0) =
∏

i δ(ξi − ξi(0)), we finally

obtain

G(k⃗, t) = exp

[
−iξ⃗T (0)U−1(t, 0)k⃗ − 1

2

∫ t

0

k⃗T UT (t′, t)B(t′)U(t′, t)k⃗dt′
]

(S3.19)

Since G(k⃗, t) is a Gaussian function, using the fact that the inverse Fourier

transform of a Gaussian is also a Gaussian, we conclude that for a given set

of initial allele frequencies, the random variables {ξi} at time t are Gaussian-

distributed.

The time-dependent marginal distribution at the jth locus can be ob-

tained from the Fourier transform:

π(ξj, t|ξj(0)) =
1

2π

∫ ∞

−∞
dkje

ikjξjG(0, ..., 0, kj, 0, ...0, t) (S3.20)

where, due to (S3.19),

G(0, ..., 0, kj, 0, ...0, t) = exp

[
−ikjLj(t)−

k2j
2

∫ t

0

Qjj(t, t
′)dt′

]
(S3.21)
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and

L⃗T (t) = ξ⃗T (0)U−1(t, 0) (S3.22)

Q(t, t′) = UT (t′, t)B(t′)U(t′, t) (S3.23)

We thus have

π(ξj, t|ξj(0)) =
1√

2π
∫ t

0
Qjj(t, t′)dt′

exp

[
− (ξj − Lj(t))

2

2
∫ t

0
Qjj(t, t′)dt′

]
(S3.24)

From the above equation, it follows that the time-dependent marginal dis-

tribution of the allele frequency at the ith locus is also a Gaussian, and is

given by

ψ(xi, t|xi(0)) =

√
N

π
∫ t

0
Qii(t, t′)dt′

exp

[
−N(xi −xi(t)−Li(t))

2∫ t

0
Qii(t, t′)dt′

]
(S3.25)

where

L⃗T (t) = (x⃗T (0)− x⃗T (0))U−1(t, 0) (S3.26)

Q(t, t′) = UT (t′, t)B(t′)U(t′, t) (S3.27)

and U is given by (S3.17).
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S4 Corrections to the central limit theorem:

Edgeworth expansion

Consider the distribution of the random variable, X =
∑ℓ

j=1 γj(2xj−1)
√
κ2

where

xi’s are independently distributed according to the (normalized) distribution,

g∗(xi) and κ2 =
∑ℓ

j=1 ⟨γ2j (2xj − 1)2⟩
g∗

where we have used that the mean

⟨γj(2xj − 1)⟩g∗ = 0. Then, from (43) of Blinnikov and Moessner (1998),

we have

Prob(X) ∝ e−
X2

2

[
1 +

κ4
κ22

3− 6X2 +X4

24
+ O(ℓ−2)

]
(S4.28)

where, κ4 =
∑ℓ

j=1 ⟨γ4j (2xj − 1)4⟩
g∗

− 3⟨γ2j (2xj − 1)2⟩2
g∗

. Using the above

result in (A.3) for X ′ = X − γi(2xi− 1) and performing the integral over X ′,

we arrive at (A.6) in the main text. From the marginal distribution (A.6)

for z0 ≪ ℓ, we then obtain

γi⟨2xi − 1⟩ ≈ z0K2,i

κ2
+
Nsz0(K2,iκ4 − κ2K4,i)− z0κ2K2,i

2Nsκ32
+ O(ℓ−3) (S4.29)

where K2,j = ⟨γ2j (2xj − 1)2⟩
g∗
, K4,j = ⟨γ4j (2xj − 1)4⟩

g∗
− 3⟨γ2j (2xj − 1)2⟩2

g∗
.

We check that, on summing over all loci, the above equation leads to (C.6).
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Similarly, for the distribution of the trait mean, we have

Pr(z∗) =

∫ 1

0

dx1...

∫ 1

0

dxℓP (x⃗)δ(z − z∗) (S4.30)

∝ e−Ns(z∗−z0)2
∫ 1

0

ℓ∏
i=1

dxig(x
∗
i )δ(z

∗ −
∑
i

γi(2xi − 1)) (S4.31)

∝ e−Ns(z∗−z0)2
∫ 1

0

ℓ∏
i=1

dxig(x
∗
i )δ

(
z∗
√
κ2

−
∑

i γi(2xi − 1)
√
κ2

)
(S4.32)

On using the central limit theorem and its extension given by (S4.28), we

then obtain

Pr(z∗) ∝ e−Ns(z∗−z0)2e
− z∗2

2κ2

[
1 +

κ4
24κ22

(
3− 6z∗2

κ2
+
z∗4

κ22

)]
(S4.33)

where the second term in the bracket on the RHS is of order ℓ−1. The above

distribution gives the average and variance of the trait mean to be the same

as (C.4) and (C.5) to order ℓ−1 and therefore the correction term does not

affect the results for the trait mean.
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Figure S9: Sweep probability for zf = 2 (blue) and zf = 6 (red) to show the
different qualitative dependence on N . The points are generated using (30)
for N = 1000, s = 0.05, ℓ = 200, µ = 0.002, γ̄ = 0.1, γ = 0.8, z0 = 0; for
these parameters, the major locus frequency in an infinite population sweeps
if zf > 4.4.
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Figure S10: Probability of sweep for different initial and final optimum values
keeping zf − z0 same to show that it depends on z0 and zf for small ℓ. This
figure uses the same set of effect sizes and same parameter values as in the
Fig. 6 (only the initial optimum has been changed for the red points and line).
The lines and points are obtained in the similar manner as in the Fig. 6 of
main text and the data are obtained using 104 independent runs. In case
of z0 = 1, the large effect locus sweeps when it exceeds a critical frequency
xc = 0.41, 0.4, 0.39 for γ = 0.7, 0.8, 0.9, respectively. The corresponding
values for z0 = 0 are given in Fig. 6 of main text.
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