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Estrogens play important roles in the regulation of testis development and spermatoge-
nesis. Moreover, several evidences suggest that estrogen signaling can be involved in
testicular tumorigenesis.The physiological effects of estrogen are mediated by the classical
nuclear estrogen receptors ESR1 and 2, which regulate both genomic and rapid signaling
events. In the recent years, a member of the seven-transmembrane G protein-coupled
receptor family, GPR30 (GPER), has been identified to promote estrogen action in target
cells including testicular cells. Ours and other studies reported that GPER is expressed in
normal germ cells (spermatogonia, spermatocytes, spermatids), somatic cells (Sertoli and
Leydig cells), and it is also involved in mediating estrogen action during spermatogenesis
and testis development. In addition, GPER seems to be involved in modulating estrogen-
dependent testicular cancer cell growth. However, in this context, the effects of GPER
stimulation on cell survival and proliferation appear to be cell type specific. This review
summarizes the current knowledge on the functions regulated by estrogens and mediated
by GPER in normal and tumor testicular cells.
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INTRODUCTION
The three main endogenous estrogens within the testis are 17β-
estradiol (E2), estrone (E1), and estriol (E3) among which the
predominant and most active steroid is E2. This steroid is mainly
obtained by the conversion of testosterone through the activity
of the enzyme complex named aromatase cytochrome P450C19
A1, encoded by the CYP19 gene (1) whose expression is under
the control of different tissue-specific promoters (2). In the testis,
aromatase expression is transcriptionally regulated by the interac-
tion of different transcription factors (3–10) to specific functional
motifs identified within the P.II promoter region (2).

Physiological effects of estrogens are mediated by the classical
nuclear estrogen receptor alpha (ESR1) and estrogen receptor beta
(ESR2), which mediate both genomic and rapid signaling events
(11). In addition, estrogens induce rapid non-genomic responses
through a membrane-associated G protein-coupled receptor also
named GPR30/GPER that has been identified as a novel estro-
gen receptor (ER) (12). Several studies performed on aromatase-
deficient patients (13) and on aromatase or ERs knocked-out
mouse models (14) have confirmed that estrogens play key roles in
the development and maintenance of normal reproductive func-
tion and fertility as well as in pathological processes (15–18).
Moreover, aromatase overexpression in mice leads to infertility in
either all male or in 50% of them when it takes place in fetal life or
at puberty, respectively (19). Therefore, a delicate balance between
androgens and estrogens, partially controlled by aromatase activ-
ity, seems to be essential for the maintenance and control of normal
spermatogenesis (15, 20).

Spermatogenesis is a complex process under the control of
gonadotropins luteinizing hormone (LH) and follicle-stimulating
hormone (FSH) as well as testosterone and different locally pro-
duced factors (21) including estrogens (15, 17, 22). It is now

accepted that E2 regulates all the events related to spermatogene-
sis including gonocyte and spermatogonia proliferation, meiosis,
Sertoli cell function as well as spermiation, sperm transport, and
epididymal sperm maturation (23).

Noteworthy, altered hormonal status has been associated with
initial malignant transformation of germ cells (24–26). Accord-
ingly, a relationship between testicular germ cell cancer (TGCC)
and maternal estrogen/androgen levels in early pregnancy has been
documented (27). It has been hypothesized that early arrest of
gonocyte differentiation followed by an increase in cell prolifer-
ation could determine genomic aberrations (28) responsible for
transformed pre-carcinoma in situ (CIS), also known as intratubu-
lar germ cell neoplasia unclassified (29). Recently, an association
of polymorphic variants in genes encoding for ESR1, ESR2, and
LH receptors with TGCC risk and metastasis has been demon-
strated (30). In addition, an elevated GPER protein expression
was revealed in all intratubular germ cell tumors, seminomas, and
embryonal carcinomas (31) as well as in testicular stromal neo-
plasms (32–34). However, the molecular mechanisms involved in
the initiation and progression of testicular cancers are still under
investigation.

This review will focus on the roles of estrogenic signaling
in spermatogenesis and testicular tumors, with special empha-
sis on rapid mechanisms of action mediated by the novel
ER GPER.

ESTROGENS RECEPTORS AND GPER EXPRESSION IN THE
TESTIS
Testicular estrogens exert their functional role through the inter-
action with estrogen receptors ESR1 and ESR2, encoded by two
different genes located in humans on chromosomes 6 and 14,
respectively (11).
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Within the testis, ESR1 and ESR2 expression is highly vari-
able, with major differences between species, as well as between
individuals within a species (17). Studies on the immunohis-
tochemical localization and mRNA expression of the receptors
in testicular tissues and cells reported divergent data (35–37).
The reasons for these discrepancies could be attributed primar-
ily to tissue preservation techniques and/or to antibodies used for
immunohistochemical analysis (38, 39).

In the mouse testis, ESR1 was found only in Leydig cells and in
some peritubular myoid cells, whereas ESR2 was revealed in Ley-
dig cells, Sertoli cells, and germ cells, particularly spermatocytes
(40, 41). Generally, while ESR1 expression was recovered in the
interstitial space, ESR2 has been observed within the seminiferous
epithelium. However, Lucas and coworkers (39) have confirmed
ESR1 expression also in Sertoli cells.

At first, ESR1 immunodetection in rats was restricted to Leydig
cells (42) but later its expression was reported in the seminif-
erous compartment (43), in the immature Sertoli cells (39, 44),
in whole adult testis, and in purified germ cells (45). Regard-
ing ESR2, there is a general consensus on its localization in the
seminiferous tubules but there are conflicting data regarding its
presence in germ cells (17, 46). Indeed, more recently, ESR2 expres-
sion in rat pachytene spermatocytes (PS) (45) and spermatids was
revealed (47).

The presence of ERs in human testicular cells is well-
documented (48, 49). It was speculated that the most susceptible
cells to the actions exerted by estrogenic ligands are round sper-
matids (RS), where ESR2 content levels are the higher (50). In
particular, in men the full-length protein ESR1 (66 kDa) and one
isoform lacking exon 1 (46 kDa) have been identified in isolated
immature germ cells (49). For ESR2, two proteins which corre-
spond to the long (60 kDa) and short (50 kDa) forms have been
detected in germ cells (48). The presence of ESR1 and ESR2 has
also been reported in the human ejaculated spermatozoa (49, 51).

GPER has been identified in a variety of human and rodent
estrogen target tissues (52–56). Studies related to GPER intracellu-
lar localization revealed its presence in the endoplasmic reticulum,
Golgi apparatus (54), plasma membrane (57), and nuclei (58, 59).
Using a Gper-lacZ reporter mouse, Isensee et al. (60) demonstrated
extensive expression of GPER in several endocrine organs includ-
ing the testis. This agrees with our studies that revealed GPER
expression in a mouse spermatogonia cell line (GC-1 cells) (61),
in adult rat PS (45) and in rat RS (47) suggesting a role for this
receptor in spermatogenesis (62). Moreover, GPER expression has
also been recently demonstrated in Sertoli cells (63, 64). In mice, it
has been claimed that GPER is not involved in estrogenic responses
of the reproductive organs (65). Indeed, these authors generated
GPER-deficient (GPERKO) mice and showed that mutant male
and female are fertile. However, it is noteworthy that data on
the spermatogenetic process are missing and a careful examina-
tion of estrogenic response was carried out only in the uterus and
mammary gland. It should be noted, however, that GPR30 plasma
membrane-association and activation by E2 to invoke intracellular
signaling or cell proliferation have not been demonstrable by some
laboratories, and that the subcellular localization of the receptor
and the identity of its biologically important ligands continue to
be the subject of considerable debate (66–69).

ESTROGEN RECEPTOR SIGNALING AND MECHANISMS OF
ACTION: ROLE OF GPER
Classically, once activated ERs act as transcription factors to mod-
ulate the expression of target genes through the interaction with
estrogen response elements (EREs) within their promoter region.
However, ERs can also regulate gene expression without directly
binding to DNA, through protein–protein interactions with other
transcription factors in the nucleus (70). In addition, membrane-
associated ERs mediate non-genomic actions of estrogens, which
can lead to regulation of gene expression through the activation
of kinases signal-transduction pathways that eventually act on tar-
get transcription factors (70). Moreover, ERs can be targets of
mitogen-activated protein kinase (MAPK) signaling pathway (71)
indicating that non-genomic pathways activated by estrogens can
modulate the functions of ERs themselves (70).

It is currently known that estrogen non-genomic actions can
be mediated by GPER, in a wide number of normal and neoplastic
cells (12, 72). Following the first reports in 1997 on its identifica-
tion (73–75), it has been subsequently demonstrated that estro-
gen through GPER rapidly activates different pathways including
EGFR transactivation leading to the rapid phosphorylation of the
MAPKs ERK1/2 (76–78), stimulation of adenylyl cyclase (52, 55),
mobilization of intracellular calcium (Ca2+) stores, and phos-
phoinositide 3-kinase (PI3K) signaling pathways activation (54).
Regarding the G proteins involved in GPER-mediated signaling,
an important role for Gαs (55) and Gβγ (76) has been suggested.
Gαs was shown to be responsible for adenylate cyclase stimulation
and consequently cAMP increase (55), while Gβγ subunit and the
downstream Src-related tyrosine kinases activation were involved
in MAPK transduction pathway (76). Thus, through these rapid
pathways, GPER modulates transcription of different genes such
as c-fos, connective tissue growth factor (CTGF), and early growth
response protein 1 (Egr1) (53, 79–81).

ERs AND GPER NON-GENOMIC SIGNALING IN TESTICULAR
CELLS: ROLE IN SPERMATOGENESIS REGULATION
The important role of estrogens in the regulation of spermatoge-
nesis was evidenced by in vivo studies performed with knock-out
(KO) mouse models for the estrogen receptors as well as for the
aromatase gene.

Esr1 KO (αERKO) animals have reduced fertility because of
abnormal fluid reabsorption in the efferent ductules (82), whereas
in Esr2 KO (βERKO) animals (14), spermatogenesis, steroidogen-
esis, and fertility were initially found unaffected. Indeed, the Esr2
null mice displayed alternative splicing transcripts that could func-
tionally compensate for the lack of full-length receptors. An Esr2
null mouse, lacking any ERβ isoform, was generated by Cre/LoxP-
mediated excision of Esr2 exon 3 (83). Although the causes are
still unknown, these mice are infertile despite the morphofunc-
tional characteristics of their gonads and spermatozoa appearing
normal.

The absence of estrogen production observed in the aromatase
knock-out (ArKO) mice, causes a more severe testicular pheno-
type compared to both ERKO mice, with a decreased number
of spermatocytes and round and elongated spermatids (84, 85).
Data from ArKO mice support the hypothesis that an alternative
receptor (i.e., GPER) and alternative pathways could be involved
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in mediating estrogen effects on spermatogenesis. However, GPER
was not considered to be involved in estrogenic responses of repro-
ductive organs since GPERKO male as well as female mice were
found fertile (65). A careful analysis of the study by Otto et al.
will show that data on the spermatogenetic process are missing,
and an examination of the estrogenic response was carried out
only on uterus and mammary gland. Thus, the generation of
a triple KO (ESRs and GPER) would be useful to highlight, or
eventually to flush out, the cross-talk and functional redundancy
between the three different receptors as well as between genomic
and non-genomic effects exerted by estrogen in the modulation
of spermatogenesis. Understanding this difference could be very
important especially given that the loss of non-genomic ESR1 sig-
naling pathway is responsible for most of the reproductive tract
defects observed in αERKO mice (86). These data support the
hypothesis that rapid estrogen signaling plays a crucial role in
spermatogenesis.

In this regard, Chieffi et al. demonstrated, in non-mammalian
vertebrate models, frog Rana esculenta and Podarcis s. sicula the
involvement of ERK1/2 signaling in spermatogonial cell prolifera-
tion following E2 treatment (87, 88). Accordingly, studies with the
mouse spermatogonial GC-1 cell line showed that estradiol rapidly
activates a proliferative pathway involving EGFR/ERK/fos/cyclin
D1 requiring a functional cross-talk between GPER and ESR1 (61).
In fact, c-fos up-regulation and ERK1/2 activation by estradiol or
by selective agonists for ESR1 (PPT) or GPER (G-1) were over-
come by the presence of the pure ESR1 antagonist ICI 182780, or
by GPER gene silencing (61).

In rat PS, estrogens can directly activate rapid signaling
pathways controlling spermatogenesis. Specifically, our studies
performed in rat primary cultures of PS demonstrated that
estradiol, working through both ESR1 and GPER, activates the
rapid EGFR/ERK/c-jun signaling cascade, which in turn trig-
gers the mitochondrial apoptotic pathway concomitantly with an
increased expression of bax and a reduction of cyclin A1 and
B1 protein levels (45). Similarly, in a mouse PS-derived cell line
(GC-2 cells) we showed: (i) an expression pattern for ESR1, ESR2,
and GPER similar to primary rat PS (89), (ii) ESR1- and GPER-
dependent cell growth inhibition, and (iii) a reduction in cyclin D1
and B1 protein expression and an increase in p21 protein content.
As in primary PS, these events anticipated an apoptotic mechanism
that was studied in detail. It required the activation of MAPK
family members ERK1/2, JNK, and p38, followed by activation
of intrinsic apoptotic pathway determining bax up-regulation,
cytochrome c release, caspase 9 and 3 activation, parp-1 cleavage,
and DNA fragmentation.

Estrogen receptors and GPER non-genomic signaling were
investigated also in primary cultures of adult rat RS in order
to clarify the role of their activation in the maturation and/or
apoptosis of these cells. Particularly, in RS, estrogen through a
functional cross-talk between GPER and ESR1 is able to activate
EGFR/ERK pathway involved in the transcriptional modulation of
genes controlling apoptosis and differentiation such as cyclin B1
and bax (47).

Moreover, non-genomic effects of estrogens have been also
evaluated in rat immature Sertoli cells. In this cell type, treat-
ment with estrogen induced a rapid translocation of ESR1 and

ESR2 to the plasma membrane, together with the activation of
proto-oncogene tyrosine kinase Src, which in turn phosphory-
lates and activates EGFR/MAPK3/1 pathway responsible for the
enhanced cyclin D1 (CCND1) gene transcription and cell prolif-
eration (39). Once activated, the GPER/EGFR/MAPK3/1 signaling
cascade caused an increase in Bcl-2 protein content and a decrease
in bax expression, suggesting that in immature Sertoli cells, the
anti-apoptotic effects of E2 are mediated by GPER activation (63,
64). More recently, Royer and coworkers (90) clarified ESRs and
GPER downstream pathways involved in rat immature Sertoli cells’
proliferation and apoptosis. Specifically, these authors showed
that ESR1 activated by its ligand rapidly induces EGFR/ERK1/2
and PI3K pathways that in turn increase cyclin D1 expression
responsible for Sertoli cell proliferation (90). Downstream of
GPER, after E2 or G-1 treatment, they showed activation of
EGFR/ERK1/2/phopho-CREB and PI3K pathways leading to anti-
apoptotic effects by upregulating BCL-2 and BCL-2L2 proteins
and decreasing bax expression (90).

In summary, these studies suggest that estrogen can influence,
in a cell-specific manner, all the biological features that charac-
terize the spermatogenetic process such as germ cell proliferation,
differentiation,as well as germ cells survival and apoptosis. In addi-
tion, another interesting aspect is that genomic and rapid pathway
can work independently but cooperate to reach the same goal
as evidenced in Sertoli cells where E2-genomic action on cyclin
D1 induces proliferation while E2 rapid action through GPER
activates anti-apoptotic signals (90).

ROLE OF ESTROGEN RECEPTORS IN TESTICULAR CANCER
Estrogen receptors play important roles in the modulation of sev-
eral types of tumors, such as those of the breast, endometrium,
ovary, adrenal, prostate, colon, liver, lung as well as testis.

ERs AND GERM CELL CANCERS
Among all the malignant tumors of the testis, 95% are type II
germ cells cancers (TGCC), which are classified into two sub
categories seminoma and non-seminoma, both derived from a
common precursor cell called CIS (91).

Recently, it has been reported that polymorphisms in ESR1,
ESR2, and luteinizing-hormone-releasing hormone (LHRH)
genes were linked to TGCC risk and metastasis occurrence. In
particular, two ESR2 and LHRH genetic variants were related
to TGCC-reduced risk, while one polymorphism in ESR1 or
LHCGR (LH/choriogonadotropin receptor) gene was associated
with an increased risk for TGCC (30). It is known that LHRH
is primarily expressed in human fetal Leydig cells (92) and that
its actions are important for postnatal Leydig cell differentia-
tion (21). Moreover, Leydig cell function and spermatogenesis
is impaired in men with CIS of the testis (93). In addition,
it has been well-documented that ESR2 is expressed in Ser-
toli cells, Leydig cells, and gonocytes (15, 94) and that expo-
sure to elevated estrogen levels can affect germ cells either
directly or indirectly through adverse effects on both Sertoli cells
and Leydig cells (95). Thus, polymorphisms in genes encod-
ing ESR2 and LHRH may influence the sensitivity of these
cells to estradiol- and LH-mediated effects and influence TGCC
development.

www.frontiersin.org March 2014 | Volume 5 | Article 30 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Endocrinology/archive


Chimento et al. GPER role in testicular pathophysiology

It is known that elevated pituitary and steroids hormone lev-
els play an important role in the malignant transformation of
pre-CIS into seminomatous (SE) and non-seminomatous (NSE)
neoplasms. Indeed, patients with severe hypogonadotropic hypog-
onadism do not show TGCC and in patients with complete
androgen insensitivity, gonocytes remain undifferentiated, simi-
lar to that seen in CIS (96–98). Noteworthy, a polymorphism in
ESR1 identified by Brokken and coworkers (30) is associated with
higher levels of LH in healthy control subjects, indicating that lev-
els of gonadotropins influence the progression of CIS to either SE
or NSE. However, despite the observation that these subjects had
higher testosterone levels, there was not a statistically significant
association between androgen levels and CIS progression (30).

In the attempt to define a role for GPER in TGCC, Franco
and coworkers (99) have evaluated its expression in post-puberal
TGCCs (30 seminomas, 5 teratomas, 12 embryonal carcinomas,
and 20 intratubular germ cell tumors) by immunohistochemi-
cal analysis. GPER protein expression seemed to be high in all
intratubular germ cell tumors, seminomas, and embryonal car-
cinomas, whereas in teratomas, the immunoreactivity was low.
Western blot analysis, performed on the same category of sam-
ples, showed a good correlation with the immunohistochemical
data (32). GPER protein expression and activation was also eval-
uated in estrogen receptor alpha-66 negative TCam-2 (100) and
JKT-1 (101) human seminoma cell lines, both isolated from type
II TGCC. Recently, Wallacides and coworkers (102) have demon-
strated that in TCam-2 cells, both estradiol and testosterone
(after conversion to E2) can stimulate cell proliferation in the
absence of ESR1. The pathway involved is GPER/protein kinase
A (PKA)/CREB, which enhanced expression of estrogen receptor
alpha-36, a truncated isoform of the canonical ESR1 that in turn is
necessary for both EGFR membrane localization and E2-mediated
stimulation of EGFR expression (102). These results agree with
those reported by Zhang and coworkers (103) showing estrogen
receptor alpha-36 as mediator of E2-dependent signaling in ER-
negative breast cancer cells. Then, tumors that lack ESR1 66 can
still retain an estrogen mitogenic signaling. In addition, breast
tumors treated with tamoxifen to block the classical ESR1 signal-
ing often acquire resistance to this drug. These resistant tumors
show increased activity of both ESR1 36 and GPER (104).

Conversely, in JKT-1 cells, estradiol inhibits cell proliferation
through an ESR2-dependent mechanism that is completely sup-
pressed by the ER antagonist ICI182780 (105). However, JKT-
1 cells also express GPER and treatment of these cells with
G-1, which has low affinity for ESR2 (106), induced JKT-1 cell
proliferation (107, 108). It has been reported in some models
that GPER and ERs (ESR1/ESR2) or truncated splice variant of
ERs could either cooperate or cross-talk (109, 110). ESR1 is not
expressed in JKT-1 cells (105) and ESR2 is not localized at the
extracellular membrane as shown by western blot analysis after
subcellular fractioning (107). In addition, using RNAi silencing
and G15, a selective GPER antagonist (111), the involvement of
GPER in xenoestrogen-, bisphenol A-, and E2 coupled to bovine
serum albumin (E2-BSA)-induced JKT-1 cell proliferation was
definitively demonstrated (112, 113). The clear difference between
E2-mediated proliferation in TCam-2 cells and E2-dependent
growth inhibition in JKT-1 cells could be explained by different

expression levels of GPER and estrogen receptor alpha-36, or by a
different expression pattern of ER cofactors between the two cell
lines. In fact, it has been previously demonstrated that JKT-1 cells
lack expression for most of the genes detectable in type II TGCC
(114, 115), thus providing evidences for great differences between
TCam-2 and JKT-1 cells.

GPER, XENOESTROGENS, AND GERM CELL CANCER
Xenoestrogens are part of the endocrine-disrupting chemicals
(EDCs), hormone-like compounds widespread in the environ-
ment that mimicking the natural hormone estradiol interfere with
endogenous endocrine regulation at specific stages, such as during
fetal growth causing hypofertility and/or testicular germ cancer.
Most of EDCs have a very weak affinity for binding to ERs (116–
118), though, these compounds mediate endocrine disruption in
both animals and humans at low environmental concentrations
(119, 120).

It has been reported that EDCs act through hormone-
independent mechanisms (121) or through a non-genomic
membrane-initiated signaling pathway activated via membrane-
localized ERs (122–126). It has been demonstrated that pesticides
considered as estrogenic EDCs are able to activate GPER signaling
(113, 127). In particular, bisphenol A (BPA), an organochloride
pesticide, via GPER is able to stimulate JKT-1 cell proliferation,
through a rapid activation of cAMP-dependent PKA and cGMP-
dependent protein kinase G (PKG) signaling pathways associated
with phosphorylation of the transcription factor CREB and the
cell cycle regulator pRb (113).

Furthermore, several reports also suggested that BPA binds
to GPER and mediates rapid estrogenic actions (52, 54, 106).
Recently, in JKT-1 cells, Chevalier and coworkers (112) showed
that treatment with G-1, BPA, and very low doses (nanomolar) of
E2-BSA, determined an increase in seminoma cell growth through
a non-genomic GPER-dependent mechanism involving PKA and
MAPK pathways. Opposite effects were produced by E2 that at
physiological concentrations, binding intracellular ESR2 through
a classical genomic mechanism, suppressed in vitro JKT-1 cell
proliferation (112). In addition, E2-BSA and BPA-mediated pro-
liferative effects were not neutralized by ICI182780. The presence
of G15 instead abrogated E2-BSA and BPA-mediated effects on
seminoma cell growth, confirming that estrogens and xenoestro-
gens through classical ERs and GPER can activate distinct genomic
and non-genomic pathways depending on their relative affinity for
the receptors and on cofactor expression within the cells. How-
ever, other authors (128) demonstrated that high doses of BPA
upregulate expression of Fas and FasL, and active caspase-3 in
the mouse testis, determining apoptosis of Leydig cells and germ
cells. It is evident that BPA effects depend on the dose. At low
concentration (10−9 M), BPA allows the non-genomic effect to
be displayed because of the high affinity of BPA for GPER. At
high micromolar concentrations, BPA may trigger a suppressive
effect via ESR2, which neutralizes the non-genomic effect. When
mixed together at low concentrations, BPA and E2 are mutually
antagonistic.

Collectively, these data confirm that EDCs through a GPER-
mediated non-genomic mechanism are involved in testicular germ
cell carcinogenesis and that their impact in this context may
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FIGURE 1 | Effects mediated by GPER activation in normal and tumoral testicular cells. BV, blood vessel; LC, Leydig cells; IS, interstitial space; SC, Sertoli
cells; SPG, spermatogonia; SPT, spermatocytes; RS, round spermatids; SPZ, spermatozoa; STL, seminiferous tubule lumen.

depend on (i) the relative expression of receptors (ERs and GPER),
(ii) the endogenous concentration of E2, and (iii) the relative
binding affinities to ERs or GPER.

GPER AND TESTICULAR STROMAL NEOPLASMS
Several studies reported GPER expression in testicular stro-
mal neoplasms such as Leydig and Sertoli cell tumors (32–34).
Sertoli cell tumor is a rare type of sex cord-gonadal stromal tumor
accounting for no more than about 1% of all testicular tumors.
Sertoli tumors are characterized by hyperestrogenism due to a
direct production and/or conversion of testosterone to estrogen
by the tumor (129). However, a possible coordinated regulation
or a cross-talk between ERs and/or GPER was not investigated
on neoplasmic samples at different stages of the disease. A pre-
vious study has evidenced a differential expression pattern of
the classical ERs in human normal and neoplastic Leydig cells
with the exclusive presence of ESR1 in tumor cells, which could
amplify estrogen signaling and could contribute to tumor growth
(9, 34). In fact, we have previously shown that Leydig tumors pro-
duce estrogens that bind to ESR1 and activation of this receptor
sustains cell proliferation (9). We also have shown that ERs antag-
onists such as hydroxytamoxifen (OHT) and ICI182780 are able to
reduce proliferation of a rat Leydig tumor cell line. Similar effects
were also found using letrozole, an aromatase inhibitor. However,
treatment of cancers with anti-estrogens frequently causes drug
resistance (130). Indeed, a new treatment for Leydig cell tumors is
deemed.

In a recent paper, we have showed that GPER is a good target
to reduce Leydig tumor proliferation. In fact, GPER is expressed
in this type of cancer and its activation is associated with a drastic
reduction of cell proliferation (131). In particular, using R2C, a rat
tumor Leydig cell line, we have demonstrated that GPER activation
by G-1 is associated with the initiation of the intrinsic apoptotic
mechanism. Apoptosis after G-1 treatment was evidenced by the

appearance of DNA condensation and fragmentation, decrease in
Bcl-2 and increase in Bax expression, cytochrome c release, and
caspase and PARP-1 activation. These effects were dependent on
GPER activation since silencing of the gene, using a specific siRNA,
prevented cytochrome c release, Bax increase, Bcl-2 decrease,
PARP-1 activation, and decrease in cell proliferation. These events
required a rapid however sustained ERK1/2 activation (131). Our
data are consistent with previous reports demonstrating that tran-
sient activation of ERK1/2 plays a pivotal role in cell proliferation
and that sustained ERK1/2 activation induces cell cycle arrest (132)
and death (133–135). The ability of G-1 to reduce the growth of
R2C in vitro was also evaluated in vivo. G-1 significantly inhib-
ited the growth of R2C xenografts and increased the number of
apoptotic cells. To address if the use of G-1 for the therapy of
Leydig tumors could indeed affect normal spermatogenesis, we
evaluated G-1 effects on testis morphology. Our in vivo experi-
ments demonstrated that administration of G-1 for more than
a 2-week period did not cause any damage to the normal testis
structure, opposite to that seen with Cisplatin. GPER activation
induces proliferation of spermatogonia (61), which represent the
stem cells of male germ cells. It could then be speculated that the
use of a GPER-specific agonist for the therapy of Leydig tumors
would not affect normal spermatogenesis allowing preservation
of fertility in patients treated for this type of tumor. On the other
hand, chemotherapeutic agents currently used for the treatment
of testicular cancers, such as Cisplatin, despite their potent anti-
neoplastic action, have several side effects including nephrotoxicity
(136), peripheral neuropathy (137), and azoospermia (138). This
last event is dependent on a reduction in the number of spermato-
gonia, which appear to be the most sensitive germ cell type to
cisplatin (139).

Although further studies are needed, our results point out how
GPER and its agonists such as G-1 can be considered as a poten-
tial new pharmacological tool to reduce the growth of Leydig cell
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tumors. This drug, opposite to those currently used, does not seem
to affect germ cells and thus could preserve male fertility.

CONCLUDING REMARKS
Several studies carried out in the past years showed that in the
testis, a regulated balance between androgens and estrogens seems
to be essential for normal testicular physiology and reproduction.
Another important finding is the widespread presence of ESR1
and ESR2 in both somatic and germ testicular cells. In addition,
the discovery of the new transmembrane estrogen-binding pro-
tein GPER in the testis has opened new perspectives to better
understand the rapid membrane pathways induced by estrogens.
In fact, estrogenic activity appears to involve not only the classi-
cal genomic pathway, but also rapid membrane receptor-initiated
pathways and possibly non-classical nuclear ER-tethering path-
ways. Estrogen actions on spermatogenesis appear to influence, in
a cell-specific manner, germ cell proliferation, differentiation, as
well as germ cell survival and apoptosis (Figure 1). Another inter-
esting aspect revealed by very recent studies is that genomic and
rapid pathways can work independently but cooperate to reach
the same goal. An intriguing observation is that in testicular cells
both rapid and genomic mechanisms via nuclear and membrane-
associated ERs can be differentially triggered by xenoestrogens
based on their concentration. Indeed, to further investigate the
precise impact of those chemicals, alone or more importantly in a
mixture, the development of human in vitro testicular models is
required.

In addition, the recent immunolocalization of GPER in tes-
ticular tumors and the reports indicating that GPER activation
by selective ligands can allow for opposite outcomes in differ-
ent testicular cells (i.e., seminoma and Leydig cells) (Figure 1)
should open new perspectives to define the mechanisms behind
the development of estrogen-dependent testicular tumorigenesis
as well as to provide a new target for the development of new
pharmacological tools against testicular cancer.
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