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A B S T R A C T

Introduction: Surgical approaches for tissue diagnosis of pineal tumors have been associated with morbidity and
mortality. The classification of images by machine learning (ML) may assist physicians in determining the extent
of resection and treatment plans for a specific patient. Therefore, the present study aimed to evaluate the diag-
nostic performances of the ML-based models for distinguishing between pure and non-germinoma of the pineal
area. In addition, the secondary objective was to compare diagnostic performances among feature extraction
methods.
Methods: This is a retrospective cohort study of patients diagnosed with pineal tumors. We used the RGB feature
extraction, histogram of oriented gradients (HOG), and local binary pattern methods from magnetic resonance
imaging (MRI) scans; therefore, we trained an ML model from various algorithms to classify pineal germinoma.
Diagnostic performances were calculated from a test dataset with several diagnostic indices.
Results: MRI scans from 38 patients with pineal tumors were collected and extracted features. As a result, the k-
nearest neighbors (KNN) algorithm with HOG had the highest sensitivity of 0.81 (95% CI 0.78–0.84), while the
random forest (RF) algorithm with HOG had the highest sensitivity of 0.82 (95% CI 0.79–0.85). Moreover, the
KNN model with HOG had the highest AUC, at 0.845. Additionally, the AUCs of the artificial neural network and
RF algorithms with HOG were 0.770 and 0.713, respectively.
Conclusions: The classification of images using ML is a viable way for developing a diagnostic tool to differentiate
between germinoma and non-germinoma that will aid neurosurgeons in treatment planning in the future.
1. Introduction

Brain tumors in the pineal region are infrequent, making up around
0.4% to 1% of all intracranial malignancies. Pineal tumors are also found
in 10% of pediatric patients, but only 1%–4% of adult patients.1,2 Various
types of tumors, including such as germ cell tumors, pineal parenchymal
tumors, gliomas, other tumors, and intracranial cysts, can occur in this
region due to its diverse histological characteristics.3 Therefore, tissue
samples are required by surgical management for histological diagnosis.4

Nonetheless, the surgical technique in the pineal area is still challenging,
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Fig. 1. Study flow of image classification for pineal tumors.
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bleeding ranging from 4.4% to 19%, and perioperative death of 0%–

1.9%.8–11

Because germinoma is a radiosensitive tumor; therefore, previous
studies performed advanced imaging techniques to distinguish germi-
noma from other malignancies, such as advanced magnetic resonance
imaging (MRI) scans or texture analysis, and machine learning (ML).
While Ye et al extracted radiomics features with ML model training from
2

MRI and reported that the highest area under the receiver operating
characteristic curve (AUC) of the radiomics-only model was 0.80 (con-
fidence interval (CI) 95%: 0.74–0.86),12, Chen et al used texture analysis
from MRI scans with ML algorithm for distinguish between germinoma
and craniopharyngioma in the suprasellar region and the AUC was
0.91.13

The image classification by artificial intelligence (AI) may influence



Table 1
Clinical characteristics of patients with pineal tumors.

Factor Germinoma (n
¼ 22)

Non-germinoma
(n ¼ 16)

Gender
Male 21 (95.5) 15 (93.8)
Female 1 (4.5) 1 (6.3)

Mean age-year (SD) 17.76 (6.60) 11.43 (7.22)
Age group-year
�18 14 (63.6) 14 (87.5)
>18 8 (36.4) 2 (12.5)

Number of tumor
Single 16 (72.7) 15 (93.8)
Multiple 6 (27.3) 1 (6.3)

Suprasellar/pineal bifocal tumor 4 (18.2) 1 (6.3)
Mean size of tumor-cm (SD) 3.44 (1.43) 3.47 (1.55)
Preoperative leptomeningeal
dissemination

4 (18.2) 3 (18.8)

Preoperative hydrocephalus 13 (59.1) 11 (68.8)
Mean biomarker level
Serum alpha fetoprotein-ng/ml 1.88 (0.90) 234.17 (383.92)
CSF alpha fetoprotein-ng/ml 2.26 (1.33) 41.98 (70.07)
Serum beta HCG-mIU/ml 3.24 (3.12) 627.23 (222.91)
CSF beta HCG-mIU/ml 11.64 (19.77) 846.51

(2120.69)
Surgical approach
Endoscopic approach 8 (36.4) 2 (12.5)
Microscopic approach 14 (63.6) 14 (87.5)

Extent of resection
Biopsy 13 (59.1) 5 (31.3)
Tumor resection 9 (40.9) 11 (68.8)

Histological diagnosis
Pure germinoma 22 (46.8) –

Mature teratoma – 4 (25.0)
Yolk sac tumor – 3 (18.8)
Immature teratoma – 2 (12.5)
Mixed germinoma with mature teratoma – 2 (12.5)
Mixed germinoma with immature
teratoma, choriocarcinoma, and
embryonal carcinoma

– 1 (6.3)

Mixed germinoma with choriocarcinoma – 1 (6.3)
Mixed germinoma with yolk sac tumor – 1 (6.3)
Mixed mature teratoma with embryonal
carcinoma

– 1 (6.3)

Mixed mature teratoma with
choriocarcinoma

– 1 (6.3)

Abbreviation: CSF; cerebrospinal fluid, mIU/ml: milli-international units per
milliliter, ng/ml: Nanograms per milliliter, SD; Standard deviation.
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neurosurgeons' and clinicians' decisions regarding the extent of resection
and treatment options due to complications arising from getting tissue
samples from the pineal area following surgery. Furthermore, there is a
lack of evidence of the ML-based diagnostic performance from a review
of the literature. Therefore, the present study aimed to evaluate the
diagnostic performances of the ML-based models for distinguishing be-
tween pure and non-germinoma of the pineal area. In addition, the sec-
ondary objective was to compare diagnostic performances among feature
extraction methods.

2. Methods

2.1. Study design and study population

This is a retrospective cohort study of patients diagnosed with pineal
tumors between January 2014 and December 2021. Following patients
were excluded: Patients with unavailable T1-weighted (T1), T1-weighted
gadolinium-enhanced (T1-Gd), T2-weighted (T2), and Fluid-attenuated
inversion recovery (FLAIR) MRI images and those without an official
histological diagnosis from a pathologist. In the present study, tumors
were classified into two classes: germinoma and non-germinoma. In
detail, non-germinoma included non-germinomatous germ-cell tumors
and mixed germ-cell tumors which is a combination of germinoma with
other malignancies. Furthermore, glioma, meningioma, and pineal cell
tumors were excluded.

Demographic features and imaging characteristics were demon-
strated by descriptive statistics. For continuous variables, mean and
standard deviation (SD) were utilized, whereas percentages were used to
characterize categorical data. The R version 4.4.0 program (R Founda-
tion, Vienna, Austria) was utilized for statistical analysis.

The present study's workflow is demonstrated in Fig. 1. T1, T1-Gd, T2,
and FLAIR MRI scans of pineal tumors were initially collected in the
axial, coronal, and sagittal planes. As a result, the total number of images
was randomly divided 80:20 for the ML model training and test diag-
nostic performance processes.

2.2. Feature extraction from MRI scans

Various methods of feature extraction were performed in the present
study in the preprocessing stage, as follows: RGB feature extraction,
Histogram of Oriented Gradients (HOG), and local binary pattern (LBP).

In the RGB feature extraction, the grayscale MRI images were resized
to 128 � 128 pixels and converted into RGB-colored images. Therefore,
feature arrays of the three channels were converted to the 1-dimensional
data frame. In feature engineering for images, HOG has been employed as
a feature descriptor.14 HOG descriptors were used for feature extraction
after resizing images to 128� 128 pixels. Each HOG grid was 8� 8 pixels
in size and put into a 9-bin histogram. After HOG feature creation, feature
arrays were converted to data frames before ML model training.
Furthermore, LBP is a well-known and commonly utilized feature for
classification issues,14, and it was used as a feature descriptor in this
research. A histogram was used to summarize the probability of texture
pattern, and LBP values were converted to data frames before ML model
development.

2.3. Machine learning model development

In the training processes, the data frames of extracted features from
three feature extraction methods were used for training the model by
various supervised algorithms. The supervised ML algorithms were per-
formed for training the model with ten-fold cross-validation as follows:
3

support vector machine (SVM), logistic regression (LR), naive Bayes
(NB), k-nearest neighbors (KNN) with k ¼ 3, decision tree (DT), random
forest (RF) and artificial neural network (ANN). The ML was performed
using Python version 3.8.7 (Python Software Foundation) with the
“scikit-learn” package (scikit-learn developers). Therefore, the ML
models were tested by unseen MRI scans from the test dataset and
diagnostic performances were estimated as follows: sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value (NPV),
accuracy, F1 score, and AUC.

Moreover, the ROC curves among various ML algorithms were
compared in a single plot and the model's discrimination was evaluated
by the AUC. Acceptable discrimination would correspond to an AUC of
0.7, whereas high and outstanding discrimination would correspond to
an AUC of 0.8 and 0.9, respectively.15,16

According to the international Delphi agreement on the management
of intracranial germ-cell tumors, both α-fetoprotein (AFP) and human
chorionic gonadotropin (HCG) from serum and cerebrospinal fluid are
parameters associated with surgical decision-making. Patients with high
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levels of biomarkers are thought to be malignant non-germinomatous
components of tumors.17 Non-germinomatous germ-cell tumors are the
most likely diagnosis in these patients. Therefore, we combined the ML
technique with biomarkers to improve predictive performance. The ML
algorithms with the greatest AUC were chosen to evaluate the added
value of predicting performance when combined with biomarker pro-
files. In detail, the ML-model prediction would be modified to
non-germinomatous germ-cell tumors when -fetoprotein or HCG levels
exceeded normal ranges. The normal value of AFP at our institutes was
less than 7 ng per milliliter (ng/ml), and the normal value of HCG was
less than 10 milli-international units per milliliter (mIU/ml).
2.4. Ethical considerations

The study was approved by a human research ethics committee
(REC.65-431-10-1). The present study did not require patients' informed
consent because it was a retrospective analysis. However, the patient
identification numbers were encoded before the feature extraction
processes.

3. Results

3.1. Baseline characteristics of pineal patients

As shown in Table 1, thirty-eight patients in the present study had
pineal tumors, 22 of them had germinoma and 16 of them had non-
germinoma. The average ages of germinoma and non-germinoma were
17.76 (standard deviation (SD) 6.60) and 11.43 years (SD 7.22),
respectively. In both groups, there were more men than women. The
Table 2
Diagnostic performances for pure germinoma among models.

Model Sensitivity (95%CI) Specificity (95%CI) PPV (95%

RGB
LR 0.59 (0.55–0.62) 0.63 (0.59–0.67) 0.63 (0.5
SVM 0.81 (0.78–0.84) 0.69 (0.65–0.72) 0.73 (0.7
RF 0.75 (0.72–0.79) 0.82 (0.79–0.85) 0.82 (0.7
NB 0.50 (0.46–0.53) 0.66 (0.62–0.70) 0.61 (0.5
KNN 0.81 (0.78–0.84) 0.66 (0.62–0.70) 0.71 (0.6
ANN 0.63 (0.60–0.67) 0.75 (0.71–0.78) 0.73 (0.6
DT 0.61 (0.57–0.65) 0.65 (0.62–0.69) 0.65 (0.6

HOG

LR 0.72 (0.69–0.76) 0.77 (0.74–0.80) 0.77 (0.7
SVM 0.76 (0.72–0.79) 0.87 (0.84–0.90) 0.85 (0.8
RF 0.82 (0.79–0.85) 0.69 (0.65–0.73) 0.74 (0.7
NB 0.58 (0.54–0.62) 0.68 (0.64–0.71) 0.66 (0.6
KNN 0.61 (0.57–0.65) 0.88 (0.86–0.91) 0.85 (0.8
ANN 0.63 (0.59–0.67) 0.86 (0.84–0.89) 0.81 (0.7
DT 0.64 (0.60–0.68) 0.62 (0.59–0.66) 0.62 (0.5

LBP

LR 0.52 (0.48–0.56) 0.70 (0.67–0.74) 0.65 (0.6
SVM 0.52 (0.48–0.56) 0.74 (0.68–0.76) 0.66 (0.6
RF 0.66 (0.62–0.70) 0.73 (0.69–0.76) 0.72 (0.6
NB 0.50 (0.46–0.54) 0.72 (0.69–0.76) 0.66 (0.6
KNN 0.68 (0.64–0.72) 0.68 (0.64–0.72) 0.69 (0.6
ANN 0.64 (0.61–0.68) 0.60 (0.50–0.64) 0.63 (0.5
DT 0.60 (0.56–0.64) 0.67 (0.63–0.70) 0.66 (0.6

Combination of biomarkers and ML-based prediction for non-germinomatous germ-cel

KNN with HOG 0.87 (0.84–0.89)ik�ık 0.89 (0.86–0.91) 0.89 (0.8

Abbreviation: ANN ¼ artificial neural network, CI ¼ confidence interval, DT ¼ Decisio
¼ local binary pattern, LR ¼ logistic regression, NB ¼ naïve Bayes, NPV ¼ negative pr
image processing, SVM ¼ support vector machines.
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germinoma group had an average tumor size of 3.44 cm (SD 1.43), while
the non-germinoma group had a mean maximum tumor diameter of 3.47
cm (SD 1.55).

Bifocal lesions at suprasellar and pineal regions in germinoma were
observed in 18.2%, with preoperative leptomeningeal dissemination in
18.2% of germinoma cases. Preoperative hydrocephalus was found in
63.2% of those patients in the present study. In germinoma, the micro-
scopic operation was performed in 63.6%, while 87.5% of the non-
germinoma group underwent surgery by microscopic surgery. Addi-
tionally, there were three patients with non-pure germinoma who had
exceptionally high levels of AFP and HCG. In detail, a case of mixed
mature teratoma with choriocarcinoma had serum HCG 8046.0 mIU/ml
and CSF HCG 6247.0 mIU/ml, while mixed germinoma with choriocar-
cinoma and mixed germinoma with yolk sac tumor cases had CSF HCG
5428.00 mIU/ml and had serum AFP 918.5 ng/ml, respectively.
3.2. ML model development and validation

As a result, the total images comprised 6056 images, of which 3073
MRI scans were germinoma and 2983 were non-germinoma. Following
feature extraction among various methods, the data frames were
randomly split for the train-test ML model processes.

Diagnostic performances of ML algorithms are demonstrated ac-
cording to the feature extraction methods of images in Table 2. In the
RGB feature extraction, KNN algorithms had the highest sensitivity with
0.81 (95% CI 0.78–0.84), while RF algorithms had the highest sensitivity
with 0.82 (95% CI 0.79–0.85) in HOG methods. As demonstrated in
Figs. 2 and 3, the KNN model of the HOG feature extraction received the
greatest AUC at 0.845, with ANN algorithms having the highest AUC at
CI) NPV (95%CI) Accuracy (95%CI) F1 (95%CI)

9–0.67) 0.59 (0.55–0.63) 0.61 (0.58–0.64) 0.61 (0.56–0.65)
0–0.77) 0.78 (0.74–0.81) 0.75 (0.73–0.78) 0.77 (0.75–0.80)
9–0.85) 0.76 (0.72–0.79) 0.79 (0.76–0.81) 0.78 (0.74–0.82)
7–0.65) 0.55 (0.51–0.59) 0.58 (0.55–0.60) 0.55 (0.49–0.59)
8–0.75) 0.76 (0.73–0.80) 0.73 (0.71–0.76) 0.76 (0.74–0.79)
9–0.76) 0.66 (0.62–0.69) 0.69 (0.66–0.71) 0.68 (0.62–0.72)
1–0.69) 0.61 (0.57–0.65) 0.63 (0.60–0.66) 0.63 (0.58–0.67)

4–0.80) 0.72 (0.69–0.76) 0.75 (0.72–0.77) 0.75 (0.70–0.78)
2–0.88) 0.79 (0.76–0.82) 0.81 (0.79–0.84) 0.80 (0.75–0.83)
1–0.77) 0.79 (0.75–0.82) 0.76 (0.74–0.78) 0.78 (0.76–0.81)
2–0.69) 0.60 (0.56–0.64) 0.63 (0.60–0.65) 0.61 (0.56–0.65)
2–0.88) 0.68 (0.65–0.71) 0.74 (0.72–0.77) 0.71 (0.64–0.75)
8–0.85) 0.71 (0.68–0.74) 0.75 (0.72–0.77) 0.71 (0.64–0.75)
8–0.65) 0.65 (0.61–0.69) 0.63 (0.61–0.66) 0.63 (0.60–0.67)

1–0.69) 0.58 (0.54–0.61) 0.61 (0.58–0.63) 0.58 (0.52–062)
2–0.70) 0.58 (0.55–0.62) 0.61 (0.59–0.64) 0.58 (0.52–0.62)
8–0.76) 0.67 (0.63–0.70) 0.69 (0.67–0.72) 0.69 (0.64–0.72)
1–0.70) 0.58 (0.54–0.61) 0.61 (0.58–0.63) 0.57 (0.51–0.61)
6–0.73) 0.67 (0.63–0.70) 0.68 (0.65–0.71) 0.69 (0.64–0.72)
9–0.67) 0.61 (0.57–0.65) 0.62 (0.60–0.65) 0.64 (0.60–0.67)
2–0.69) 0.61 (0.57–0.65) 0.63 (0.60–0.66) 0.63 (0.58–0.66)

l tumors

7–0.91) 0.86 (0.84–0.89) 0.88 (0.86–0.89) 0.88 (0.85–0.90)

n tree, HOG¼ Histogram of oriented gradients, KNN ¼ k-Nearest Neighbors, LBP
edictive value, PPV ¼ positive predictive value, RF ¼ random forest, RGB ¼ RGB



Fig. 2. The multiple ROC curves in a single plot according to RGB feature extraction with various ML algorithms. Abbreviation: ANN ¼ artificial neural network, AUC
¼ area under the receiver operating characteristic curve, DT ¼ Decision tree, KNN ¼ k-Nearest Neighbors, LR ¼ logistic regression, NB ¼ naïve Bayes, RF ¼ random
forest, SVM ¼ support vector machines.
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0.738 in the RBG feature extraction approach. Additionally, the highest
AUC of the LBP feature extraction was the NB algorithm, as shown in
Fig. 4.

Additionally, biomarkers for non-germinomatous germ-cell tumors
were taken into prediction with the KNN model with HOG that had the
highest AUC. As a result, the combined approach improved sensitivity
from 0.61 (95%CI 0.57–0.65) to 0.87 (0.84–0.89) and enhanced the
value of AUC from 0.845 to 0.877, as shown in Fig. 5.

4. Discussion

Germinomas are extraordinarily radiosensitive, and chemotherapy is
used to treat them.17–19 Image classification should be helpful for neu-
rosurgeons to plan treatment strategies for each individual. As a result,
ML-based classification from preoperative MRI scans had diagnostic
prediction at a high level by AUC value, particularly KNN with HOG.
However, the RF model with HOG may be a choice for application in
real-world practice as the screening tool. Because the screening tool in
medicine should have high sensitivity performance that there were few
false negative results, and thus fewer cases of germinoma were missed.24

Wemight employ the KNNmodel with HOG following the RF model with
HOG for real-world applications because the model had a high specificity
and AUC that was effective for confirming non-germinoma patients who
prefer surgery to get tissue specimens.20
5

These results are in concordance with previous studies that ML had
the role of image classification for germinoma. Chen et al used texture
analysis with ML to discriminate between germinoma and craniophar-
yngioma in the suprasellar region, with T1-Gd scans providing the best
AUC of validation.13 Moreover, Ye et al report that the highest AUC of the
radiomics-only model for pineal germinoma prediction was 0.80 (95%CI
0.74–0.86) when radiomics characteristics were performed from MRI
scans using ML models.12

HOG and LBP have been used for image classification in intracranial
tumors and tumor grading from the literature review.21,22 Chen et al used
HOG with an SVM algorithm to detect brain tumors from MRI scans and
the grade of glioma. As a result, sensitivity, specificity, and AUC for
intracranial tumor detection were 0.884, 0.805, and 0.921, respectively.
Moreover, sensitivity, specificity, and AUC for glioma grading were
0.837, 0.687, and 0.806, respectively.21 Kaplan et al utilized LBP with
various ML algorithms for brain tumor classification and reported that
accuracy scores for meningioma, glioma, and pituitary adenoma were
0.932, 0.905, and 0.955, respectively by LBP with KNN.22 Brain edema or
tumor necrosis areas can be observed in glioma and meningioma, which
are useful for HOG and LBP feature extraction to distinguish these
intracranial tumors, whereas the pineal region's complex structures,
including the deep venous system, ventricular structures, cerebral
aqueduct of Sylvius, and tectum, pose a classification challenge.

Furthermore, AFP and HCG are the potential biomarkers for



Fig. 3. The multiple ROC curves according to HOG feature extraction with various ML algorithms. Abbreviation: ANN ¼ artificial neural network, AUC ¼ area under
the receiver operating characteristic curve, DT ¼ Decision tree, KNN ¼ k-Nearest Neighbors, LR ¼ logistic regression, NB ¼ naïve Bayes, RF ¼ random forest, SVM ¼
support vector machines.
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malignant non-germinomatous components of tumors, such as chorio-
carcinoma and yolk sac tumor.17 When the combined approach between
the ML-based model and biomarkers, we observed the added sensitivity,
NPV, and AUC that is useful for implication in general practice as the
screening tool.23

Image classification based on AI may support a neurosurgeon with
preoperative planning such as the extent of resection strategies or a re-
operation decision in a patient who could not be diagnosed from a
prior operation. From the literature review, Choi et al proposed treat-
ment strategies for pineal tumors. In detail, surgery after a trial of
chemotherapy and/or radiotherapy is suggested for a pineal tumor with
negative tumor markers and suspected germinoma based on MRI.19

Hence, AI-based diagnosis may assist physicians in proposing treatment
options in the future.

Clinicians use evidence-based medicine, guidelines, and the results of
clinical trials to make decisions. Thus, AI has evolved into a screening
tool that can assist physicians in making a decision. It is a challenge to
deploy machine learningmodels in general practice, so the ML-based tool
needs to be kept as straightforward and user-friendly as possible in the
form of a computerized clinical decision support system (CCDSS).24 For
instance, Tunthanathip et al predicted an intracranial hemorrhage in a
child who had had a traumatic brain injury by employing an ML-based
6

online application that was presented in CCDSS format. This was done
to reduce unnecessary expenditures and prevent over radiation
exposure.25

To the authors’ knowledge, the present study was the first paper that
used HOG and LBP feature extractions with ML for image classification
between pineal germinoma and non-germinoma. However, the limita-
tions of the present study should be noted. The CCDSS may require
external validation before implementation; therefore, Multicenter studies
should offer additional images of the precise tumor location for training
the ML model and improving this issue.26 Additionally, the ML-based
model with feature extraction requires the expertise of specialists for
the region of interest selection. Therefore, the deep learning method may
be the alternative way for the classification of pineal germinoma because
This method includes automatically the procedures of feature extraction
and model construction via the convolutional neural network
architecture.27,28

5. Conclusion

The classification of images using ML is a viable way for developing a
diagnostic tool to differentiate between germinoma and non-germinoma
that will aid neurosurgeons in treatment planning in the future.



Fig. 5. The ROC curves of KNN algorithm with HOG feature extraction and combine KNN with HOG feature extraction and biomarkers. Abbreviation: AUC ¼ area
under the receiver operating characteristic curve, KNN ¼ k-Nearest Neighbors.

Fig. 4. The multiple ROC curves according to LBP feature extraction with various ML algorithms. Abbreviation: ANN ¼ artificial neural network, AUC ¼ area under
the receiver operating characteristic curve, DT ¼ Decision tree, KNN ¼ k-Nearest Neighbors, LR ¼ logistic regression, NB ¼ naïve Bayes, RF ¼ random forest, SVM ¼
support vector machines.

S. Supbumrung et al. World Neurosurgery: X 20 (2023) 100231
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