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Abstract

Progranulin (PGRN) is a multifunctional protein that is widely expressed throughout the

brain, where it has been shown to act as a critical regulator of CNS inflammation and also

functions as an autocrine neuronal growth factor, important for long-term neuronal survival.

PGRN has been shown to activate cell signaling pathways regulating excitoxicity, oxidative

stress, and synaptogenesis, as well as amyloidogenesis. Together, these critical roles in the

CNS suggest that PGRN has the potential to be an important therapeutic target for the treat-

ment of various neurodegenerative disorders, particularly Alzheimer’s disease (AD). AD is

the leading cause of dementia and is marked by the appearance of extracellular plaques

consisting of aggregates of amyloid-β (Aβ), as well as neuroinflammation, oxidative stress,

neuronal loss and synaptic atrophy. The ability of PGRN to target multiple key features of

AD pathophysiology suggests that enhancing its expression may benefit this disease. Here,

we describe the application of PGRN gene transfer using in vivo delivery of lentiviral expres-

sion vectors in a transgenic mouse model of AD. Viral vector delivery of the PGRN gene

effectively enhanced PGRN expression in the hippocampus of Tg2576 mice. This elevated

PGRN expression significantly reduced amyloid plaque burden in these mice, accompanied

by reductions in markers of inflammation and synaptic atrophy. The overexpression of

PGRN was also found to increase activity of neprilysin, a key amyloid beta degrading

enzyme. PGRN regulation of neprilysin activity could play a major role in the observed alter-

ations in plaque burden. Thus, PGRN may be an effective therapeutic target for the treat-

ment of AD.

Introduction

Progranulin (PGRN) is a 593 amino acid multifunctional secreted glycoprotein consisting of

tandem repeats of granulin, a 12-cysteine module also called epithelin domain. In the CNS,

PGRN is widely expressed and found primarily in neuronal and microglial populations [1, 2].
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While relatively little is known about its function in the CNS, PGRN is thought to play a role

in CNS inflammatory responses, consistent with its strong immunoreactivity in activated

microglia[1]. This may explain reports of upregulated expression in numerous disease states

involving microglial activation, including motor neuron disease, lysosomal storage disease,

and Alzheimer’s disease[1] [3, 4]. Indeed, in mice lacking PGRN, inflammatory responses

become dysregulated[5, 6]. It is also becoming increasingly apparent that PGRN may have

neurotrophic properties, functioning as an autocrine neuronal growth factor, important for

long-term neuronal survival [2, 7]. Indeed, the absence of PGRN has been found to render

neuronal cells vulnerable to insult, both in vitro[8] and in vivo[5, 6]. Thus, PGRN functions in

CNS diseases may be related to neuronal growth support and/or microglial immune responses

and mutations in PGRN might influence susceptibility to a wide range of neurodegenerative

diseases, including Alzehimer’s disease (AD).

An upsurge in PGRN research has occurred recently, owing to the association of PGRN
mutations with neurodegenerative disease. The first link between PGRN and neurodegenera-

tion came when PGRN mutations were first causally associated with ubiquitin-positive fronto-

temporal lobar degeneration linked to chromosome 17q21 (FTLDU-17) [1, 9]. Since then,

more than 113 PGRN mutations have been identified. Despite the association with ubiquitin

inclusions, the majority of these mutations are null mutations involving a simple loss of func-

tion rather than accumulation of mutant protein [1, 10]. Until recently, it has been primarily

FTLDU associated with PGRN mutations. However, the clinical phenotype associated with

these mutations is highly varied and includes features that resemble other neurodegenerative

diseases, including AD [11, 12]. Alterations in PGRN levels have also been associated with

Lewy body dementia[13] and AD[11, 14]. PGRN expression appears up-regulated in glial cells

of both AD patients and transgenic mouse models, in association with plaques [1, 2, 15]. Col-

lectively, recent findings suggest that PGRN may influence various aspects of AD pathology,

including Aβ accumulation, neuroinflammation, and toxicity[16–18]. Thus, efforts to enhance

PGRN expression in the CNS may have therapeutic potential for AD.

The Tg2576 mouse model of AD expresses the Swedish mutation of APP (APPK67ON,M671L)

at high levels under the control of the hamster prion protein promoter. Levels of APP in the

brains of these transgenic animals are more than 4 times higher than APP levels in control

mice and Aβ levels are 5–14 times higher than Aβ levels in control mice[19]. These mice

develop a progressive, age-related deposition in the form of amyloid plaques in the cortex and

hippocampus. A rapid increase in insoluble Aβ occurs around 6 months of age and plaques

begin to form around 8–12 months of age[20], resulting in the development of memory defi-

cits[19, 21].

The present study was designed to determine the disease-modifying effects of enhanced

PGRN expression on synaptic pathology and plaque growth in the Tg2576 mouse model of

familial Alzheimer’s disease. By transducing hippocampal neurons using the lentiviral vector,

ND-602, we show that ND-602 effectively increases PGRN expression in neurons of the hippo-

campus, reduces amyloid plaque burden, inflammation and synaptic atrophy. Alterations in

activity of the rate-limiting Aβ degrading enzyme, neprilysin, are also reported, raising a possi-

ble mechanism of action.

Methods

Animals

Female Tg2576 mice (Charles River) were housed in a specific pathogen free, temperature-

controlled environment with a 12 h light/dark cycle and 24 hour ad libitum access to standard

chow and water. Animals were group housed in standard shoebox cages, with filter top lids
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and beta chip bedding. Mouse huts were placed in each cage for enrichment. Experimental

groups were treated and assessed using a balanced design in all procedural aspects, including

animal husbandry. All animal experimentation was conducted in accordance with the NIH

and CCAC guidelines for the care and use of laboratory animals and were approved by the

Mayo Foundation Institutional Animal Care and Use Committee (IACUC) and the University

of Prince Edward Island institutional Animal Care Committee (ACC).

Lentiviral construct

Progranulin- and GFP-expressing lentiviral vectors were generated under contract with Invi-

trogen Corporation (Carlsbad, CA), as previously described[22]. Briefly, entry clones were

first generated containing the promotor of interest (CMV) and the gene of interest (mGRN).

Mouse progranulin full-length cDNA plasmid, a RIKEN clone (clone# 2900053G23) contained

the following amino acid sequence:

MWVLMSWLAFAAGLVAGTQCPDGQFCPVACCLDQGGANYSCCNP

LLDTWPRITSHHLDGSCQTHGHCPAGYSCLLTVSGTSSCCPFSKGVSCGDGYHCCPQG

FHCSADGKSCFQMSDNPLGAVQCPGSQFECPDSATCCIMVDGSWGCCPMPQASCCE

DR

VHCCPHGASCDLVHTRCVSPTGTHTLLKKFPAQKTNRAVSLPFSVVCPDAKTQCPDDS

TCCELPTGKYGCCPMPNAICCSDHLHCCPQDTVCDLIQSKCLSKNYTTDLLTKLPGYP

VKEVKCDMEVSCPEGYTCCRLNTGAWGCCPFAKAVCCEDHIHCCPAGFQCHTEKG

TCE

MGILQVPWMKKVIAPLRLPDPQILKSDTPCDDFTRCPTNNTCCKLNSGDWGCCPIPEA

VCCSDNQHCCPQGFTCLAQGYCQKGDTMVAGLEKIPARQTTPLQIGDIGCDQHTS

CPV

GQTCCPSLKGSWACCQLPHAVCCEDRQHCCPAGYTCNVKARTCEKDVDFIQPPVLLTL

GPKVGNVECGEGHFCHDNQTCCKDSAGVWACCPYLKGVCCRDGRHCCPGGFHCSA

RGT

KCLRKKIPRWDMFLRDPVPRPLL. The CMV immediate early promoter allows high-

level, constitutive expression of the gene of interest in mammalian cells. A Gateway LR Recom-

bination was then performed to simultaneously transfer the two DNA fragments into the

pLenti6/R4R2/V5-DEST vector using purified plasmid DNA from each entry clone to trans-

form E. coli cells, creating an expression clone (Fig 1). The full pLenti6/V 5-mGranulin vector

sequence can be found in the supporting file, S1 Appendix. The expression vectors were veri-

fied by transfecting the plasmid directly into a mammalian cell line, HEK 293 cells, and assay-

ing for mPGRN or GFP expression. The 293FT cell line was then used to produce lentiviral

stocks. The titer was determined to be 1X108 TU/mL, using a blasticidin resistance assay.

Lentiviral delivery

At 8 months of age, when amyloid deposits first start to appear, animals received acute intra-

hippocampal infusion of either ND-602, or a GFP-expressing control vector. Thus, animals

were anaesthetized using isoflurane (1%) and placed in a Kopf stereotaxic frame. The ND-602

was injected unilaterally the left hippocampus (A.P. -2.1, M.L. +1.50, D.V. -1.8) at a rate of

0.2 μl/minute via an infusion cannula connected by polyethylene tubing (50 PE) to a 50 μl
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Hamilton syringe driven by a Harvard pump. Following infusion, the viral vector was permit-

ted to diffuse away from the cannula for two minutes before withdrawal. The antibiotic, sterile

penicillin G Procaine (approximately 1,000 units i.m.) was administered along with the analge-

sic, Torbugesic (1 mg/kg, s.c.), for pain management. Animals were then placed on a heating

pad until waking. Animals were monitored daily for signs of dehydration, infection, or exces-

sive weight loss. However, no adverse indications were noted.

Immunohistochemistry

Mice were sacrificed at 12 months of age by transcardial perfusion of PBS, the brains removed

and post-fixed in 4% paraformaldehyde for immunohistochemical analysis. Symmetrical

30 μm-thick coronal sections were cut on a freezing microtome and stored in a Millonigs solu-

tion. Free-floating sections were pretreated with 70% formamide in Triton X-100/Tris-buff-

ered saline [TBSt] at 37˚C for 30 minutes and rinsed in TBSt. Sections were then incubated in

1% H2O2 in TBSt for 30 minutes, rinsed in TBSt, and incubated in blocking solution (5% goat

serum/100mM lysine/0.3% TBSt) for 1 hour at room temperature, followed by incubation

with the Aβ primary antibody (MM-27 33.1.1; 1:2000) overnight at room temperature. Sec-

tions were then incubated in a biotinylated secondary antibody followed by avidin-biotin-per-

oxidase complex using the Vectastain Elite kit. Sections were mounted on gelatin-coated slides

and coverslipped with Entallen. For double immunostaining, sections were processed as

described above using a secondary antibody conjugated to rhodamine. Sections were then

rinsed in 1% Thioflavine-S (Sigma) for 20 minutes followed by 70% ethanol for 5 minutes, and

several washes of distilled water. Other primary antibodies included GFP (Chemicon

AB16901, polyclonal chicken anti-GFP, 1:600), PGRN (R&D Systems AF2557, polyclonal

sheep anti-PGRN, 1:1000), synaptophysin (Abcam ab146921, polyclonal rabbit anti-synapto-

physin, 1:1200), glial fibrillary acidic protein (GFAP) (Chemicon AB1540, polyclonal rabbit

Fig 1. Lentiviral vector map. Representative map of the lentiviral contruct, ND-602. ND-602 is a viral vector

construct designed for the targeted increase of mPGRN expression in the brain.

https://doi.org/10.1371/journal.pone.0182896.g001
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anti-GFAP, 1:1000), Iba1 (Abcam ab107159, polyclonal goat anti-Iba1, 1:2000), and neprilysin

(Chemicon AB5458, polyclonal rabbit anti-neprilysin, 1:1000). For these, a heat-mediated anti-

gen retrieval step, involving incubation in 2X SSC at 65˚C for 20 minutes, was included. Sec-

tions were blocked with either goat or donkey serum (Millipore, 5%) for 1 hour prior to

overnight incubation in primary antibody at 3˚C. For fluorescent visualization, sections were

incubated with the respective fluorescent secondary antibody conjugated to either Alexa 488,

Alexa 594, or Alexa 350 (Molecular Probes, 1:500). Sections were also assayed for inflamma-

tion using fluorescein-conjugated isolectin B4 (ILB4) (Molecular Probes, 10μg/ml). Sections

were mounted on unsubbed glass slides and coverslipped in Fluoromount. Fluorescence sig-

nals were detected with a Zeiss AxioObserver Z1 Imaging microscope equipped with an apo-

tome system at excitation/emission wavelengths of 535/565 nm, 470/505 nm, and 585/615 nm.

Neprilysin activity assay

Mice were perfused transcardially with PBS, after which the brains were quickly removed and

the hippocampus and frontal cortex was dissected under a stereomicroscope. Each portion

was homogenized with a motor-driven Teflon–glass homogenizer in five volumes (w/v) of ice-

cold 10 mM Tris–HCl buffer (pH 8.0) containing 0.25 M sucrose, protease inhibitor cocktail

(Complete™, EDTA-free, Roche Diagnostics, Indianapolis, IN) and 10 μM leupeptin. The

homogenates were centrifuged at 9000×g and 4˚C for 15 min and the supernatants were fur-

ther centrifuged at 200 000×g and 4˚C for 20 min using an Optima TL ultracentrifuge and a

TLA100.4 rotor (Beckman, Palo Alto, CA). The pellets were solubilized in the Tris–HCl buffer

containing 1% Triton X-100 (v/v) for 1 h on ice. The solubilized membranes were re-centri-

fuged at 200 000×g and 4˚C for 20 min. The resultant clear supernatants were used as the

membrane fraction. The standard assay mixture consisted of a 40 μg membrane fraction,

50 μM Z-Ala–Ala–Leu–p-nitroanilide (R&D Systems) as a substrate, and 50 mM MES buffer

(pH 6.5) in a total volume of 100 μl. The reaction was initiated by addition of substrate to the

assay mixture and performed at 37˚C for 30 min. The neprilysin activity was determined by

monitoring the absorbance of the liberated p-nitroanilide at 405 nm and estimated from the

decrease in the rate of digestion caused by 10 μM thiorphan, a specific inhibitor of neprilysin.

Protein concentrations were determined using a BCA protein assay kit (Pierce).

Western blot

For PGRN protein analysis, supernatants were mixed with equal amount of in 2× sample

buffer boiled for 5 min, and resolved on a 10% SDS-PAGE gel. Proteins were transferred onto

a nitrocellulose membrane and blocked over-night with membrane blocking agent (GE

Healthcare) at 4˚C. The blots were incubated in PBST with 1:250 anti-mouse PGRN polyclonal

antibody (R&D Systems AF2557) for 1hour followed by extensive washing. After incubating

with horseradish peroxidase-conjugated anti-sheep IgG secondary antibody (R&D Systems

HAF016; 1:4,000) at room temperature for 1 hour, blots were visualized using enhanced

chemiluminescence (GE Healthcare) and a Bio-Rad ChemiDoc MP Image System (Bio-Rad

Laboratories, ON Canada). The same blot was stained with mouse monoclonal β-actin anti-

body (Sigma AC-40; 1:1000), as a control for total protein loading.

Quantitative analysis

Surveys of Aβ deposition were performed in a 100X field in six 30μm serial anterior-posterior

coronal sections, through each of three key brain regions, the frontal cortex, hippocampus,

and entorhinal cortex. For quantitative assessment, the total area occupied by anti-Aβ immu-

noreactive deposits was measured and amyloid burden calculated as the percent of area in the

PGRN gene therapy in a model of AD
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measurement field occupied by reaction product. For denstiometric analyses of progranulin

and synaptophysin immunolabeling in the hippocampus and cortex, a sampling frame of

x = 50 μm, y = 50 μm, and z = 20 μm was used to sample these regions in each of 3 coronal sec-

tions. Optical densitometry was performed using Axiovision and Zen Pro software (Carl

Zeiss). Digital images were captured on a Zeiss AxioObserver.Z1 microscope at a 20x magnifi-

cation using a Zeiss Axiocam 506 monochrome camera. For comparisons of staining intensity,

all images were collected using identical exposure settings using the same illumination inten-

sity and filters. Measured values were corrected for non-specific background staining by sub-

tracting values obtained from negative controls. Unbiased stereological measurements were

obtained using a computer-assisted image analysis system and Zeiss Axiovision 4.3 image anal-

ysis software. The investigator was blinded to treatment condition.

Statistical analysis

Data were analyzed using an analysis of variance. Where significant F-values were obtained,

planned pair-wise comparisons were made using Newman-Keuls. Differences were considered

statistically significant when p< 0.05. For ELISAs, data were analyzed using Mann-Whitney

non-parametic statistics.

Results

Intrahippocampal infusion of ND-602 increases PGRN expression in the

hippocampus

The use of ND-602 has been used previously to enhance PGRN expression in nigrostriatal

neurons in a mouse model of Parkinson’s disease [23]. In order to assess the efficacy of this

gene delivery approach for hippocampal transduction, we examined immunolabeling for the

target protein, PGRN, in the hippocampus approximately 4 months following unilateral intra-

hippocampal infusion of the lentiviral construct, ND-602. We found that in vivo gene transfer

by ND-602 resulted in detectable elevations in PGRN immunolabeling ipsilateral to the site of

ND-602 infusion, as compared to that seen following lentiviral delivery of GFP alone (Fig 2).

PGRN immunolabeling in the contralateral hippocampus was also significantly elevated,

though immunolabeling density was significantly lower than in the ipsilateral hemisphere.

Elevations in PGRN immunlabeling density were also detected in the more distal region, the

entorhinal cortex. Although PGRN levels also appeared to be elevated in the frontal cortex,

variability was high, preventing the data from achieving statistical significance. These results

indicate that ND-602 effectively transfects hippocampal cells to induce the expression of

PGRN within cells of the hippocampus. This is consistent with previous reports of the same

viral vector inducing PGRN expression within cells of the substantia nigra [23]. Double-label-

ing with the neuronal marker, NeuN, indicated effective transduction of both neuronal and

non-neuronal cells.

Intrahippocampal infusion of ND-602 reduces the appearance of amyloid

plaques in the hippocampus

By 12 months of age, substantial amyloid pathology typically develops in these mice [20]. To

assess the influence of ND-602 on the development of these plaques, immunocytochemical

analysis of burden was performed using a pan-Aβ antibody. Quantitative analysis of multiple

immunostained sections revealed the appearance of Aβ immunoreactive deposits in both the

hippocampus and frontal cortex and entorhinal cortex of these transgenic mice. In those ani-

mals having received intrahippocampal infusion of ND-602, a significant decline in amyloid

PGRN gene therapy in a model of AD
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Fig 2. PGRN immunolabeling following ND-602. (A) Representative photomicrographs depicting PGRN

immunolabeling in the dentate gyrus of the Tg2576 mouse brain following unilateral intracerebral administration of

either LV-GFP, or LV-PGRN (ND-602). (B) The hippocampal density of PGRN immunolabeling was significantly

elevated following ND-602 administration in both the ipsilateral and contralateral hemispheres. (C) PGRN protein

expression (progranulin/β-actin gray values) in the hippocampus was detected by western blot assay. (D) Rep-

resentative fluorescent photomicrographs depicting PGRN immunolabeling in the entorhinal cortex and frontal

cortex following unilateral intracerebral administration of either LV-GFP, or LV-PGRN (ND-602). (E) The density of

PGRN gene therapy in a model of AD
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burden was evident in the ipsilateral hippocampus (Fig 3). Consistent with the induction of

PGRN expression in both hemispheres, amyloid burden was also significantly reduced in the

contralateral hemisphere. In the entorhinal cortex, another region typically characterized by

amyloid pathology in both human AD and animal models, ND-602 significantly reduced amy-

loid burden in both hemispheres. In the frontal cortex, however, the appearance of amyloid

deposition was more variable. Although ND-602 did tend to reduce the appearance of amyloid

in this region, the high degree of variability limited statistical power and significance was not

achieved.

AD neuropathology has been associated primarily with plaques containing Aβ peptide that

has assembled into crossed β-fibrils [24]. In order to identify changes in this type of Aβ deposit,

we performed fluorescent double-label immunohistochemistry using an anti-Aβ antibody and

Thioflavine-S (ThioS), known to bind fibrillar Aβ. Using this approach, ThioS staining was

found throughout the hippocampus, frontal cortex and entorhinal cortex of these Tg2576

mice. In those animals having received ND-602, a significant decline in ThioS staining was evi-

dent in the both the ipsilateral and contralateral hippocampus (Fig 4). Significant reductions

in plaque burden were also evident in the entorhinal cortex, while ThioS staining in the frontal

cortex was highly variable in these mice and reductions failed to reach statistical significance.

Having both markers in the same tissue permitted direct comparisons of diffuse plaques (Aβ-

positive, ThioS-negative) and those containing fibrillar Aβ (Aβ-positive, ThioS-positive).

Immunostaining for Aβ revealed more deposits than ThioS staining and all ThioS-positive

deposits were also Aβ-positive. We found that approximately 68, 71, and 81% of Aβ-positive

deposits were also stained with ThioS in the frontal cortex, entorhinal cortex, and hippocam-

pus, respectively. The proportion of Aβ-immunostaining occupied by ThioS staining was not

altered by ND-602 treatment, suggesting plaque subtypes were not differentially regulated.

ND-602 increases neprilysin immunoreactivity and activity

Neprilysin (NEP) is the primary Aβ-degrading enzyme in the brain[25] and strategies aimed at

enhancing NEP activity may be of therapeutic advantage for AD[26, 27]. Here, we observed

changes in NEP following ND-602. The immunodensity of NEP was significantly elevated in

both hemispheres of the DG and CA1 region of the hippocampus of those animals treated

with ND-602 (Fig 5). Elevations in NEP immunolabeling were also detected in the entorhinal

cortex and frontal cortex. A NEP activity assay revealed that intrahippocampal infusion of

ND-602 triggers significant alterations in NEP specific activity in both the hippocampus and

frontal cortex (Fig 6).

ND-602 reduces inflammation

Enhanced astrocytosis and microgliosis are characteristic features of AD pathology and the

Tg2576 phenotype. Neuroinflammatory mechanisms are believed to contribute to the cascade

of events leading to neuronal degeneration in AD. This makes PGRN a particularly intriguing

therapeutic target, as PGRN is a potent regulator of inflammation, both in the periphery and

PGRN immunolabeling was significantly elevated following ND-602 administration in both hemispheres. By

contrast, elevations in the (F) frontal cortex did not reach statistical significance. (G) Representative fluorescent

photomicrograph depicting GFP (green) and NeuN (red) immunolabeling throughout the ipsilateral hippocampus

following lentiviral delivery. The image is a tiled composite of multiple images obtained at 20X magnification. A

closer view, (H) shows viral transduction of both NeuN-positive and–negative cells. Each bar represents the mean

(±S.E.M.) (n = 8–10) optical density measured across 4 coronal sections. ** sig. diff. from GFP-treated controls,

p < 0.001; * p < 0.05. ++ sig. diff. from contralateral hemisphere, p < 0.001.

https://doi.org/10.1371/journal.pone.0182896.g002

PGRN gene therapy in a model of AD

PLOS ONE | https://doi.org/10.1371/journal.pone.0182896 August 24, 2017 8 / 22

https://doi.org/10.1371/journal.pone.0182896.g002
https://doi.org/10.1371/journal.pone.0182896


the CNS. We were, therefore, interested to see whether elevating PGRN levels, via ND-602

treatment, would impact the microglial activation characteristically seen in Tg2576 mice.

Microglial activation was assessed by two microglial markers, fluorescein-conjugated isolectin

B4 (ILB4), and ionized calcium binding adaptor molecule 1 (Iba1). There was a significant

Fig 3. Beta-amyloid burden following ND-602. (A,C,E) Representative photomicrographs depicting β-

amyloid immunolabeling in the (A) hippocampus, (C) entorhinal cortex, and (E) frontal cortex of a Tg2576

mouse brain following unilateral intracerebral administration of either LV-GFP, or LV-PGRN (ND-602).

Amyloid burden was significantly reduced in the (B) dentate gyrus and (D) entorhinal cortex of those animals

receiving ND-602 administration. (F) Apparent reductions in amyloid burden observed in the frontal cortex

failed to reach statistical significance due to a high degree of variability in deposition in this region, at this time

point. Each bar represents the mean (± S.E.M.) (n = 8–10) amyloid burden (% area) measured across 4

coronal sections. ** sig. diff. from GFP-treated controls, p < 0.001; * p < 0.05 + sig. diff. from contralateral

hemisphere, p < 0.05.

https://doi.org/10.1371/journal.pone.0182896.g003
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reduction in the number of cells labeling for both ILB4 and Iba1 in the hippocampus (Fig 7).

There was, similarly, a significant reduction in the number of cells immunolabeled for the

astrocytic marker, glial fibrillary acidic protein (GFAP) in the hippocampus. Thus, ND-602

appears to reduce the elevation in microglial expression characteristic of AD pathology.

Fig 4. Plaque burden following ND-602. (A) Representative photomicrographs depicting ThioS staining in

the entorhinal cortex of a Tg2576 mouse brain following unilateral intracerebral administration of either

LV-GFP or LV-PGRN (ND-602). Inset depicts β-amyloid immunolabeling (red) and ThioS staining (green) of a

representative plaque in the hippocampal dentate gyrus of a Tg2576 mouse brain at 12 months of age. ThioS

(plaque) burden was significantly reduced in both the ipsilateral and contralateral (B) dentate gyrus and (C)

entorhinal cortex of those animals receiving ND-602 administration. Reductions in the appearance of plaques

in the (D) frontal cortex did not reach statistical significance. Each bar represents the mean (± S.E.M.)

(n = 8–10) amyloid burden (% area) measured across 4 coronal sections. ** sig. diff. from GFP-treated

controls, p < 0.001; * p < 0.05 + sig. diff. from contralateral hemisphere, p < 0.05.

https://doi.org/10.1371/journal.pone.0182896.g004
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Fig 5. Neprilysin immunolabeling following ND-602. (A) Representative fluorescent photomicrographs

depicting neprilysin (NEP) immunolabeling in the ipsilateral CA1, dentate gyrus, frontal cortex, and entorhinal

cortex of a Tg2576 mouse brain following unilateral intracerebral administration of LV-GFP, or LV-PGRN (ND-

602). The density of NEP immunolabeling was significantly elevated following ND-602 administration in the

(B) CA1, (C) dentate gyrus, (D) frontal cortex, and (E) entorhinal cortex, both the ipsilateral and contralateral

hemispheres. Each bar represents the mean (± S.E.M.) (n = 8–10) optical density measured across 4 coronal

sections. ** sig. diff. from GFP-treated controls, p < 0.001; * p < 0.05.

https://doi.org/10.1371/journal.pone.0182896.g005
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ND-602 increases synaptic density in the hippocampus

Synaptophysin is a synaptic molecule present in presynaptic terminals and a robust marker for

functional neurons. It has previously been found that synapse density is decreased in the

molecular layer of the dentate gyrus in Tg2576 mice at 6–9 months of age [28]. In order to

assess the effect of ND-602 on the degenerative synaptic pathology characteristic of these mice,

we examined immunolabeling of the synaptic protein, synaptophysin. In dentate gyrus and

CA1 region of the hippocampus, transgenic animals were found to have a significant reduction

in synaptophysin immunolabeling, as compared to age-matched C57BL6 wild-type controls

(Fig 8). This synaptic atrophy was most apparent in the molecular layer of the dentate gyrus.

However, treatment with ND-602 significantly elevated synaptophysin density in both the

dentate gyrus and CA1 region. Thus, ND-602 appears to prevent the loss of synaptic density

that typically occurs in Tg2576 mice.

Discussion

Progranulin is a secreted cysteine-rich protein with a molecular weight of 90 KDa in its glyco-

sylated form. Biological activity has been ascribed to both the intact progranulin protein and

the 6-KDa peptides (granulin domains) that result from post translational processing of the

intact protein. Progranulin is expressed by several cell types and it has modulatory roles in nor-

mal and pathophysiological processes such as blastocyst formation, wound healing, inflamma-

tion and tumorigenesis[29]. PGRN is widely distributed throughout the CNS where it is found

primarily in neurons and microglia but has also been detected, at much lower levels, in astro-

cytes and oligodendrocytes [10, 30]. Its functions in the adult CNS have only recently been

investigated and a receptor has not yet been described. However, progranulin is known to

stimulate survival signaling pathways, including both the mitogen activated protein kinase

(MAPK) pathway and the phosphatidyl inositol-3 kinase kinase (PI-3K) pathway in cell lines

of extraneural origin[31, 32]. These effects are independent of the presence of the insulin-like

growth factor I receptor, which differentiates progranulin from conventional growth factors

[31]. Recent work has demonstrated an endocytic pathway targeting extracellular progranulin

to lysosomal localization mediated through the single-pass transmembrane protein, sortilin

[33]. Other progranulin-triggered events, such as neuronal outgrowth, appear to be indepen-

dent of sortilin[34]

Fig 6. Neprilysin activity following ND-602. The neprilysin-dependent neutral endopeptidase activity was

elevated in the (A) hippocampus and (B) frontal cortex following LV-PGRN (ND-602) administration. Each bar

represents the mean (± S.E.M.) (n = 6) specific neprilysin activity, expressed as nmols/min/mg protein. ** sig.

diff. from GFP-treated controls, p < 0.001

https://doi.org/10.1371/journal.pone.0182896.g006
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Progranulin truly is a multi-function protein, being implicated in embryogenesis, wound

repair, inflammation, and cell growth and survival. In mice, loss of PGRN exaggerates indices

of an ageing brain, dysregulates inflammatory responses, increases susceptibility to cytotoxic

Fig 7. Microglial cell counts in the hippocampus following ND-602. (A) Representative fluorescent photomicrographs

depicting ILB4, Iba1, and GFAP staining in the hippocampusfollowing lentiviral delivery of LV-GFP or LV-PGRN (ND-602). ILB4

staining surrounding a hippocampal plaque is also depicted in the lower panels. Insets depict magnified view of an individual

microglial cell. Neuroinflammation, as evidenced by (B) ILB4 staining and (C) Iba1 immunolabeling of microglial cells, was

significantly reduced in those animals who received unilateral intracerebral administration of ND-602. (D) Similar reductions in the

astrocytic marker, GFAP, were also observed following treatment with ND-602. Each bar represents the mean (± S.E.M.)

(n = 8–10) density (#/mm2) of ILB4+, Iba1+, or GFAP+cells counted throughout the dorsal hippocampus across 4 coronal sections.

** sig. diff. from GFP-treated controls, p < 0.001; * p < 0.05.

https://doi.org/10.1371/journal.pone.0182896.g007

PGRN gene therapy in a model of AD

PLOS ONE | https://doi.org/10.1371/journal.pone.0182896 August 24, 2017 13 / 22

https://doi.org/10.1371/journal.pone.0182896.g007
https://doi.org/10.1371/journal.pone.0182896


PGRN gene therapy in a model of AD

PLOS ONE | https://doi.org/10.1371/journal.pone.0182896 August 24, 2017 14 / 22

https://doi.org/10.1371/journal.pone.0182896


stresses, reduces synaptic connectivity and impairs plasticity [6, 35, 36]. Consistent with its

strong immunoreactivity in activated microglia[1], PGRN is known to be a critical regulator of

CNS inflammation[2, 6, 17]. This may explain reports of upregulated expression in numerous

disease states involving microglial activation, including motor neuron disease, lysosomal stor-

age disease, and Alzheimer’s disease [1, 3, 4, 37]. It is now understood that PGRN functions as

an autocrine neuronal growth factor, important for long-term neuronal survival [2, 38], which

suggests that PGRN has the potential to influence susceptibility to a wide range of neurodegen-

erative diseases, including AD.

Here, we have demonstrated that injection of lentiviral vectors expressing mouse PGRN

effectively elevates PGRN expression in the hippocampus, resulting in a significant reduction

in amyloid plaque burden in the Tg2576 mouse model of AD. This is consistent with previ-

ously reported findings of a negative correlation between hippocampal PGRN levels and pla-

que load in 5xFAD mice following lentiviral PGRN overexpression, along with reduced

hippocampal neuron loss [16]. Although Tg2576 mice do not display hippocampal neuron

loss, they do exhibit synaptic atrophy, which we found to be significantly attenuated following

PGRN overexpression. Unique to this study, is the discovery of elevated neprilysin activity fol-

lowing lentiviral PGRN delivery, a possible mechanism of action for the observed reductions

in plaque burden.

Impaired clearance of Aβ contributes significantly to the abnormal accumulation and

aggregation of Aβ that characterizes AD pathology[39]. Neprilysin, is an Aβ-degrading metal-

loendopeptidase, shown to efficiently degrade Aβ[40], both monomeric and oligomeric forms,

and has been identified as a potential therapeutic target for the treatment of AD. Indeed, NEP

expression has been inversely associated with vulnerability to amyloid deposition in AD

patients[41], with regions of lower expression displaying greater levels of amyloid pathology.

Expression levels of NEP has been shown to decline with age, in association with a decline in

Aβ clearance[42] In mice, NEP deficiency results in a gene dose-dependent increase in levels

of Aβ40 and Aβ42 in the brain[42] while the induction of NEP expression by viral vector trans-

fer in APP transgenic mice [43], or convection enhanced delivery in aged rats [44] has been

shown to result in a reduction of Aβ accumulation and behavioral deficits. The level of NEP is

reduced in AD patients[45] and aging transgenic AD mice[46]. Elevating NEP expression

reduces neurodegenerative pathology and improves cognitive performance in AD mice.[43]

Here, we have demonstrated that enhancing PGRN expression, through viral vector delivery,

results in an increase in NEP expression and activity. This change in NEP may be a key factor

in the reduction in amyloid plaque burden observed in these animals following ND-602.

Neuroinflammation is another key feature of AD pathology[47, 48], one that is replicated

in transgenic mouse models, including Tg2576 mice[49–51]. Consistent with its robust expres-

sion in microglia, PGRN serves as a regulator of neuroinflammation [30, 36] through both

anti-inflammatory and pro-inflammatory processes. Macrophages deficient in PGRN show

decreased secretion of the anti-inflammatory cytokine interleukin-10, with a concomitant

increase in the secretion of inflammatory cytokines such as interleukin-6 and TNF-α [6].

PGRN directly binds to TNFR and blocks the binding of TNF-α to its receptors, providing one

Fig 8. Synaptic density following ND-602. (A) Representative fluorescent photomicrographs depicting

immunolabeling for the synaptic protein, synaptophysin, in the dentate gyrus and CA1 region of the hippocampus,

following lentiviral delivery of LV-GFP or LV-PGRN (ND-602). Immunolabeling of synaptophysin was significantly

reduced in the (B) dentate gyrus and (C) CA1 region of the hippocampus of Tg2576 mice, as compared to wild-

type controls. Density of synaptophysin labeling was significantly increased in both regions following administration

of ND-602. Each bar represents the mean (±S.E.M., n = 5–10) optical density measured. ** sig. diff. from GFP-

treated controls, p < 0.001; * p < 0.05. + sig. diff. from wild-type controls, p < 0.05.

https://doi.org/10.1371/journal.pone.0182896.g008
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potential molecular mechanism underlying PGRN-mediated anti-inflammation[52]. PGRN

deficient mice display a dysregulated immune response in the brain, with a more pronounced

age-dependent increase in glial activation [5, 6] and highly exaggerated inflammatory

responses to various triggers, including LPS and bacterial infection [6]. Furthermore, micro-

glia cultured from these mice were found to have toxic effects on co-cultured neurons [6].

Conversely, mice overexpressing PGRN display reduced pro-inflammatory cytokine release

and elevated anti-inflammatory cytokine release in response to LPS [53]. Here, we describe

hippocampal microgliosis observed in Tg2576 mice, which was significantly blunted by ND-

602-induced elevations in PGRN. With inflammation playing such a significant role in the

development of Aβ pathology and subsequent toxicity[54, 55], the neuroprotective actions of

ND-602, reported here, could result, at least in part, from regulation of inflammatory processes

by PGRN.

While the deposition of amyloid is a key feature of AD pathology, it is synaptic atrophy that

is most likely responsible for the ensuing cognitive deficits. Indeed, cognitive dysfunction

develops prior to the appearance of plaques, with a rather poor correlation between amyloid

burden and cognitive function. Synapse loss is an early event in the disease process and serves

as a structural correlate involved in cognitive decline [56, 57]. While Tg2576 mice do not

exhibit global neuronal cell loss [28, 58], a decline in synapse density is a characteristic feature

of this model [28, 59]. PGRN is known to function as an autocrine neurotrophic factor,

secreted from neurons in an activity-dependent manner, to promote neuronal survival and

synapse formation[7, 60, 61]. While PGRN deficiency leads to a reduction in synaptic density

and function [60, 61], the enhancement of PGRN expression, as described here, results in an

increase in hippocampal synaptic density.

The multi-functional nature of PGRN makes it difficult to zero in on the precise mecha-

nism of action at play here. Certainly, a reduction in amyloid burden by PGRN could explain

the preservation of hippocampal synaptic density through a reduction in synaptoxicity caused

by Aβ. However, PGRN could also play a more direct role as a neurotrophic factor, promoting

neuroplasticity and neuroprotection. PGRN has been shown to regulate neuronal outgrowth

and branching [34, 62], through phosphorylation of glycogen synthase kinase 3β (GSK-3β), a

well-known substrate of the serine/ threonine kinase AKT1/PKBa. Phosphorylation of GSK3β
at the S9 residue is critical for its inactivation[63] and such regulation of the Akt/GSK-3β sig-

naling pathway promotes synaptogenesis and axon growth [64–66]. PGRN may also be

actively protecting against synaptic atrophy through prevention of excitotoxicity, a key event

in AD pathogenesis [67]. In cultures of cortical neurons, PGRN has been shown to protect

against glutamate toxicity [53, 68] and mice overexpressing PGRN show reduced infarct size

and functional deficits in an ischemic model [53]. In light of its role in AD pathogenesis, mod-

ulation of excitotoxicity may be one means by which ND-602 protects against neuronal atro-

phy. Another hallmark feature of AD pathogenesis is oxidative stress [69]. Activation of the

PI3K/AKT signaling pathway is also involved in the regulation of cellular apoptosis under oxi-

dative stress [70–73], making this pathway a good therapeutic target for oxidative stress-related

neurodegenerative disease, such as AD. PGRN has been demonstrated to activate the PI3K/

AKT pathway in primary neuronal cultures, resulting in protection against oxidative stresses

triggered by H2O2 [68]. Conversely, depletion of PGRN renders primary neurons more vul-

nerable to both oxidative stress and excitotoxicity [74].

Synaptic density can also be influenced by Wnt signaling. Wnt proteins are evolutionarily

conserved secreted glycolipoproteins that play an important role in mediating cell prolifera-

tion, differentiation, cell fate determination during embryonic development and tissue homeo-

stasis in the central nervous system in adult [75–78]. Wnt signaling pathways may play a

critical role in determining the balance between neuronal survival and death in degenerative
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disease [38, 79]. Wnt signaling also regulates the expression of other growth factors, such as

BDNF[80], whose expression is reduced by Aβ [81, 82]. BDNF can increase synaptic plasticity

and neurogenesis and promotes neural functional recovery and synaptophysin expression

[83]. Blocking Wnt signaling triggers synaptic degeneration, while activation of this pathway

restores functional circuits in the adult hippocampus[84]. Mice deficient in PGRN show

altered Wnt signaling, suggesting a role for PGRN in regulating this signaling pathway [85].

As mentioned, PGRN regulates GSK3β [86, 87], which is highly expressed in the brain and

has been identified as the principal kinase responsible for the hyperphosphorylation of tau in

AD [41] [42] and modulates the generation of Aβ[88], playing an important role in the patho-

genesis of AD. Several findings have suggested that GSK3 activity might be increased in AD

[89] and inhibitors of GSK3β reduce amyloid deposition and improve cognitive function in

models of AD [90–92]. The increase in PGRN expression induced by ND-602 in this study

could have reduced amyloid plaque burden through phosphorylation of GSK3β, thereby

reducing its activity.

In summary, ND-602, a lentiviral construct for the targeted expression of PGRN, effectively

reduced amyloid plaque burden in the Tg2576 mouse model of AD. This was accompanied by

a reduction in inflammation and attenuation of the deficits in synaptic density observed in this

model. As a widely expressed multifunctional protein, PGRN regulates a diverse series of cellu-

lar processes involved in Alzheimer’s disease (AD) pathology, making it a good therapeutic

target.
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92. Serenó L, Coma M, Rodrı́guez M, Sánchez-Ferrer P, Sánchez MB, Gich I, et al. A novel GSK-3beta

inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009; 35

(3):359–67. https://doi.org/10.1016/j.nbd.2009.05.025 PMID: 19523516

PGRN gene therapy in a model of AD

PLOS ONE | https://doi.org/10.1371/journal.pone.0182896 August 24, 2017 22 / 22

https://doi.org/10.1007/s12035-014-8981-5
https://doi.org/10.1016/j.cub.2016.07.024
https://doi.org/10.1016/j.cub.2016.07.024
http://www.ncbi.nlm.nih.gov/pubmed/27593374
https://doi.org/10.1016/j.neuron.2011.07.021
http://www.ncbi.nlm.nih.gov/pubmed/21943601
https://doi.org/10.1016/j.neuroscience.2011.04.037
http://www.ncbi.nlm.nih.gov/pubmed/21540081
https://doi.org/10.1038/nature01640
http://www.ncbi.nlm.nih.gov/pubmed/12761548
https://doi.org/10.1016/j.ejmech.2015.10.018
https://doi.org/10.1016/j.ejmech.2015.10.018
http://www.ncbi.nlm.nih.gov/pubmed/26562543
https://doi.org/10.1074/jbc.M112.409250
http://www.ncbi.nlm.nih.gov/pubmed/23155049
https://doi.org/10.1128/MCB.00930-12
http://www.ncbi.nlm.nih.gov/pubmed/22927642
https://doi.org/10.1016/j.nbd.2009.05.025
http://www.ncbi.nlm.nih.gov/pubmed/19523516
https://doi.org/10.1371/journal.pone.0182896

