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Progress in improving cardiogenic shock (CS) outcomes may have been limited by failure to embrace the heterogeneity

of pathophysiologic processes driving the underlying syndrome. To better understand the variability inherent to CS

populations, recent algorithms for describing underlying CS disease subphenotypes have been described and validated.

These strategies hope to identify specific patient subgroups with more favorable responses to standard therapies, as well

as those who require novel treatment approaches. This paper is part 2 of a 2-part state-of-the-art review. In this second

article, we present machine learning-based statistical approaches to identifying subphenotypes and discuss their

strengths and limitations, as well as evidence from other critical illness syndromes and emerging applications in CS. We

then discuss how staging and stratification may be considered in CS clinical trials and finally consider future directions for

this emerging area of research. (JACC Adv 2022;1:100126) © 2022 The Authors. Published by Elsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
C ardiogenic shock (CS) remains associated
with a high risk of short-term mortality
despite a contemporary therapy.1-4 CS is het-

erogeneous in its underlying etiologies, clinical
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manifestations, disease severity, and outcomes, yet
traditional methods for stratification (eg, hemody-
namic profiling using a pulmonary artery catheter)
have not consistently improved outcomes.1,3-7
https://doi.org/10.1016/j.jacadv.2022.100126

Rochester, Minnesota, USA; bDepartment of Cardio-

nt of Anesthesiology and Critical Care, Lariboisière -

iovascular Markers in Stress Conditions (MASCOT),

e, Faculty of Medicine, Keenan Research Centre for

to, Toronto, Ontario, Canada; eTIMI Study Group,

oston, Massachusetts, USA; fDepartment of Critical

ical Research, Investigation, and Systems Modeling

Heart and Vascular Institute, Inova Fairfax Medical

horacic Institute, Weston, Florida, USA; jPeter Munk

, Canada; kThe Cardiovascular Center, Tufts Medical

esearch and Education at the Christ Hospital Health

erdepartmental Division of Critical Care Medicine,

ichael Landzberg, MD, served as the Guest Editor for

es and animal welfare regulations of the authors’

t consent where appropriate. For more information,

2, accepted August 11, 2022.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jacadv.2022.100126
https://www.jacc.org/author-center
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacadv.2022.100126&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


HIGHLIGHTS

� Unsupervised machine learning can
detect subgroups in heterogeneous
syndromes.

� Hierarchical clustering, latent class
analysis, and k-mean clustering are
effective.

� Clustering can classify subphenotypes in
critical illnesses including cardiogenic
shock.

� Subphenotyping can facilitate precision
medicine by matching treatment to
patient.

� Heterogeneity of treatment effect may
exist between subphenotypes in a
population.

ABBR EV I A T I ON S

AND ACRONYMS

ACS = acute coronary

syndrome

AIC = Akaike information

criterion

AMI = acute myocardial

infarction

ARDS = acute respiratory

distress syndrome

BIC = Bayesian information

criterion

CA = cardiac arrest

CS = cardiogenic shock

CSWG = Cardiogenic Shock

Working Group

HC = hierarchical clustering

HTE = heterogeneity of

treatment effect

KMC = k-means clustering

LCA = latent class analysis

MCS = mechanical circulatory

support

RCT = randomized controlled

trial

SCAI = Society for

Cardiovascular Angiography

and Intervention
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Randomized clinical trials (RCTs) enrolling
CS patients may have failed to demonstrate
incremental benefits due to an incomplete
consideration of patient heterogeneity and
diverse subgroups within the CS popula-
tion.2,8 The Society for Cardiovascular Angi-
ography and Intervention (SCAI) Shock
Classification is a streamlined approach for
describing the severity of CS to facilitate clin-
ical care and guide research.5,6,9 The SCAI
Shock Classification has demonstrated robust
mortality risk stratification in patients with
or at risk of CS, and “risk modifiers” have
been identified that are independently asso-
ciated with mortality across the spectrum of
CS severity.6,10-14 The heterogeneity of CS
populations extends beyond illness severity
and mortality risk factors, and a 3-axis model
describing different aspects of CS patient
presentations was proposed in the revised
SCAI Shock Classification.6,9 This model in-
corporates the different clinical phenotypes
observed in patients with CS, which could
provide insights into underlying disease
mechanisms, targeted therapies, and individ-
ualized care.15,16

The limitations of traditional treatment

approaches for improving outcomes in CS pop-
ulations have spurred increased interest in personal-
ized medicine, whereby subgroups in a population
can be selectively targeted based on anticipated
treatment response.2 The terminology used to
describe subgroups within a population has not been
fully standardized.17 Phenotypes broadly refer to
clinically apparent traits that differ between groups,
while subphenotypes imply a biological or mecha-
nistic underpinning typically identified using bio-
markers. Within CS populations, phenotypes have
been defined clinically based on the triggering etiol-
ogy or the pattern of ventricular dysfunction or
congestion, while subphenotypes have been identi-
fied based on commonly available laboratory
values.4,14-16,18 When there is a specific biomarker
profile implicating a disease pathway in a sub-
phenotype that identifies a unique treatment
response, this can be called a treatable trait.

In part 1 of this 2-part state-of-the-art review se-
ries, we reviewed the clinical context and rationale
for staging and phenotyping in CS.9 In part 2, we re-
view the methodological considerations associated
with using unsupervised machine learning (ML) al-
gorithms to perform subphenotyping and then
explore how these methods have been applied in
patients with cardiovascular diseases and critical ill-
nesses, including CS.

METHODS FOR IDENTIFYING

DISEASE SUBTYPES

As with CS, the pathophysiology of other common
critical illness syndromes (eg, acute respiratory
distress syndrome [ARDS] or sepsis) is complex and
incompletely understood, with substantial heteroge-
neity even among populations meeting standard
syndrome criteria. Unsupervised ML enables the
detection of patterns within multiple dimensions of
data simultaneously to separate patients within a
cohort into homogeneous groups based on similarity
of features (Figure 1). Clustering approaches can use
routine clinical and biological data or circulating
markers (ie, “-omics”) to identify subgroups with
distinct mechanistic signatures portending different
treatment responsiveness and outcomes.17 The
application of clustering techniques may ultimately
be useful for understanding individuals within a
heterogeneous population to facilitate individualized
care in a precision medicine paradigm tailored to
specific pathophysiologic mechanisms.17

Several unsupervised ML methods exist for data-
driven subgroup identification by maximizing in-
group similarities and between-group differences
within a heterogeneous population, collectively
referred to as clustering or partitioning algorithms
(Central Illustration).19-21 Clustering approaches
define groups by minimizing the differences between
group members (analogous to separating apples and



FIGURE 1 Patient Phenotype as Expressed in Data Form

Individual patient data, captured at a single timepoint, are translated into a data form. Parameters can be continuous such as physiologic

parameters or nominal such as the presence or absence of a clinical finding. Typically, these data are normalized using an algorithm that

retains the variability among measurements but scales the data to a consistent metric such that no one parameter will dominate based on the

range of values.
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oranges); k-means clustering (KMC) and hierarchical
clustering (HC) are 2 archetypal bottom-up clustering
approaches.19,21 Partitioning approaches generate a
probability of belonging to each cluster for every in-
dividual based on overall distributions of features
within a data set (analogous to slicing a pizza); latent
class analysis (LCA) is the archetypal top-down par-
titioning approach.20 These unsupervised ML ap-
proaches can augment or inform traditional and
supervised ML methods for mortality risk stratifica-
tion, as reviewed elsewhere.22

ANALYTICAL METHODS FOR CLUSTERING

K-MEANS CLUSTERING. KMC is the prototypical
bottom-up clustering analysis approach.19 Using a
prespecified number of clusters (k), observations are
assigned to the nearest cluster by distance, and
cluster centers are then iteratively redefined using
the mean of observations assigned to the cluster
(Figure 2A). Each observation is assigned to a single
cluster (hard assignment), and new observations can
be easily assigned to clusters based on the distance to
the established cluster centers.19 KMC has low
computational complexity, allowing clustering in
larger populations with greater speed, and there are
numerous variations of KMC that overcome some of
the limitations of standard KMC.19 Consensus KMC
repeats the clustering in many bootstrapped samples
from the population to determine to which cluster an
individual is most often assigned and indicate the
optimal number of clusters.16,23 K-prototype is a
variant of KMC that can incorporate both categorical
and continuous variables.24

KMC and its variants have been used to identify
subgroups within populations of critically ill patients,
including those with CS.15,16 Elmer et al24 performed
k-prototypes clustering in 1,088 patients resuscitated
from cardiac arrest (CA) using clinical variables,
neurological examination, neuroimaging, and elec-
troencephalogram findings. Patients were grouped
into 5 clusters representing the spectrum of brain
injury severity, and cluster assignment was strongly
associated with survival and favorable neurological
outcomes. The associations among targeted temper-
ature management, goal mean arterial pressure, and
coronary angiography with outcomes varied across
clusters.24 Applying this clustering approach to define
the likelihood of a severe brain injury prospectively in
patients with CS and CA could identify patients who
are better candidates for certain therapies and guide
RCT eligibility.25 Seymour et al23 defined 4



CENTRAL ILLUSTRATION An Overview of Clustering Analyses

Jentzer JC, et al. JACC Adv. 2022;1(4):100126.

First, high-dimensionality data ideally representing different aspects of patient disease states are acquired. Next, it might be necessary in

some cases to decrease the number of variables via dimensional reduction prior to clustering. Then, the preferred clustering algorithm is

selected based on the clinical question, available data types, population size, and other factors, and clustering analysis is performed to

identify subgroups. Finally, the derived clusters should be both internally and externally validated, including assessment of the clustering

performance.
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FIGURE 2 Determining Cluster Membership and Optimal Number of Clusters

For k-means clustering (KMC), (A) the distance between patients (arrows) defines the differences between separate clusters. For hierarchical clustering (HC), (B) the

dendrogram shows individual patients with each linkage showing a layer of patient grouping; patients that are connected at higher levels are less similar than patients

that are closely connected. For latent class analysis (LCA), (C) the shaded clouds surrounding individuals indicate the boundaries of similar observations within clusters

and give a probability of class membership, with the individual assigned to the color-coded cluster with the highest probability. The elbow plot (D) shows a measure of

model fit such as the Bayesian information criterion (BIC, with a lower value representing a better model fit) as a function of the number of clusters as clustering is

repeated with increasing number of clusters; the bend demonstrates the optimal number of clusters.
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subphenotypes of sepsis using consensus KMC based
on routine clinical and biological data on admission,
with subsequent validation using LCA and mapping
post hoc onto several large prospective sepsis studies
and RCTs. These subphenotypes were not correlated
with traditional clinical variables and risk factors, but
they were associated with different biomarker pat-
terns and patient outcomes. Variable treatment
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benefit was observed across the subphenotypes in RCT
populations, and the distribution of subphenotypes
within a hypothetical RCT population could influence
the observed overall effect of the intervention.

HIERARCHICAL CLUSTERING. HC is another bottom-
up clustering approach where each observation is
grouped progressively into a cluster with its nearest
neighbors based on distance metrics, forming an
inverted tree pattern (agglomerative HC).19 Each
observation is assigned to a single group (hard
assignment), and the further a linkage from the base,
the greater the degree of difference between clusters.
HC trees (dendrograms) clearly visualize the linkages
between the clusters, and the ease of visualization is
a relative strength of HC (Figure 2B). HC differs from
KMC in that each branch on the dendrogram is a
subdivision of the tree above it (ie, each side branch is
independent), so the number of clusters can be
changed post hoc based on where the hierarchy is cut
without repeating the analysis; by contrast, in KMC, a
change in the number of clusters entails deriving
clusters entirely anew.

Recently, HC has been used to define subgroups in
populations of patients with critical illnesses or car-
diovascular diseases. Shah et al26 performed
agglomerative HC in 397 heart failure with preserved
ejection fraction patients and identified 3 clusters
with different clinical characteristics and long-term
outcomes. Davenport et al27 quantified peripheral
blood leukocyte gene expression in septic shock pa-
tients and used HC to identify 2 sepsis response sig-
natures that were associated with immune function,
prognosis, and the response to corticosteroids. Geri
et al28 combined clinical and echocardiographic vari-
ables to define 5 hemodynamic sepsis subphenotypes
using the principal components analysis followed by
HC, which they proposed could be used to guide
resuscitation strategies. Toma et al29 used HC to
cluster patients with acute myocardial infarction
(AMI) based on leukocyte genomic expression
patterns, identifying hyperinflammatory and
prothrombotic subphenotypes.

LATENT CLASS ANALYSIS. LCA is a top-down parti-
tioning approach that assumes that observed patterns
of variables result from the superimposed distribu-
tions within the underlying clusters (ie, latent clas-
ses).20 Clusters are assigned through iterative
generation of an estimated probability of membership
in each of a prespecified number of clusters via
mixture modeling (Figure 2C). Considering that in-
dividuals may have characteristics of more than 1
cluster, the ability to provide a probability of mem-
bership in each cluster (soft assignment) is an
advantage of partitioning approaches (ie, LCA) vs
clustering approaches (ie, KMC and HC). There are
many variations of LCA including latent profiles
analysis that allow flexibility to handle mixed data.20

Due to a higher computational load, LCA cannot
handle very large data sets with a practical maximum
of approximately 25,000 observations.20

LCA has been used to identify subgroups in pop-
ulations of patients with critical illnesses or cardio-
vascular diseases. Segar et al30 used a penalized LCA
variant to separate 1,767 patients who had heart fail-
ure with preserved ejection fraction from the TOPCAT
(Treatment of Preserved Cardiac Function Heart
Failure with an Aldosterone Antagonist) RCT into 3
subgroups, demonstrating divergent clinical profiles
with differences in prognosis. LCA using molecular
biomarkers in patients with sepsis demonstrated
differences in acute kidney injury, early and late
outcomes, and treatment responses.31,32 Soussi et al32

used LCA to identify 2 subgroups of patients with
sepsis with distinct biomarker profiles; these sub-
groups had differences in 1-year mortality after
adjusting for severity of illness. Calfee et al rean-
alyzed ARDS RCTs using LCA based on clinical, me-
chanical ventilation, and biomarker data to identify 2
ARDS subphenotypes: a hyperinflammatory sub-
phenotype that was associated with excess inflam-
mation and worse outcomes and a hypoinflammatory
subphenotype with lower illness severity and better
outcomes.33-35 The hyperinflammatory ARDS sub-
phenotype was generally associated with a better
response to the assessed treatments in these RCTs.33-
35 Two equivalent subphenotypes were identified
within populations with ARDS due to COVID-19
infection, and the benefit of corticosteroids appeared
greater in the hyperinflammatory subphenotype.36

PRACTICAL CONSIDERATIONS WHEN

PERFORMING CLUSTERING ANALYSES

DATA QUALITY CONSIDERATIONS. As with conven-
tional statistical approaches, clustering algorithms
can be sensitive to missing data, particularly when
data are not missing completely at random (Table 1).22

KMC, HC, and many LCA models require complete
data, which often necessitates imputation in clinical
data sets. Some LCA variants can allow missing data,
but they assume missingness is completely at
random, which is often not the case in clinical
data sets. Therefore, features with high missingness
(ie, >20%-25%) are often excluded from
clustering analysis.37

As with all traditional and ML statistical ap-
proaches, clustering algorithms only work as well as



TABLE 1 Practical Considerations for Performing Clustering Algorithms

Data Problem Potential Solutions

Missing data Single value imputation
Multiple imputation
Model-based imputation
Use LCA variants that handle missing data, such as FIML

Excessive number of
candidate features

Preselection of features (“semi-supervised clustering”)
� Association with outcomes of interest
� Known to be clinically relevant (even if not

associated with an outcome)
� Association with disease mechanisms
� Least missingness
Principal components analysis before clustering
Larger sample size will allow more features

Correlated features Select the “best” from among correlated features
� Association with outcomes of interest
� Known to be clinically relevant (even if not

associated with an outcome)
� Association with disease mechanisms
� Least missingness
Reduce weights of correlated features if both are included

Mixed data types (eg,
continuous and categorical)

Use LCA variants that handle mixed data types
Use of k-prototypes or hierarchical clustering
Categorize continuous variables for LCA (not ideal)
� Dichotomization by cut points
� Quantiles

Skewed distribution/outliers Log-transformation
Standardization
Use LCA variants instead of k-means

FIML ¼ full information maximum likelihood; LCA ¼ latent class analysis.
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the quality of the data fed into the algorithms,
necessitating careful selection of included variables
to ensure that the generated subgroups reflect clini-
cally meaningful differences.22,37 The maximum
number of variables that can be used in clustering is
limited by the sample size; the Formann formula
specifies that clustering analysis should include at
least 2n (ideally 5 * 2n) individuals, where n is the
number of variables.16 Preselection of candidate var-
iables may be necessary (sometimes referred to as
“semi-supervised” clustering), which requires a
combination of clinical judgement and statistical
methods as with any model-building approach.22

Variables that reflect underlying disease mecha-
nisms and pathophysiological processes are ideal to
include; selecting variables based on their association
with outcomes of interest risks identifying clusters
based on outcomes rather than pathophysiology.16

Highly correlated data can pose a challenge for
KMC and LCA, which assume that model variables are
uncorrelated and will overweight highly correlated
variables (correlation coefficient >0.6).19,20 The
“best” of several correlated variables can be selected
for inclusion based on clinical judgement, association
with outcomes, or representation of distinct path-
ways; alternatively, dimension-reduction techniques
such as principal components analysis can be per-
formed prior to clustering.22,28 Standard KMC does
not handle categorical data or a mix of categorical and
continuous data although k-prototypes can.19 LCA
and HC are better able to handle categorical data or a
mixture of categorical and continuous data.20 Skewed
data can adversely affect all clustering algorithms, so
log transformation and standardization to a z-scale
are typically performed before clustering.20,37

DETERMINING THE OPTIMAL NUMBER OF CLUSTERS. An
optimal number of clusters should produce good
separation, resulting in extensive similarities within
clusters while producing clusters of an adequate size
to be clinically relevant. With HC, the number of
clusters can be easily selected post hoc by altering the
depth of the tree to select a specific number of clus-
ters. For KMC and LCA, the number of clusters is
assigned a priori, and the analysis is repeated across a
range of k clusters; model fit metrics such as the
Akaike information criterion (AIC) or Bayesian infor-
mation criterion (BIC) are used to determine the
optimal value of k.20 While a higher number of clus-
ters typically will have a lower AIC or BIC value
representing better model fit, the incremental
improvement in model fit decreases with a higher
number of clusters.20 A simple way to select the
optimal number of clusters is to plot the AIC or BIC as
a function of the number of clusters (called an “elbow
plot”), with the inflection point defining the optimal
number of clusters (Figure 2D).20 Fewer clusters are
typically preferred in the absence of a compelling
reason that a more complex model is appropriate.
Clustering algorithms may find subgroups within a
population even if no true subgroups exist, and the
identified subgroups may not be clinically meaning-
ful.19 It is important to ensure that the identified
clusters do not simply represent different levels of
the variables (ie, low, intermediate, and high values).

SELECTION OF A CLUSTERING ALGORITHM AND

DETERMINING CLUSTER VALIDITY. Understanding
the strengths and limitations of each method
(including potential sources of bias) is important
when evaluating the suitability of a method to the
clinical problem (Table 2). When all variables are nu-
merical and have a relatively parametric distribution,
KMC and its variants will often work well, and this
approach is preferred with very large data sets.19

When variables are of mixed type, categorical,
and/or have a nonparametric distribution, LCA may
be a better solution assuming the sample size is not
very large.20 An ordering points to identify the clus-
tering structure (OPTICS) algorithm can determine
which method better fits the data structure.23 For LCA
and KMC, it is difficult to visualize and communicate



TABLE 2 Strengths and Weaknesses of Common Unsupervised Clustering Methods

Technique Strengths Weaknesses

K-means � Fast and intuitive
� Widely used in clinical

research
� Scales to very large data sets

� No probability of membership
� Not well-suited to categorical or

non-normally distributed data
� Cannot handle missing data

Latent class
analysis

� Generates probabilistic esti-
mates of cluster membership

� Handles mixed data types
� Tolerates non-normal data
� Some models tolerate

missing data

� Slow
� Does not scale well to very large

data sets (more than roughly 25,000
patients)

Hierarchical
clustering

� Intuitive visualization
� Simultaneously generates

different options for number
of clusters

� Splitting decisions may be suboptimal
and nonmodel or data-driven

� Order of splitting can significantly
impact results

� Sensitive to outliers
� Does not scale well to large data sets

TABLE 3 Characteristics of the 3 Phenotypes Proposed by

Zweck et al

Characteristic Noncongested Cardiorenal Hemometabolic

Age Younger Older Intermediate

Comorbidities Few Many (DM, CKD) Few

Blood pressure Low Low Very low

Congestion None Left-sided Right-sided

Heart rate Normal Normal Elevated

Hemoglobin Normal Low Normal

WBC count Mildly elevated Mildly elevated Very elevated

Transaminases Mildly elevated Mildly elevated Very elevated

Lactate Mildly elevated Normal Very elevated

Kidney function Normal Very low Low

CKD ¼ chronic kidney disease; DM ¼ diabetes mellitus; WBC ¼ white blood cell.
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how clusters differ and how assignments to the
clusters were generated. By contrast, HC is more
transparent regarding how clusters are separated and
may be preferred when exploring the relationships
between similar individuals is the most important
goal. Correlation of the cluster assignments using
multiple clustering methods is conceptually
appealing, but without a gold standard, it is difficult
to interpret the results when the 2 methods assign
individuals to different clusters.23

PHENOTYPING IN CS POPULATIONS

INITIAL SUBPHENOTYPING ANALYSIS. Clustering
algorithms have recently been applied for sub-
phenotyping in CS populations. An analysis by Zweck
et al16 employed unsupervised clustering to identify
and characterize 3 distinct CS subphenotypes in
multiple contemporary data sets. This study exam-
ined 1,959 patients from 2 international registries: the
Cardiogenic Shock Working Group (CSWG) Registry
(including separate AMI-CS and HF-CS cohorts)14 and
the Danish Retroshock MI Registry,38 which included
patients with AMI-CS. Paralleling the approach taken
by Seymour et al23 in patients with sepsis, consensus
KMC was used to identify subgroups based on 6
admission laboratory variables (white blood cell
count, platelet count, estimated glomerular filtration
rate, alanine aminotransferase, lactate, bicarbonate).
These variables were selected based on their strong
associations with in-hospital mortality.16

The CSWG AMI-CS cohort was used as the deriva-
tion cohort, with internal validation in the CSWG
HF-CS cohort and external validation in the Danish
Retroshock MI Registry cohort. An optimal cluster
number of 3 was determined, and the clusters were
labeled as “noncongested,” “cardiorenal,” and “car-
diometabolic” subphenotypes based on their clinical
characteristics (Table 3).16 The noncongested cluster
included young patients with few comorbidities and
overall lower illness severity including fewer labora-
tory abnormalities and more favorable hemody-
namics. The cardiorenal cluster included older
patients with more comorbidities, anemia, severe
kidney dysfunction, and left-sided (pulmonary)
congestion. The hemometabolic cluster included pa-
tients with the highest illness severity including
extensive laboratory abnormalities, multiorgan
dysfunction, and poor hemodynamics with right-
sided (systemic) congestion.

In-hospital mortality varied substantially across
the 3 clusters in each cohort.16 The SCAI Shock Clas-
sification was assigned based on the maximum
number of vasoactive drugs and temporary mechan-
ical circulatory support (MCS) devices during hospi-
talization.14 The noncongested cluster had lower
shock severity, and the hemometabolic cluster had
higher shock severity. Patients in the SCAI Shock
stage C had the lowest mortality, and patients in the
SCAI Shock stage E had the highest mortality in each
subphenotype, but the 3 subphenotypes demon-
strated differences in mortality within each SCAI
Shock stage (Figure 3). Both SCAI Shock stage and
subphenotype were independently associated with
in-hospital mortality, suggesting that the sub-
phenotype is a risk modifier when added to the SCAI
Shock Classification.

An important strength of this analysis is the deri-
vation of subphenotypes in patients with AMI-CS
with validation in patients with HF-CS, suggesting
conservation across etiologies of CS. Subphenotypes
were assigned based on characteristics at the time of
admission, facilitating prospective application. The
use of commonly obtained admission laboratory
values enhances the generalizability, while the lack of
mechanistic biomarkers limits inferences regarding



FIGURE 3 In-Hospital Mortality According to the SCAI Shock Classification and CS Phenotype in the 3 Combined Cohorts From the

Analysis by Zweck et al15

Just as higher SCAI Shock stages are associated with increased mortality in each CS phenotype, the CS phenotypes are associated with

different mortality risks at each SCAI Shock stage. CS ¼ cardiogenic shock; SCAI ¼ Society for Cardiovascular Angiography and Intervention.
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the underlying pathophysiology. The maximum SCAI
Shock stage during hospitalization was determined
instead of the admission SCAI Shock stage, which
precludes us from knowing whether the sub-
phenotype determined the severity of CS or vice
versa.14 Preselection of variables based on their as-
sociation with in-hospital mortality, followed by
validation of clusters using in-hospital mortality,
does not guarantee identifying subphenotypes with
unique disease mechanisms.

SUBSEQUENT CONFIRMATORY ANALYSIS. External
validation studies are valuable to distinguish
conserved subphenotypes from idiosyncratic clus-
ters that are unique to a specific cohort. For this
reason, Jentzer et al performed simple KMC using
the same 6 admission laboratory variables to assign
1,498 Mayo Clinic cardiac intensive care unit pa-
tients with CS of diverse etiologies to 3 clusters as
defined by Zweck et al.15,16 This study population
included acute coronary syndrome (ACS) patients
forming 57% and patients with CA forming 34%;
SCAI Shock stage was assigned on admission. The
distribution of clusters was as follows: non-
congested, 40%; cardiorenal, 30%; and hemometa-
bolic, 30%. The characteristics of these groups
predominantly resembled those described by Zweck
et al.15,16 Although the cardiorenal cluster had a
lower prevalence of ACS and CA, the overall
severity of illness and shock was similar between
the noncongested and cardiorenal clusters. The
hemometabolic cluster had greater severity of CS
with the majority of SCAI Shock stage E patients
and higher illness severity including the poorest
renal function, highest transaminases, and the
worst lactic acidosis. Although left ventricular
ejection fraction was the same across clusters, other
echocardiographic findings differed between clus-
ters, suggesting that cardiac function may differ
between subphenotypes. Patients in the hemome-
tabolic cluster had the lowest systemic flow and
worst RV function, while the noncongested group
had the lowest estimated filling pressures.

A gradient of in-hospital mortality was observed
across the clusters, being highest in the hemometa-
bolic cluster and comparable in the noncongested and
cardiorenal clusters.15 After adjustment, the hemo-
metabolic cluster remained associated with higher
in-hospital mortality while the noncongested and
cardiorenal clusters did not differ. Differences in
mortality between clusters were observed up to
1 year, with hospital survivors in the noncongested
cluster having lower postdischarge mortality. The
hemometabolic cluster exhibited higher mortality
when patients were stratified by the presence of ACS
or CA, SCAI Shock stage, or illness severity, suggest-
ing that the subphenotype assignment captured
novel prognostic information. Although these
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differences were not significant, mortality varied
across the clusters according to the use of temporary
MCS, and only noncongested patients who received
an intra-aortic balloon pump appeared to have lower
mortality.

FUTURE DIRECTIONS. These studies illustrate that
separating CS patients based on 6 standard admission
laboratory variables via KMC produces 3 subgroups
with consistent characteristics across populations
that display clinically relevant differences beyond the
clustering variables.15,16 These clusters portend sub-
stantially different prognosis during and after hospi-
talization, with a higher risk observed in the severely
ill hemometabolic cluster. If equivalent clusters are
observed in other CS populations, then these clusters
likely represent true disease subphenotypes. It will be
essential to link these clusters to distinct disease
mechanisms based on novel biomarkers reflecting the
underlying physiologic processes.21 Future studies
using larger, prospective CS registries incorporating
data on treatment course should determine whether 3
is the optimal number of clusters to characterize the
CS population and whether different clustering vari-
ables would produce a more robust set of subgroups.
Repeating the clustering using serial laboratory
values from different time points during hospitaliza-
tion will clarify whether these subphenotypes evolve
or converge over time and whether these sub-
phenotypes represent distinct disease states or
merely different time points on a single disease con-
tinuum. For example, if undertreated CS with
persistent hypoperfusion can develop from another
profile into the hemometabolic subphenotype, then
early hemodynamic support might prevent this tran-
sition.39 Defining these clusters retrospectively in
RCT cohorts may shed light on treatment-
subphenotype interactions. If one or more sub-
phenotype is linked to a specific underlying disease
mechanism, then that might represent a treatable
trait, and treatments targeting that mechanism could
be explored. Identification of subphenotypes may
enhance development of selective treatment strate-
gies in clinically distinct subsets of CS and facilitate
targeted patient enrollment in RCTs.

USING SUBPHENOTYPING APPROACHES TO

PERSONALIZE CARE

HETEROGENEITY OF TREATMENT EFFECT. The
increasing recognition of heterogeneity within the CS
population is an initial step toward developing more
effective, personalized treatments for CS. Disease
heterogeneity may imply heterogeneity of treatment
effect (HTE), whereby treatments may have a
differential risk-benefit profile based on the under-
lying disease stage or subphenotype.40,41 Approaches
to RCT design that rely on staging and sub-
phenotyping may accommodate HTE, resulting in
smaller sample sizes, less exposure to risks in pa-
tients unlikely to benefit, and a higher overall likeli-
hood of identifying effective treatments.

Identifying HTE based on subphenotypes is
considered “predictive,” whereby a patient is
selected for a treatment based on a higher predicted
likelihood of response to the treatment (ie, presence
of a treatable trait). Identifying HTE based on risk is
considered “prognostic,” whereby a patient is
selected for a treatment based on their likelihood of
having the outcome modified by the treatment. Either
subphenotyping or staging can identify high-risk pa-
tients for prognostic enrichment, while sub-
phenotyping is well-suited for identifying patients
with different underlying disease mechanisms for
predictive enrichment.

PREDICTIVE ENRICHMENT IN CLINICAL TRIALS.

RCTs using predictive enrichment to selectively
enroll patients whose underlying disease mechanism
is targeted by the tested therapy are common within
the field of oncology, resulting in an individualized
medicine approach to many common tumors based
on molecular profiling. Preliminary data suggest that
it may be possible to take an equivalent approach in
critical illness syndromes, as exemplified by the
secondary analysis of the HARP-2 (Hydrox-
ymethylglutaryl-CoA Reductase Inhibition with Sim-
vastatin in Acute Lung Injury to Reduce Pulmonary
Dysfunction-2) trial in which only the hyper-
inflammatory ARDS subphenotype appeared to derive
benefits from simvastatin.33 Given that the putative
mechanism of action of simvastatin in ARDS is by
suppressing inflammation, these post hoc findings
may support a new RCT of simvastatin that would
enroll only patients with the hyperinflammatory
subphenotype (predictive enrichment).42 Insofar as
varying inflammatory subphenotypes may exist in
AMI and CS, this may present an underlying biologic
pattern to support predictive enrichment.29,43-45 If
the proposed CS subphenotypes have different
response profiles to certain interventions, they could
guide predictive enrichment in future RCTs.

PROGNOSTIC ENRICHMENT IN CLINICAL TRIALS.

Prognostic enrichment involves selectively enrolling
patients into RCTs with a higher likelihood of the
outcome being studied. Most non-ST-segment
elevation ACS RCTs are enriched with high-risk pa-
tients to increase the control group event rate and
resulting statistical power. The relative risk reduction



FIGURE 4 Theoretical RCT Results Demonstrating HTE

Each panel represents simulated data from a hypothetical RCT including low-risk, intermediate-risk, and high-risk subgroups with a different pattern of risk-benefit

interaction for the intervention. When the relative risk reduction (RRR) is stable across risk groups (top left), the absolute risk reduction (ARR) increases linearly with

baseline risk. When the RRR increases with baseline risk (top right), the ARR is magnified in the high-risk group. When the RRR decreases with baseline risk (bottom

left), the ARR decreased in the high-risk group. When the magnitude and direction of the RRR change with baseline risk (bottom right), a benefit in the high-risk group

could be masked by harm in the low-risk group. Knowing the pattern of HTE across risk categories can facilitate prognostic enrichment during RCT enrollment.

HTE ¼ heterogeneity of treatment effect; RCT ¼ randomized controlled trial.
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associated with a treatment is often assumed to be
constant across the spectrum of risk such that higher-
risk patients will necessarily have a higher absolute
risk reduction. However, the relative risk reduction
may vary according to baseline risk, reflecting an
interaction such that high-risk or low-risk patients
might have a magnified or mitigated absolute risk
reduction (Figure 4). For example, only higher-risk
non-ST-segment elevation ACS patients appeared to
benefit from early coronary angiography in the
TIMACS (Timing of Intervention in Acute Coronary
Syndromes) trial.46 In addition, in the PROWESS
(Recombinant Human Activated Protein C Worldwide
Evaluation in Severe Sepsis) trial of activated dro-
trecogin alfa (recombinant human activated protein
C) in patients with severe sepsis, a post hoc analysis
showed a beneficial treatment effect only at higher
baseline predicted mortality risk, with greater sepa-
ration between the groups as baseline predicted
mortality increased.47 However, a subsequent larger
RCT enrolling septic shock patients with high illness
severity failed to demonstrate a benefit of drotrecogin
alfa in any subgroup, underscoring the need to be
cautious when interpreting post hoc analyses
of RCTs.48

The efficacy of temporary MCS devices in patients
with CS might vary based on the severity of CS.49 If
RCTs examining temporary MCS devices enrolled
patients with average CS severity exceeding the
capability of the tested MCS device, then this might
explain why the device failed to improve survival, as
could have occurred in the IABP-SHOCK-II (Intra-
aortic Balloon Pump in Cardiogenic Shock-II)
study.49-52 In this way, the SCAI Shock Classification
could be used for prognostic enrichment in future
RCTs to identify patients with a severity of CS that
matches the hemodynamic efficacy of the tested
intervention.53 Additionally, the highest-risk CS pa-
tients often have CA, and outcomes in CA patients
may be driven by nonmodifiable brain injury more
than modifiable cardiovascular factors; inclusion of
large numbers of CA patients in RCTs may therefore
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potentially bias these studies toward the null hy-
pothesis.2,25,54 Higher-risk CS patients (especially
those with CA) may be less likely to benefit from a
hemodynamic intervention may explain the neutral
findings of the IMPRESS (IMPella versus IABP Re-
duces mortality in STEMI patients treated with pri-
mary PCI in Severe cardiogenic SHOCK) study, which
enrolled primarily CS patients with CA and demon-
strated a high rate of death due to brain injury.51 Us-
ing a combination of predictive and prognostic
enrichment could increase the likelihood of demon-
strating a favorable effect by identifying a CS popu-
lation that has a high-enough risk to benefit yet is
likely to respond to the tested intervention.

ALTERNATIVE CLINICAL TRIAL DESIGNS. Beyond
the conventional 2-arm parallel-group RCT designs,
emerging adaptive RCT approaches may offer ad-
vantages that better account for HTE.55 Adaptive
clinical trials may employ group sequential stopping
designs which allow the RCT to reach separate con-
clusions based on observed treatment effects in pre-
defined subgroups sequentially, potentially
accelerating evidence dissemination. For example, a
hypothetical single adaptive RCT could enroll pa-
tients with ST-segment elevation myocardial infarc-
tion and multivessel coronary disease with or without
CS, randomizing them to a strategy of culprit-only
revascularization or complete revascularization. This
hypothetical RCT could specify adaptive stopping
groups based on the presence or absence of CS,
allowing the RCT to prospectively test independent
conclusions in these subgroups. The recent ATTACC/
ACTIV-4a/REMAP-CAP (Antithrombotic Therapy to
Ameliorate Complications of Covid-19/A Multicenter,
Adaptive, Randomized Controlled Platform Trial of
the Safety and Efficacy of Antithrombotic Strategies
in Hospitalized Adults with COVID-19/Randomized,
Embedded, Multifactorial Adaptive Platform Trial for
Community-Acquired Pneumonia) multiplatform RCT
evaluating therapeutic heparin compared with usual
care thromboprophylaxis in hospitalized patients
with COVID-19 used an adaptive group sequential
design.56 The trial tested conclusions independently
for critically ill and noncritically ill patients, and
noncritically ill patients were stratified based on D-
dimer levels.56-59 The trial reached a futility conclu-
sion in the critically-ill patient group first.58 One
month later, a superiority conclusion in the non-
critically ill group was reached.57 This stratified
design which prospectively incorporated principles of
both clinical staging and predictive HTE enabled
precise, reliable treatment effects to be observed and
disseminated in a timely manner. If the critically ill
and noncritically ill patients had been comingled
together with a plan for post hoc subgroup analyses,
then perhaps the main study finding would have been
neutral, thus invalidating the subgroup analyses.
Such adaptive designs may be well-suited to hetero-
geneous conditions such as CS and could leverage
prospective phenotyping to test the efficacy of a
specific therapy in different subgroups.

PHENOTYPING IN CLINICAL PRACTICE AND TRIALS.

There are several potential uses of phenotyping for
the care of CS patients in clinical practice, including
prognostication, standard treatment decision-making
(including the initiation and weaning of vasoactive
drugs and temporary MCS), and the use of novel
treatments (eg, anti-inflammatory therapies in
hyperinflammatory disease phenotypes). The ulti-
mate goal of these strategies is to pivot from the
current era of empiric therapy to a precision medicine
approach guided by a deeper understanding of dis-
ease mechanisms that allow the personalization of
treatments to each individual.60 For phenotyping to
be effective in clinical practice, the requisite clus-
tering algorithms will require timely clinical access to
information, which will be initially the easiest to
apply on routinely available data. If the underlying
biomarker profiles of common disease subphenotypes
in CS patients can be identified and these sub-
phenotypes can be separated effectively based on a
limited number of biomarkers, then subphenotyping
can be implemented by measuring these biomarkers
at the bedside with point-of-care multimarker devices
such as mobile enzyme-linked immunoadsorbent as-
says.61,62 The use of a mobile enzyme-linked immu-
noadsorbent assay device which assigns the
subphenotype automatically by integrating a simpli-
fied clustering algorithm could facilitate an action-
able clinical staging and subphenotyping framework
in real time.

FUTURE RESEARCH APPLICATIONS OF PHENOTYPING.

Subphenotyping in CS is currently in its infancy, us-
ing limited a number of commonly available labora-
tory tests to identify groups without extensive
insights into the underlying disease mechanisms or
possible treatable traits.15,16 An essential next step is
the integration of a multibiomarker or the “-omics”
approach to understand the differences in the un-
derlying pathophysiology that separate these clinical
subphenotypes. Incorporation of other clinical data
including cardiac imaging (eg, electrocardiogram,
echocardiography, angiography) might aid in identi-
fying differences in underlying disease states.28 For
example, applying artificial intelligence methods to
the standard 12-lead electrocardiogram has enabled
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identification of the underlying left ventricular
dysfunction in CICU patients, with prognostic impli-
cations; incorporating this ubiquitous noninvasive
test might potentially improve phenotyping.63,64

CONCLUSIONS

With the increasing recognition that CS is a hetero-
geneous clinical syndrome, numerous techniques
have emerged to stratify patients into clinically rele-
vant subgroups based on the severity of CS, associ-
ated clinical features, and underlying subphenotypes.
The use of unsupervised ML clustering to identify
occult subphenotypes in critically ill populations has
been applied to CS, allowing recognition of preserved
subphenotypes that have prognostic implications.
Deep phenotyping to understand the underlying dis-
ease mechanisms that separate these subphenotypes
could permit translation into treatable traits to facil-
itate individualized precision medicine for patients
with CS. This is a burgeoning field offering
innumerable opportunities for future basic science,
clinical and translational research.
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