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Abstract
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Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However,
their application is far from full potential, holding several challenges when reconciling the complex biology of the
cells to be expanded with the need for a manufacturing process that is able to control cell growth and
functionality towards therapy affordability and opportunity. In this review, we discuss and compare current
bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte
expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on
the applicability of these technologies, highlighting the specific challenges and major advancements for each one
of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude
on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and
micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for
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Background

In the process of understanding cancer, clinical research
has developed a resourceful toolbox of treatment options
ever increasing in complexity. From surgery and radi-
ation therapy, going through chemotherapy and bio-
logics, we have arrived to the field of Cancer
Immunotherapy [1], an approach that merges with the
innovative area of Advanced Therapy Medicinal Prod-
ucts (ATMPs) to develop the specialty of Adoptive Cell
Therapies (ACT).

This branch of immunotherapy is defined as the intra-
venous administration of ex vivo expanded immune ef-
fector cells that are capable of selective cytotoxicity. It
exploits the immune system’s ability to distinguish be-
tween pathologic and healthy tissue [2, 3]. ACT has been
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characterized as a “living” treatment that can be en-
hanced by means of gene modification because cells
continue to function in vivo after they have been infused
back into a patient [4]. ,To date, many cells have been
used for ACT, including Lymphokine-Activated Killer
(LAK) cells, Tumor-Infiltrating Lymphocytes (TILs),
Cytotoxic T Lymphocytes (CTLs), Cytokine-Induced
Killer (CIK) cells, y§ T cells, Regulatory T (TReg) cells,
Natural Killer (NK) cells, engineered T cells (T-Cell Re-
ceptor (TCR T) cells and Chimeric Antigen Receptor
(CAR) T cells) [2, 5, 6].

Unfortunately, these cells remain as a limited thera-
peutic option that is only applied to a small number of
patients. Partly because of significant knowledge gaps on
their clinical effectiveness and cost/benefit ratio and a
strong dependency on highly specialized methods, mate-
rials and equipment, therefore the number of products
approved for commercialization is reduced [7, 8]. As the
last decades saw progress in the understanding of
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lymphocyte biology and different companies are devel-
oping high throughput systems for ACT manufacturing
[9], it is expected that this field will experience a quick
clinical and technical expansion, that requires process
intensification and innovative solutions from engineers.
Hence, there will be a future push to technologize ACTs,
from hospital-oriented to industrially relevant manufac-
ture processes.

The manufacturing of an ACT product usually begins
with a mixed lymphocyte population from a patient’s bi-
opsy, or from apheresed Peripheral Blood Mononuclear
Cells (PBMCs) (Fig. 1). It can also be started by differen-
tiating a cell subset from Hematopoietic Stem Cells
(HSC) and lymphoid progenitors generally obtained
from Umbilical Cord Blood (UCB). After cell acquisition,
several workflows can be followed depending on the
intended application. In upstream, most of the protocols
include cell selection, enrichment, purification, activa-
tion, stimulation, gene modification and expansion,
while downstream processes include pooling, further en-
richment, formulation and cryopreservation [10-13]. In-
dependently from the workflow, and because ACT doses
composed of high cell numbers generally produce more
desirable therapeutic outcome [14, 15], the cell expan-
sion process is a common factor in any ACT protocol,
being subjected to the greatest research efforts and the
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Expansion’s ubiquity highlights its importance for ACT’s
optimization, relying on the application of Quality by
Design (QbD) principles for sound bioprocess under-
standing. However, optimizing for a process focused
only on high cell output could narrow the Critical Qual-
ity Attributes (CQAs) down to the productivity issue. In
that sense, ACT would not benefit from an integrative
clinical view, able to compensate for regulatory and en-
gineering constraints [17] in a broader context that con-
siders yield, cell purity and product functionality.

The aim of this review is to give a comparative over-
view of lymphocyte expansion in bioreactors, assessing
their ability to generate sufficient, functional and cor-
rectly differentiated cell populations, with considerations
to process flexibility, controllability and scale. We ex-
plore the manufacturing of lymphocytes primarily from
PBMCs and biopsies, summarizing the outcomes from
the diverse expansion processes but taking the compar-
ability issues arising from the wide range of stimulation
and supplementation strategies into the picture, apart
from the selected bioreactor technology. Lymphocyte
manufacturing from stem cells is excluded from this re-
view as it adds an extra layer of complexity to the com-
parison exercise. We first provide a context on the
general culturing requirements for lymphocytes, later
discussing the challenges of transitioning to technolo-

most significant body of wuser experience [16]. gized manufacturing. Given that context, a set of
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Fig. 1 General upstream and downstream steps of a cell therapy product from autologous or allogenic source. The graph shows the contribution
of the different unit operations to final cell yield (red), functionality (green) and purity (blue). This review focuses on the expansion process
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requirements for bioreactor design and comparison for
allogenic and autologous ACT is presented. We then re-
view and categorize the available bioreactor technologies
based on published results on process yield, cell purity
and product functionality. Finally, we propose further
knowledge intensive approaches that could be useful to
take advantage of the data intensive environment that
bioreactors bring to the field of ACT.

The complexity of lymphocyte expansion
Compared to small molecules and biologics, living
cells are much more complex: they sense their sur-
roundings, react to their environment and express
varied and adjustable behaviors [18]. Furthermore,
they have some unique features [19], including the
ability to specifically distinguish, bind and kill abnor-
mally growing cells by selectively switching metabolic
pathways to enhance the production of cytotoxic sub-
stances [20]. Because of this complex biological set-
ting, any small change in the culture environment
may result in the alteration of product quality [21], a
concept that acquires a greater dimension, as it be-
comes associated with information on cell state,
phenotype, functionality and identity [22].

The unpredictable behavior of lymphocytes during cul-
ture causes noticeable variations in expansion rates amid
manufacturing [23]. This inherent variability hinders any
comparison between expansion protocols in order to con-
clude and organize best practices. At the core of this issue
relies donor heterogeneity as differences related to age,
gender, health issues or ethnicity are frequent [24]. Donor
variability is also linked to process performance and
lymphocyte sensitivity to process parameters [25]. Model-
ing for process predictability, associated with a thorough
characterization of raw materials to compensate for
source’s variability can improve process understanding,
accelerating the establishment of new cellular therapies
[14]. To make it even more complex, lymphocytes can
tune their communication with the environment by modi-
fying their receptor/ligand repertoire, changing cellular
sensitiveness to external substances and surfaces [19].
These aspects often generate an undesired outcome: when
subjected to extensive cultivation, cells are prone to de-
velop phenotypic changes (e.g. differentiation, senescence
or immunogenicity) or genetic changes (e.g. mutations,
gene deletions or chromosomal aberrations) that can se-
verely undermine their safety and efficacy profiles. There-
fore, higher yield due to prolonged expansion often
correlates with the selection of more proliferative cell sub-
populations, which can be less efficient for their designed
function [14].

Additionally, immune cells must be stimulated by
carefully integrating selection and activation steps during
the expansion process. There are several technologies
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available for the activation of immune cells, including
cell-based activation, bead-based activation, and
antibody-based activation. Antigen Presenting Cells
(APCs), as cell-based activators, are endogenous agents
that provide an in vivo-like stimulation but they are ex-
pensive to use in a GMP environment, difficult to re-
move from the final cell population, variable in their
potential to induce activation and may be scarce when
isolated from donor samples [11]. Traditionally, immune
cell expansion has also relied on the supplementation
with animal or human serum. However, the use of
serum may generate safety risks of infusion and in-
creases process variability due to batch-to-batch differ-
ences [11, 26, 27]. Besides antigen-induced activation,
stimulation with cytokines is another factor that influ-
ences the composition, quality and phenotype of the
final cell product. T cells are generally produced by IL-2,
IL-7 and/or IL-15 stimulation [28], while most current
NK cell expansion protocols include the use of IL-2 and
IL-15 [29, 30]. Complex, precisely scheduled cytokine
cocktails for culture stimulation can also be used under
certain expansion protocols.

Through the usage of these stimulation agents, the
expanded cells undergo frequent metabolic changes.
They can move into quiescence or active status, start
the division cycle, enter apoptosis or differentiate.
Knowing what process is triggered in which cells is
important, yet most expansion results just consider
the overall expansion rate of a given subset of cells.
Furthermore, metabolism is not only relevant as a de-
scriptor of cell growth. There is a growing body of
evidence that shows immune cell metabolism to be
essential to cell functionality. For example, glycolysis
and oxidative metabolism have been shown to modu-
late classical anti-tumor effector functions of NK cells
[31]. Thus, positive and negative modulation of cer-
tain metabolic triggers could be used to control
ex vivo expansion and direct cell functionality. Amino
acid modulation is another tool that may enhance cell
expansion, because some of them, such as glutamine,
arginine and tryptophan, have been found to influence
lymphocyte proliferation [32].

Summarizing, lymphocytes could be portrayed as deli-
cate cells requiring very meticulous culturing. Their be-
havior can be unpredictable to some extent, because of a
combination of factors that include donor and cell popu-
lation heterogeneity, frequent metabolic changes, high
sensitivity to culture environment and strong depend-
ency on an accurate stimulation strategy that mimics
typical in vivo conditions. This complexity demands an
expansion process that is sensitive and flexible enough
to compensate for variability. This is offered by various
bioreactor systems that were proven to be applied for
lymphoid cultures.
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From static cultures to intensified processes
Despite of the tight control needed for efficient ACT
manufacturing, immune cells are still frequently ex-
panded in static systems equipped with limited monitor-
ing capacity [10, 19, 23]. These platforms (plates, flasks
and bags) depend on incubators and are restricted to a
batch-and-split mode which periodically divides and re-
fills the culture with medium to cope with the cells’
metabolic activity and stimulation requirements, there-
fore these cultures are highly susceptible to contamin-
ation as multiple open vessels are needed to create a
single product [33]. Furthermore, the medium renewal
cycles cause frequent nutrient and metabolite fluctua-
tions that may trigger high phenotypical variability [19].
As a result, ACT cells are still manufactured through
processes and methods that have been characterized as
“archaic, scarcely controlled and incomparable” [34]. Be-
cause of their simplicity, cell therapy companies may ini-
tiate clinical trials using static systems, requiring further
assessment as key differences in parameters such as
shear stress, culture conditions, and cell-to-cell interac-
tions may cause a divergent biological profile as the cells
are moved to a bigger scale dynamic set-up [35].

Quality testing, which includes complex functionality
assays, should be carried in a timely manner, as ACT
products are generally used or preserved briefly after pro-
duction, increasing the risk of uncertainty and therapeutic
mistakes [36]. This implies that Process Analytical Tech-
nology (PAT) alone is not able to provide robust informa-
tion to address most quality questions. Because of that,
discrete in-process characterization of cell status during
manufacture is generally out of phase with properties con-
tinuously monitored using PAT tools, which are inferen-
tial in nature (e.g. DO, pH, glucose consumption or cell
density) [37]. However, our comprehension of cell status,
including metabolomics, clonogenicity and cell cycle regu-
lation is significantly improving [38].

Most of the bioreactors used for the cultivation of
therapeutic cells originate from vessels and technology
created for upstreaming bacteria or yeast [14]. However,
it is important to note that these systems do not focus
on cell integrity and functionality but on maximizing
yield, thus requiring refitting to face the challenge of
generating a healthy and functional cellular product
[38]. Bioreactors allow process scale up with high
standardization and reproducibility, while enabling the
evaluation of the influence of process parameters on cul-
ture performance [39]. In the same way, process intensi-
fication through the implementation of mechanistic
modeling and PAT tools, along with the use of auto-
mated culturing techniques, facilitates to reach better
control over cell expansion [14] (Fig. 2).

A bioreactor’s capability to monitor and control crit-
ical process parameters is a highly valuable characteristic
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yet to be optimally explored with lymphocyte cultures.
To profit on these abilities, several bioreactor designs
were already tested for lymphocyte culturing. These dif-
ferent bioreactor configurations (Fig. 2) are generally
suitable for a specific field of ACT (either allogenic or
autologous applications). However, as the cultured cells
have in principle the same needs, a general set of re-
quirements towards maximizing bioreactor capabilities
can be formulated, guiding the transition from static cul-
tures to intensified processes.

Requirements of bioreactors for lymphocyte
culture

Although every cell therapy process has unique ele-
ments, it is not practical to design specialized devices for
each specific product. Instead, ACT products should be
grouped on shared process characteristics, defining strat-
egies and technologies that fit better for each category as
a whole [40]. In that regard, ACT can be performed
using two general principles: autologous and allogenic.
In the autologous setting, a batch is individually pro-
duced from a patient’s biopsy, isolating and culturing
the cell population of interest. In the allogenic workflow,
cell source is a universal donor platform with highly ex-
pandable cells that have similar scale requirements as
the manufacturing of cell derived proteins and the cell
product may target multiple patients [25]. Process-wise,
increasing vessel scale and ensuring culture performance
(scale-up) is related to allogeneic approaches, while
parallelizing several independent units (scale-out) is gen-
erally the goal in optimizing autologous therapy [22]. An
autologous batch size is not expected to exceed more
than a few liters volume, because of the limited amount
of starting material and the time sensitivity of the cells
to retain their functionality. Thus, scaling up autologous
is not useful and scaling out for multiple batches still re-
quires a thorough assessment of technical capacities
[35]. This delicate setting for autologous cell therapy
drives bioprocess development towards automation [11,
25], as the ideal autologous platform should compensate
for the effects of varying culture conditions on CQA’s
performance [40]. The allogenic set up, on the other
hand, requires appropriate inoculation levels with min-
imal seed adaptation to maximize the expansion out-
come. Therefore, the possibility of having a set of vessels
geometrically and dynamically comparable is highly rele-
vant [41]. In the same way, achieving consistent process
reproducibility is necessary for a standardized and safe
allogenic platform, thus, allogenic bioprocess develop-
ment is mostly driven towards process control than
workflow automation. To harness a bioreactor’s full po-
tential, its design and application should be fitted to the
challenges of cultivating lymphocytes and the supple-
ments necessary for their growth. These are, in the view
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line), nutrient concentration (green line) and dissolved oxygen (blue line) for each culture vessel type

of the authors, and based on previous frameworks of re-
quirements [14, 19, 25, 34, 35, 42], the main standards
to be fulfilled by a culturing platform for ACT.

Suitable vessel size and scalability

Cell-based therapies often require the application of vast
quantities of cells (10°-10'%) to patients therefore the
space required for their growth is a practical limitation.
Assuming a culture density of 10° to 107 cells/mL (a
high value for ACT), it would demand a volume starting
from few milliliters up to tens of liters during culture
[43]. The available bioreactor scale must be flexible
enough to fully accommodate the range of cell growth
across all feasible batches, and to compensate for the ex-
pected potential growth variability from the source [25].
To achieve this, ultra-high cell density cultures or an in-
dustrial scale production that is able to maintain uni-
form culture conditions are required [39]. Some current
expansion processes include a preliminary stage where
cells are activated and rapidly multiplied in static sys-
tems, generating enough cells for bioreactor inoculation.
However, enough bioreactor space for the actual expan-
sion is still necessary.

GMP compliance

To avoid cross contamination (between different batches
or patients) and microbiological contamination, closed
systems (bags, expansion sets, flasks), incubators and
hoods should be used [36]. Bioreactors should guarantee
sterility by keeping a closed system [19]. Each manipula-
tion step (e.g. inoculation, activation, transduction,
media changes, stimulation, sampling, washing) creates a
risk for error and contamination that may lead to a
failed run [36]. For that purpose, single-use, closed, dis-
posable cell production “kits” may represent a desired
design strategy for patient-specific cell therapy manufac-
turing protocols [44], particularly if such kits can be de-
signed for simplicity [43].

Process control

Once the specific requirements for the cells being ex-
panded have been defined, process parameters such
as temperature, shear stress, dissolved oxygen (DO)
and CO, and environmental variables like osmolality
and pH must be kept at optimal values [14]. .Exten-
sive, online process monitoring and integrated control
is required for adaptation to process changes [45].
DO and pH of the medium are typically held
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constant to provide a consistent environment sup-
porting optimal cell expansion. DO and pH signals,
are valuable for assessing the status of the expansion
medium and cell proliferation, triggering a propor-
tional feeding strategy [41], although this is a fairly
limited approach. Some technologies that should be
considered for ACT process monitoring and control
are included in Table 1. The final goal of process
monitoring should be to find descriptors that can give
information about the influence of batch-to-batch or
donor-to-donor variability on the expansion process
[58]. The best approach for process control develop-
ment would be to use PAT data to facilitate process
related decisions in real-time, or even predictively.
This can include decision points for transduction,
perfusion initiation, harvest point, or even quality
control release based on minimum viability or endo-
toxin level. Ideally, such technologies would evolve to
measure surface markers expression of key phenotypic
markers.

Handling of shear stress

Ex vivo expansion of all immune cell types should avoid
mechanical stress by chaotic, inhomogeneous medium
dynamics [19]. It has been long established that animal
cells are sensitive to shear, which, above certain levels,
compromises their viability. Besides the direct effect that
mechanical forces can exert on a cell membrane’s integ-
rity, animal cells are adapted to the environment of each
tissue, evolving sensitive mechanisms for detecting shear
changes. To develop an acceptable understanding of
how these forces influence cell behavior, it is necessary
to recreate similar level of shear forces than found in the
body within a bioreactor, allowing for a detailed
characterization and control of the mechanotransduction
process [59] and the direct effects of shear on the cells.
Importantly, agitation must be designed to manage not
only shear exposure of cells, but also the efficiency of

Table 1 Advanced process monitoring tools for ACT
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mass transfer, suspension of cells and avoidance of het-
erogeneities that may cause cell inconsistencies [25].

Representative sampling

The designed bioreactor process should stay out of any
artificial deleterious influences on cell integrity by passa-
ging and reseeding the cells, as it may decrease total yield
[19]. Sampling and harvesting of cells, medium, or both
should be also designed with simplicity in mind. Taking
samples has certain drawbacks that need to be mitigated
[35]: to get a representative bioreactor sample, a signifi-
cant volume should be drawn, which can impact on yield,
especially if multiple small scale vessels are used for the
cell expansion. Repeated sampling can also increase the
risk of contaminating the bioreactor. Issues that need to
be resolved in such cell therapy process development plat-
forms include deciding on the amount of cells needed to
reflect heterogeneity and the usage of live cell-based image
analysis and “lab-on-chip” strategies [43].

Stimulation and supplementation

Media changes in bioreactors are usually done by nutri-
ent addition, or by total or partial media replacement, or
by perfusion. If a cell culture produces non-damaging
levels of waste products, concentrated levels of nutrients
can be added over time to feed the growing culture. In-
evitably, waste metabolites such as lactate and ammonia
start to accumulate, and either media replacement or
perfusion is required. Perfusion, in which fresh media is
gradually fed and old media is removed while the cells
are retained, is the ideal way to intervene and still main-
tain a stable environment for cell therapy [35]. It also
should be noted that cell exhaustion can be induced by
current activation methods, which generally also demand
careful operator attention [32]. Because of that, precise
optimization of the feeding of nutrients and cell activa-
tors/stimulants is needed, being able to precisely supply
them into the culturing medium, allowing for different
feeding profiles.

Tool Application Type Ref.
Raman spectroscopy Metabolite monitoring (glucose, lactate, amino acids). On-line [46]
Total Cell Concentration. On-line [46]
Cell identity determination (phenotype & activation). At-line [47, 48]
Sequential injection capillary electrophoresis Metabolite monitoring (glucose, lactate, amino acids). At-line [49]
Cell concentration. At-line [49]
FT-IR spectroscopy Glucose monitoring. On-line [50]
Electrical impedance Cell-mediated cytotoxicity and cell adhesion. At-line [51-53]
Biosensors for acidification measurement Metabolite monitoring (lactate). On-line [54]
Biosensors — optical Cytokine quantification. Potential  [55, 56]
Gas chromatography-mass spectrometry Volatile organic compound (VOC) emissions profiling — metabolic monitoring.  On-line [57]
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Gas transfer

Gas transfer happens passively in static systems, which
limits oxygen availability in high volume vessels, as the
diffusive flux of a gas is inversely proportional to the
thickness of the liquid that needs to be permeated, ac-
cording to Fick’s law and the McMurtrey model of oxy-
gen diffusion [60]. Oxygen transfer may be limited in
non-perfused bioreactors because low agitation rates are
required to minimize shear stress on the lymphocytes
and headspace aeration is also generally preferred for
the same reasons. This, on the long run, may hinder the
final expansion output of the system [41]. .Oxygen can
be supplied to a bioreactor either via the headspace or
via a sparger which disperses gas into the medium, how-
ever, sparging has been shown to be possibly detrimental
for immune cell growth [61]. The physiological oxygen
concentration is usually lower than the atmospheric. Be-
cause of that, establishing culturing protocols that re-
sembles in vivo oxygenation conditions may improve
expansion yield and cell functionality [22]. Similarly, the
use of CO, levels representative of the biological fluctu-
ation threshold could also be beneficial of the process
outcome. It must be noted that reduced oxygen tension
results in reduced human T cell proliferation, increased
intracellular oxidative damage and susceptibility to
apoptosis upon activation, highlighting the importance
of controlling oxygen levels in culture [62].

Physiological congruency

There is no ideal bioreactor that suits all purposes for
all cells, but it should be able to replicate in vitro
many of the conditions experienced in vivo, therefore
it should allow for experimental testing, mechanical
conditioning and monitoring of living cells in dy-
namic conditions [59]. In a close physiological re-
membrance, immune cells cultured in bioreactors
often require APCs for stimulation, three-dimensional
culturing, controlled cell-cell contact and undisturbed
local microenvironments [25]. These needs should be
taken into consideration during the design of suitable
devices, starting from the fact that hematopoietic cells
do not require a surface to grow, being anchorage in-
dependent [63]. It is true that cells can be adapted to
a specific bioreactor design as a replacement to en-
gineering the bioreactor itself, but it must be noted
that this approach may not be available to most cell
therapies, as cells may become senescent after a cer-
tain amount of doublings [25]. It should also be
noted that some cells may need to be in extensive
contact with each other, such as TILs [64] and T
cells [65, 66], some of them also tend to form aggre-
gates that must be controlled for optimal growth [67],
usually by mechanical disruption of the clusters.
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Different reactor configurations may fulfill these re-
quirements to a varying extent. Given this framework, in
the next chapter we explore the currently available op-
tions and highlight the most relevant characteristics that
stand out from comparison.

Comparison of currently available act bioreactor
technologies

During the 1980s, the foundational protocols [68—71]
for TILs and LAK therapies were established to be car-
ried out in plates, flasks, bags and roller bottles [72]. At
the same time, several attempts of culturing lymphocytes
for cytokine production in stirred reactors were being
performed [73-77]. It was Knazek [78], Alter [79] and
Tanji [80] who in the late 1980s performed the first bio-
reactor runs intended for cell therapy, using a hollow
fiber perfusion system. In the 1990s, the use of the
hollow fiber technology increased significantly, while
stirred reactors were begun to be used for NK cell ACT
applications [81] and the rotating wall bioreactor was in-
troduced as a low shear device [82]. Stirred reactors con-
tinued into the 2000s as a solely experimental platform,
while the rotating wall technology was not used in clin-
ical applications, focused exclusively in microgravity
studies [83—88]. The late 2000s have seen in the usage
of the hollow fiber reactor a relative decline compared
to the rise in the application of the static culturing G-
Rex device (Wilson Wolf Manufacturing, Saint Paul,
MN) and the dynamic culturing rocking motion reactor.
Both were quickly adopted into clinical practice, stirring
the debate of high throughput static vs. dynamic lymph-
oid cell culturing. In the late 2010s, the hollow fiber re-
actor returned to wider usage thanks to the Quantum
System (Terumo BCT, Tokyo, Japan), and a renewed
interest in stirred reactors has been perceived from re-
cent publications [89, 90]. The late 2010s also saw the
introduction of the Z RP platform [91] (ZellWerk
GmBH, Oberkriamer, Germany) and the Prodigy system
[92] (Miltenyi Biotec, Bergish Gladbach, Germany). The
latter is an integrated autologous-targeted platform that,
despite of its novelty, has been extensively used. There is
also high expectation on the Cocoon system [42] (Lonza,
Basel, Switzerland) and rotating wheel reactors [11],
both announced to be capable of lymphoid cell cultur-
ing. Given this historical background, the literature re-
view presented here is based on 117 publications
fulfilling the eligibility criteria, of which 73 contained de-
tailed descriptions of the expansion protocols and re-
sults, categorized in Rocking motion reactors (16
results), Hollow fiber systems (18 results), Alternative
perfusion systems (4 results), stirred reactors (10 re-
sults), G-rex-device-based processes (14 results) and
Prodigy-system-based processes (11 results). From the
71 articles, 29 contained actual comparisons, mainly
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between a static protocol and a bioreactor culture with
the same stimulation/supplementation strategy.

Rocking motion bioreactors

In the rocking motion system, a configurable swinging
plate conveys a wave-like oscillation to the contents of a
culture bag. The continuous agitation ensures proper
oxygen transfer and medium homogeneity, which may
provide a higher kLa than achievable with a stirred re-
actor, resulting in greater maximal cell densities under
limited oxygen transfer conditions [93]. The agitation
pattern is set by the rocking angle and rate, oscillation
sequence and culture volume, which translates into a
specific fluid flow, mixing time, residence time and oxy-
gen transfer efficiency. This gentle agitation is consid-
ered to be a low shear method [94], which may cause
lower cell stress even at increased rocking rates, improv-
ing nutrient and oxygen transfer efficiency and promot-
ing cell growth without exerting detrimental mechanical
conditions to the culture [95, 96]. In contrast to a static
system, where cells lay closely together, the continuous
oscillation reduces the time that cells may spend in con-
tact with each other, which may not be optimal for cul-
tures requiring close cell-to-cell contact, such as TILs
[64] and T cells [65, 66], or adherent cells. Because of
that, most cultures performed in this reactor include a
static phase prior to the transfer to the rocking platform.

Current rocking motion devices can execute fully au-
tomated perfusion cycles, optimizing medium and sup-
plements consumption thus, decreasing the overall
process cost. Additionally, perfusion enables cells to be
expanded above 107 cells/mL, supporting high volume
cultures to be carried out in a single bag with a signifi-
cantly reduced volume (some bioreactor cultures need
about half the amount of media to harvest 10'° cells, as
compared to static conditions). Since bags are single use
there is no need for cleaning validation, they provide a
ready-to-use closed system decreasing turnaround time
and resource requirements, significantly reducing costs
in GMP operations [97]. Consequently, this platform is
frequently used academically and industrially during
phase 1 and 2 clinical trials [12]. The system also has
some disadvantages, including a difficult transition from
research scale to full scale GMP expansions. As it is ne-
cessary to purchase ancillary equipment additional to
the bioreactor [64], it has been argued that rocking mo-
tion bioreactors are an ideal solution for scaling the
manufacture up from 1L to 1000 L, but do not econom-
ically scale out from one patient to 1000 patients.

The rocking motion bioreactor has been successfully
used for T, NK, NKT and TILs expansions (Table 2).
Unfortunately, the results of these protocols are not eas-
ily comparable due to differences in cell stimulation
strategy, media composition, starting material and
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process parameters. The rocking rate may differ ac-
cording to the intended application, usually from 5 to
15 rocks per minute (RPM), and a perfusion strategy
is generally used, starting from perfusion volume of
250 up to 4000 mL/day. The perfusion begins when a
certain threshold is reached either by the decline or
increase in metabolites such as glucose, glutamine,
ammonia or lactate (especially TIL and T cell cul-
tures) or by the increasing cell density. Once the per-
fusion is started, the pH and nutrients fluctuate
within a narrow range with proven positive effects for
TILs and T cells [64, 100], while facilitating glycolysis
and glutaminolysis.

Despite of the difficulties to compare the outcome of
different studies, several authors have performed com-
parative analysis between static set-ups and the condi-
tions provided by a rocking motion reactor (Table 3). In
relation to expansion yield, although initially observed as
detrimental for growth [94], it has been shown that
rocking conditions do not induce significant changes in
the total fold of the expansion in case of T cells [66] and
NK cells [65, 97, 104], while boosting the growth of TILs
[107, 108], DCs and CIK [97]. However, one study found
no statistical difference in TIL expansion for static bags
compared to a rocking motion bioreactor [64], possibly
because of differences in the conditions of media ex-
change [108]. Similarly, non-perfused T cell cultures has
been found to lose viability as low as 80% by the end of
cultivation [100] because of critical deprivation of stimu-
lants and metabolites. Contrary to stirred cultures, the
use of shear protectant additives has been explored in
rocking motion systems, where attempts to expand TIL
in the absence of a surfactant (Pluronic F68), derived in
significant cell damage and consequent decrease in cell
count [64].

Although NK cells’ expansion fold in a bioreactor is
the same as in a static system, the proportion of NK
cell subpopulations have consistently shown to be
enriched under rocking conditions [65, 94, 97, 104].
Reactor-generated products contain fewer CD3+ T
cells and higher ratio of CD56 + CD3- NK cells than
in static set-ups, perhaps because T cells could prefer
non-dynamic conditions [65]. In the same way,
clinical-scale activated CD56+ cells in a rocking mo-
tion reactor have similar phenotype and function as
those derived from static cultures [105]. Unfortu-
nately, the available studies are not clear about the ef-
fect of rocking on cell subpopulations in TIL cultures:
the phenotype of TIL and genetically modified PBL
expanded in static bags and in a rocking motion bio-
reactor have been found to differ [64]. However,
under a different protocol, the numbers of CD4+ and
CD8+ populations in a TIL culture were reported to
be similar under dynamic and static conditions [107].
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Table 3 Summary of the results of comparative studies about static and rocking motion cultures

Expansion yield Purity Functionality changes
Author - Static Static Reactor Culture Static Reactor
Year system fold®  fold days
(vs.)
T cells
Tran [66] -  Bags 247~ 200-800 14 - >98% CD4+ Markers of cell activation increased. No detectable Treg cells
2007 1340 produced. Cytokines are produced normally.
NK cells
Sutlu [94] - Bags 530 77 20 31% NK 38% NK; Degranulation and cytotoxic activity are greater in bioreactor
2010 149% NKT cultures.
Spanholtz  Bags 759-  1435- 42 71+9% 92% + 2% Higher expression of activating receptors in bioreactor cultures
[104] - 1770 2657 CD56 + CD56 + 27% degranulation in reactor vs 14-18% in static cultures
2011 CD3- CD3-
Lapteva G-rex No difference 9 Fewer CD3+ T and a Potency is similar (phenotype and in cytotoxicity assays)
[65] - 2014 higher CD56 + CD3- NK
cells in reactor culture
Meng [97]  Bags No difference 15 Reactor improves the There is no significant modulation of the cells’ secretome.
-2018 percentage of NK cells Cytotoxicity is significantly higher for bioreactor cultures.
TIL
Sadeghi Bags 72+£11 2288+ 14 No difference in CD8+ No difference in Phenotype
[107] - 17.1 and CD4+ percentage
2011
Somerville  Bags 1259+ 1130+ 14 Lower CD8 and higher Increased IFN-y release to cognate peptide in reactor culture
[64] -2012 137 127 CD4 in reactor Significant phenotype differences
Donia Bags 1433+ 5576+ 14 - >97% CD3+ -
[108] - 887 1677
2014

Fold = Harvested cells / Seeded cells

In addition to the improvement of the proportion
of target cell subpopulation, the functionality of NK
cells expanded in rocking motion bioreactors has
been found superior than in static systems. Cells cul-
tivated in bioreactors show higher expression of acti-
vating receptors such as CD314 (NKG2D) and NCRs,
which correlates with a higher degranulation capacity
of bioreactor-expanded NK cells (27%) towards K562
cells compared to the 14-18% reached by NK cells in
static bag cultures [104]. This higher degranulation
profile was also found in a different study [94], as the
consequential increase in cytotoxicity [97]. T cell cul-
tures in rocking motion bioreactors have shown in-
creased expression of cell activation markers as
compared to pre-cultures [66].

Because of the versatility and successful application of
the rocking motion reactor, several studies have been
performed using this platform (Table 4). There have
been pre-clinical and clinical assays using the rocking
motion technology for chronic lymphocytic leukemia
[98, 99], metastatic melanoma [109, 110] and prostate
cancer [101]. It has also been successfully used to intro-
duce NMR markers during the expansion process [102].

In regard to on-line monitoring and control, bio-
capacitance probes have been successfully integrated

into bioreactor bags, and most rocking reactors collect
data from single-use DO and pH probes, which can be
used, with some limitations, as surrogate measures of
VCD to decide on perfusion and DO control, eventually
decreasing the frequency of sampling. Alternatively, dif-
ferential digital holography imaging devices allows for
the assessment of cell morphology features and culture
characteristics such as cell density, size and viability [11].
Recently, measurements of cellular downstream volatile
organic compound (VOC) emissions were made from
the gas exhaust lines in a rocking motion reactor, using
Headspace Sorptive Extraction (HSSE) and Stirbar Sorp-
tive Extraction (SBSE) coupled with GC-MS. Unique,
total VOC profiles correlated well to cell densities over
the course of 8 days. The majority of the relevant VOCs
decreased during cell expansion that opens the possibil-
ity to monitor the nutrients in the media by VOCs and
adjust perfusion rates accordingly [57].

Hollow fiber bioreactors

A perfusion reactor generally uses a semi-permeable
membrane to separate cells from the medium. With this
technique, culture medium continuously refreshes nutri-
ents and removes waste metabolites in a system that al-
lows specific flow rates on diverse membrane types,
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Table 4 Further applications of the rocking motion bioreactor
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Author - Type Cell Disease Target Expansion  Functional highlights
Year
Hami [98]  Pre- T Chronic T cells from Chronic 400 fold in High in vitro activity and T cell receptor repertoire
- 2004 clinical ~ cell lymphocytic  lymphocytic leukemia patients 13 days restored after expansion.

leukemia
Hollyman  Pre- T Chronic T cells from Chronic 87-668 fold  Transduced and expanded T cells were able to
[99] - clinical ~ cell lymphocytic ~ lymphocytic leukemia patients  in 13-18 eradicate the tumors in 90% of a mice population;
2009 leukemia days release criteria were met
Andersen  Clinical ~ TIL  Metastatic Tumor-Infiltrating Lymphocytes  2856-9975  Tumor regression was achieved and associated with a
[109] - Melanoma from Patients with Metastatic fold in 13- higher absolute number of infused tumor-reactive T
2016 Melanoma 36 days cells
Vavrova  Pre- T Prostate Prostate cancer reactive T cell 6 fold in Significantly greater cytotoxicity against LNCaP cells
[101] - clinical cell  Cancer effectors 8 days after expansion.
2016
Bjoern Pre- TIL  Metastatic Effect of Ipilimumab in - Ipilimumab induced marked changes in T cell infiltrates,
[110] - clinical Melanoma metastatic melanoma derived T which can still be detected despite heavy in vitro
2017 cells expansion.
O'hanlon  Research T Non-specific ~ 19F labeling for T cells - Cellular viability was maintained; ~90% of the T cell
[102] - cell preparation was labeled with reagent
2017

making it suitable for continuous cell culture applica-
tions, including monoclonal antibody production [111].
This perfusion principle can be achieved with many dif-
ferent membrane systems. However, the most common
solution is the capillary-based hollow fiber membrane.
In this system, separation occurs as the medium diffuses
between the intra-capillary (IC) and extra-capillary (EC)
sides and, depending on the maximum size allowed by
the membrane’s molecular cut-off, large macromolecules
such as cytokines or antibodies are permanently retained
on the side where they were originally added [112]. In
that way, only small molecules such as carbohydrates,
amino acids or small peptides can actually diffuse from
and into the compartment where the cells are growing
(usually in the EC space), while medium circulates
within the IC space [113]. The IC space provides large
surface for gas exchange and the cells are not subject to
flow therefore they are protected from shear stress [114].
The independent flows in the IC and EC spaces are gen-
erated by a set of pumps and valves that direct the fluid
through the hollow fiber unit. The basal medium passes
through a gas exchange module where sensors are usu-
ally placed to monitor parameters such as pH or DO,
and sampling systems are allocated for metabolites’ off-
line analysis. The flow in the EC circuit generally runs
countercurrent to the IC flow, ensuring homogenous
distribution of nutrients [115].

Perfusion reduces the need for extensive use of culture
vessels and multiple incubators [116]; around 80% de-
crease in manual labor and incubator space is possible
[78]. As the bioreactor uses medium equally or even bet-
ter than regular static systems [117], up to 30-50L of
medium that otherwise would be used for static cultur-
ing [118] may be economically used for perfusion.

Furthermore, the cells can grow to high concentrations
without the metabolites accumulating in the media.
Therefore, cells can achieve the required cell-to-cell
proximity for optimal expansion in contact demanding
cultures such as TILs. Additionally, multiple therapeutic
cell doses can be harvested from a single hollow fiber
cartridge, enabling periodic use of the bioreactor [78,
118]. This is also related to the fact that hollow fiber sys-
tems are able to support cell growth at densities greater
than 10® cells/mL [113]. While a bag cannot handle opti-
mally more than 2x 10° cells, a hollow fiber reactor
could handle at least twenty times that amount [119].
The possibility of executing cell transfection while the
expansion is being performed has also been found ad-
vantageous by some authors [120-122] as it combines
the process of vector concentration and vector-to-target
exposure into a single step.

As previously mentioned, the fluid compartmentalization
of hollow fiber bioreactors is advantageous due to the de-
creased physical stress on the cells. However, excessive recir-
culation of medium may still lead to negative effects [115].
Protein build-up in the EC space does not directly lead to
growth inhibition but its accumulation might also limit the
convective flow, creating micro-gradients [123]. Meanwhile,
reduced microenvironment homogeneity caused by the axial
and radial concentration gradients is challenging, as gravity
also influences cell distribution within the bioreactor. Some
counteract measures, such as periodical rotation, are usually
implemented to prevent the cells from sticking together, dis-
rupting the formation of significant detrimental gradients
[123]. Harvesting is also not a straightforward process in
some configurations, as the detachment and wash out of the
cells from the tight pores might require frequent
optimization [24] to retrieve as much cells as possible
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without significantly affecting their integrity and viability; this
problem is solved by using a suspension culture configur-
ation, that enables automated sampling and harvesting. In
addition, the usually high cell densities attained in the system
can be problematic if an electrical or other mechanical issue
occurs: the cells do not withstand a decrease in temperature
or change in pH as steadily as they do when grown at mod-
erate densities in bags (around 107 cells/mL). It also
must be noted that an entire bioreactor has to be
harvested to monitor parameters like cytotoxicity, cell
phenotype or cell count [72]. A representative sample
cannot be periodically obtained from the dense cell
culture without performing a major intervention in
the system that disrupts the cellular allocation within
the fibers while exerts significant shear to remove
cells from the thin capillaries, where cell populations
are more representative than the cells caught in re-
tention filters. Therefore, culture monitoring is based
mainly on physiochemical parameters, or off-line me-
tabolite analysis to the medium effluent, but not on
actual cell samples from the culture.

Similar to other expansion systems, it is not easy to
compare the performance of different hollow fiber pro-
tocols because of differences in the stimulation and cul-
turing strategies (Table 5). The reactor allows the use of
cytokines and other growth enhancing additives in high
concentration, while significantly reducing the use of
serum. Generally, the membranes have a molecular cut-
off of 4 to 17 kDa and a very high total surface for opti-
mal diffusion of metabolites. In a typical culture process,
cells are seeded at high densities into the EC space, usu-
ally after some days of static culture enrichment. But
there is at least one exception: the recently introduced
Quantum system keeps the cells in the IC space [111,
112], although it allows different seeding configurations
depending on the cells to be cultured. The perfusion
control strategy is based on the monitoring of the viable
cell density by correlating it with non-automated sam-
pling of glucose or lactate concentrations: Glucose
consumption and lactate generation rates exhibit loga-
rithmic behavior, correlating with the cells’ doubling
time [78, 127]. The culture status may be inferred based
on the glucose uptake rates as it reflects the proportion
of metabolically active lymphocytes [78]. Although glu-
cose consumption and lactate production rate have been
shown to be closely correlated in lymphoid cultures
[125], it is possible that lactate levels are not a good indi-
cator of growth inhibiting conditions or nutrient exhaus-
tion, as some cultures seem to grow independently of
this metabolite [131].

Initial studies have not found a significant difference
in the expansion yield of cells cultured in the hollow
fiber bioreactor as compared to the classical static cul-
turing methods [78]. However, later experiments shown
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conflicting results in this regard (Table 6). Cell expan-
sion is usually in the range of 100 to 200 fold after 1 to
2weeks of culturing, but newer technologies have
reached higher than 500 fold after 8days [111, 112].
These results should be weighed against the seeding
characteristics and the specific stimulation strategy. It
also seems that culture performance cannot be easily
predicted based on viability or inoculum density [129] as
total medium consumption differs between cell donors
as a function of the metabolic activity of their cells [78].
Even when the culture performance is highly variable, a
lag phase (lasting from 1 to 9 days) is generally observed
[117, 119, 129], then the glucose consumption and lac-
tate production rate change exponentially reaching a
plateau or peak after some days of culturing [121, 124].
More pronounced peaks for lactate generation can be
seen for high seed cultures, followed by a faster decrease
than observed in low seed cultures [112]. The lactate
production may start to increase right after inoculation
when a static pre-adaptation is performed [120]. Differ-
ent patterns of cell-produced cytokine concentrations
can also be observed during T cell expansions, as TNFaq,
IL-6, IFNy and GM-GSF are proportional to the extent
of lymphocyte multiplication, which may depend on cell
donor and to the formation of microenvironments, hin-
dering the supply of nutrients and oxygen to some cul-
tures [125].

With respect to product purity, cultures grown in
hollow fiber bioreactors have shown to consistently
achieve high levels of target cell fraction (Table 7). T
cells grown from TILs and PBMCs do not have statis-
tically significant differences in their CD4+/CD8+ ra-
tios [119, 124], however it has been reported that
CD8+ T cells prefer to expand in low-seed cultures,
while CD4+ T cells expand more in high-seed cul-
tures [112]. Furthermore, certain shifts in T cell sub-
populations can be higher in bioreactors compared to
static cultures [115]. The proportions of CD3+ cells
may also increase throughout TIL expansion pro-
cesses [119]. In general, the stimulation strategy has a
greater impact on the cell differentiation profile than
the culturing platform, because the stimulation proto-
col is specifically designed to induce a specific pheno-
type and may only be enhanced by the direct contact
of the cells with the stimulant, which corresponds to
the nature of the system. In the same way, bag and
hollow fiber cultures have shown similar surface anti-
gen profiles and cytotoxicity [78] with normal cyto-
kine production profile [129] and no functional
alteration upon re-stimulation as measured by IFN-y,
IL-2 and TNF-a secretion [112]. Reactor grown cells
also preserve the same biological properties as those
grown in static set ups [115] and T-cell products had
lower abundance of exhaustion markers [112] when
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Table 6 Performance differences between static and perfusion reactor cultures

Author -  Expansion Purity Functionality changes
Year Fold Days Static Fold Days
control
T cell
Lamers 526+213 14-17 Bag 2384 + 14— CD4/CDS8 ratio =051+ 0.23 vs. CD4/CD8 = NP
[124] - 168.7 17 044 +0.16 static culture
1994
Trickett 532+201 7-8 Flasks 712+ 7-8 NP NP
[127] - 428
2002
Jones [60] 17.7 fold 9 Flask - 9 Treg phenotype 93.7% for flasks versus Reactor cultures had 8-fold greater
2020 higher 97.7% for reactor. interleukin-10 stimulation index
than static
TIL
Knazek 124-1170  14-32 Bag No NP NP Bag and hollow fiber cultures has similar
[78] - 1990 difference surface-antigen profiles; Cytotoxicity was
similar in both systems
Hillman 20-60 7 Plate 3 7 Shift in the T cell subpopulations is more NP
[115] - pronounced in the bioreactor.
1994
Freedman 306+56 182+ Plate,  303.1 289 (CD4/CDS8 ratios do not have a statistically NP
[119] - 17 flask, significant difference; no difference in
1994 bag proportions of CD16+ and CD56

grown in the Quantum System. However, a reduction
in cytolytic activity at the end of the culture has also
been described [125] and an increase in the concen-
tration of cytokines or growth factors in the medium,
produced by the PBLs has been proposed as a reason
for overshadowing any inhibitory effects related to the
increased lactate levels [122]. There are also alterna-
tives available for perfusion reactors that were not
discussed here in details but were used previously for
ACT manufacturing (Table 8).

Stirred bioreactors

While hollow fiber reactors focus on highly efficient and
compact cultures, rocking motion systems specialize in
easily scalable platforms, the stirred reactor, as the most
widespread and classical bioreactor technology, excels in
tight process control and straightforward scale up due to
easy parametrization, ideal for process intensification.
These bioreactors are characterized by a central agita-
tion element, which keeps the medium in motion,
thereby maintains cells and stimulants in suspension and
provides homogeneous distribution of gases and nutri-
ents [35]. The vessel’s geometry, the shape of the impel-
ler and the selected mixing and aeration strategy
influence the culture’s yield and cell surface markers ex-
pression [138]. This translates into a versatile system
with high process control capability [89], that provides
an efficient mass transfer of oxygen and nutrients, high
robustness, precise process control and outstanding scal-
ability. These features enabled stirred reactors to be the

first platform employed for lymphoid cells culturing. It
was initially used for lymphokine production [73-77], al-
though it was later replaced as more efficient techniques
were available for cytokine manufacturing. After that,
diffusion of stirred bioreactor into cell therapy was slow
and mainly circumscribed to small-scale experimental
applications. The spinner flask has been frequently used
in that regard, as the simplest stirred vessel, having a
couple of side-arm vents for gas and medium exchange
and a central stirrer shaft [24]. This reactor is often used
as the first step to adapt new cell types to stirring [89].
Culturing cells for ACT in stirred reactors is mainly use-
ful in allogenic therapies, where process scale-up is more
important, contrary to scale out primacy with patient-
specific applications [11].

As hematopoietic cells are relatively sensitive to shear,
the mechanical stress induced by impellers has become
a main concern when using a stirred reactor. In that re-
gard, higher than 75 rpm has been found detrimental for
some T cell cultures [139], but such low shear rates may
unlikely to produce physical damage to the cells and it is
more plausible that the cells actually respond to the
transduction of fluid-mechanics forces at a molecular
level [63]. Additionally, a decrease in the rate of prolifer-
ation has also been observed when gas sparging is used
instead of surface aeration, as rupturing bubbles may
subject the cells to hydrodynamic forces that could affect
the expression of the IL-2R receptor [61]. This receptor
has been frequently found to be downregulated in cul-
tures subjected to stirring conditions [139, 140]. In
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Table 7 Performance of non-comparative cultures in hollow fiber reactors

Author - Expansion Purity Functionality changes
Year Fold Days Media
feed
[L]
T cell
Lamers 41-149 15 NR Predominantly CD3+ and Reduction in cytolytic activity at the end of the culture
[125] - CD8+
1999
Liu[126] - 2x10°-10° 50- NR 95-99% CD4 +CD3+ Tcells  50-95% of the cells had elevated expression of HLA-DR; (IL2R)-a chain
1999 70 with virtual elimination of expression was increased; 40 to 90% of CD25 levels higher than freshly
CD8+ cells isolated CD4+ T cells
Nankervis 117,450 (1st 13 22-24 90.9-98.8% CD3+ NR
[111] - generation)
2018
439-557 10 104-  988-99.5% CD3+ NR
(2nd 139
generation)
Coeshott  543-1079 8 19.9 91.9-94.5% CD3+; T-cell products had had low frequencies of cells bearing exhaustion
[112] - (high CDA4+ expanded preferentially — markers
2019 seeding)
951-1787 9 13.6 94.2-97.5% CD3+;
(low CD8+ expanded preferentially
seeding)
TIL
Lewko 17.3 223 40 96% T cells based on CD2+ Cells produced cytokines normally
[117,129] reactivity.
- 1994
PBL
Pan [120] 104-187 11- NR NR 57% transduction frequency
- 1999 12
Shankar ~ ~100 10 55 NR 1-10% transduction frequency
[121] -
1997
Stroncek  ~200 17 NR NR < 2.5% transduction frequency
[122] -
1999

addition to the proved downregulation of IL-2R, agita-
tion could include effects such as changes in gene and
protein expression, disturbances in plasma membrane
permeability and cell cycle and changes in other intracel-
lular signal pathways [141]. Due to the enhanced inter-
action between the cells and the stimulant agent,
demonstrated increase in cell expansion and phenotype
at high stirring levels with cultures that used stimulation
beads for cell activation [89]. Although it has been sug-
gested before [61], the use of shear protectant additives
has not been investigated yet in stirred reactors. These
additives may also prove useful in countering the nega-
tive effects observed on the IL-2R downregulation.
Stirred reactors have been applied for expanding T
and NK cells, although cell-to-cell contact-intensive cul-
tures have not been successfully executed yet. Protocols
are different (Table 9) but there are several common
points. As previously mentioned, almost every protocol
use a low stirring range between 50 to 70 rpm. The

seeding density is usually below 1 x 10° cells/mL and the
culture is kept at a low cell density throughout the dur-
ation of the expansion, implying a very high final culture
volume to attain clinically relevant cell counts on the
long run. Cell retention by filters has also been applied
for stirred vessels [144] but with no remarkable differ-
ences from non-perfused cultures. DO levels are set into
a 5 to 70% wide range. Interestingly, hypoxic conditions
have frequently been found ideal for cell growth [140,
145, 146] as the best cell expansion is usually obtained
by culturing at the lowest oxygen tension. This
phenomenon could be explained by the low mean O,
tension in the hematopoietic and lymphoid organ tis-
sues, that is closer to 40 mmHg (or 5% O, in the gas at-
mosphere), while the anatomical architecture of these
organs might expose cells to even lower O, tensions
[145]. In a similar manner, maximum T cell growth rate
has been found to increase at 38.5°C, although most of
the published culturing protocols used 37 °C [140].
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Productivity-wise, and probably because of the oper-
ational limitations to avoid any possible damage inflicted
by impellers, T cells cultured in stirred reactors experi-
ence little [89, 140] to insignificant [61, 139, 144] boost-
ing in their proliferation as compared to static systems.
T cell differentiation have also been found not to be im-
pacted by the agitation regime, with a similar phenotype
to static controls [89]. As with other expansion tech-
nologies, there is a high expansion variability for cultures
processed under the same conditions, likely due to raw
material variability. Contrary to T cells, stirred bioreac-
tors have been found to increase the total NK cell pro-
duction by 7 fold compared to static cultures [81],
however the application of this kind of reactor to NK
cells has not been further explored and there is need on
additional comparable results to conclude on its poten-
tial. Similarly, Peripheral Blood Mononuclear Cells
(PBMCs) cultured with 30rpm stirring speed have
shown comparable [147] or superior [148] expansion
levels than in static systems. As a comparison with simi-
lar cells, cord blood derived hematopoietic stem cells
(CB-HSC) have also been found to better expand in
stirred systems than in static culture, when agitated be-
tween 30 to 40 rpm [149, 150]. They also present a dif-
ferent expression of genes mainly responsible for
chemotactic activity DNA repair and apoptosis [151].
Stirred reactors were also tested for ex-vivo expansion of
encapsulated primary human T lymphocytes, but growth
rates were lower in dynamic conditions [152].

The possibility to develop robust control strategies in
the ACT field would be one of the main advantages of
stirred bioreactors; however, little research has been
published in this regard. Pierson et al. [81] tested on-line
laser turbidity measurement that reportedly correlated
well with cell counts. Recently [46], T-cells cultured in
stirred vessels fitted with Raman probes were used to de-
velop chemometric models for glucose (R =0.987), lac-
tate (R=0.986), ammonia (R=0.936), glutamine (R=
0.922), and glutamate (R=0.829). Univariate Raman
modeling for non-targeted analysis of the culture media
was found useful to track the nutrient depletion (glucose
and glutamine) and metabolite production (glutamate
and lactate), with similar accuracy to the chemometric
models. Despite of that, no further research on the
application of advanced process analytical technology
for stirred cultures in ACT has been done. Manual
sampling, coupled with at-line and off-line measure-
ments is routinely performed to measure other
process parameters such as cell density, viability, and
metabolites concentrations [11]. The lack of process
understanding has prevented the development of suit-
able mechanistic models which still have major dis-
crepancies between predictions and experimental data
[153].
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Culturing platforms specialized on ACT

Besides traditional bioreactors, derived from long estab-
lished bioprocess applications, some expansion technolo-
gies were developed to specifically address the
requirements of autologous and allogenic ACT. These
platforms aim to either provide a physiological-like en-
vironment, or to efficiently integrate, from cell acquisi-
tion to product formulation, the complex cell therapy
workflow into a robust and GMP compliant automated
system. Although these platforms have become available
just in the last decade, they have been extensively and
successfully tested. They are already implemented in
clinical practice and cell culture processes, that will be
discussed below, are evolved around the devices them-
selves, hence the different processes are categorized by
the culturing platforms they were performed on.

Processes with the G-rex flask

The G-rex flask is a cylindrical vessel, equipped with a
silicon membrane for gas exchange, that enables the
usage of a great amount of medium without requiring
mechanical assistance for oxygen transfer [106]. Its
geometry allows for a set of linearly scalable vessels with
a surface area from 5 to 500 cm® [154], starting from
permeable six well plates [155, 156], up to 4500 mL
flasks. The increased medium quantity, usually limited
by superficial gas diffusion to the cells, supplies nutrients
and allows waste dilution into a greater volume, while
enhancing close cell-to-cell contact [157], however, the
final cell density in a G-rex flask is mainly limited by gas
exchange rather than by exhaustion of nutrients [158].
The device includes an automated harvesting unit that
allows to perform the expansion in a fully closed system
[10]. The G-rex favors differential expansion of specific
cell subsets, as it allows oxygen-demanding cells to bet-
ter survive and proliferate with a more oxidative pheno-
type and higher levels of mitochondrial activity [159].
Furthermore, it could help to rescue certain lymphocyte
lines that can poorly grow in traditional culture devices
[159, 160]. Because of the static culture environment, G-
rex bioreactors excel in protocols that use APCs such as
TILs and antigen-specific T cells [11].

Compared to static systems, the G-rex decreases the
amount of manual labor by approximately four times
[158] and shortens manufacturing time of some T cell
protocols by half [161]. Even in protocols that couple
transfection and expansion, the materials’ cost is approxi-
mately 38% less than in a bag-based process [162]. As the
G-rex can be used for pre-REP operations, traditional
flasks can be entirely eliminated from the manufacturing
process [106]. On the other hand, cell expansion kinetics
is affected if the cells are disturbed, hindering process
sampling [12]. The G-rex flasks cannot incorporate real-
time visualization of the cell culture because of their
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standing nature [13]. Unfortunately, even when the G-rex
process is scalable, there is still a need for using several
flasks to get an adequate number of cells for treatment, in-
creasing cost and workload [33]. However, the versatility
of this device has allowed its application to diverse ACT
fields: the manufacturing of multi-virus-specific [163—
166], adenovirus-specific [167], cytomegalovirus-specific
[168] and EBV-specific [169] cytotoxic T-cells for infec-
tion control after hematopoietic cell transplantation. Fur-
thermore, the GMP manufacturing of NKG2D CAR-T
cells for acute myeloid leukemia and multiple myeloma
[170], gene-edited NK-92 and YTS cell lines expansion
[171] and the generation of TIL for ovarian epithelial can-
cer [172] were also made possible.

Most of the applications of the G-rex extensively use feeder
cells (Table 10), profiting on the enhanced close cell-to-cell
interaction. The platform allows expansion levels above 2000
fold for TIL, T cell and NK cell within 2-3 culturing weeks
using highly standardized protocols for GMP-grade cell
manufacturing. That includes peer-reviewed guides for CTL
from PBMC [182, 183] and UCB [184], NK cells [185], TILs
[186] and CAR-T cells [157]. When comparing its yield, the
expansion of T cells in the G-rex generates up to 100 [173]
to 1000 [158] times more cells than classical static culturing
techniques, but there are lower yield exceptions [175, 177].
In the same way, NK cells and TILs have also shown better
or similar expansion performance, but the difference is mod-
erate [106, 159, 180]. Processes in the G-rex flask also
achieve good results regarding cell purity and functionality.
The CD4/CDS8 ratio of T cells cultured in the G-rex flask
tend to be preserved [158, 160, 162], while the target cell
purity is generally above 90% [158, 173, 174]. NK cells have
also been produced with above 95% purity, even in complex
protocols derived from Umbilical Cord Blood [179]. In TILs,
the Phenotype has been found to be similar to static systems
[180], with no evidence for cloning selection [159].
Functionality-wise, T cells grown in the G-rex preserve their
cytolytic activity [158, 160, 176] and some research have
found better [177] to similar [162] cytokine expression profile
compared to static controls. The cytokine production of TIL
grown in G-rex flasks is similar to TIL produced with 24-
well plates, T-175 flasks, and bags [180].

Processes with the prodigy system

The Prodigy® system integrates cell washing, separation,
enrichment and expansion into a fully automated GMP
compliant workflow. Prodigy’s culturing function is exe-
cuted by a centrifugation chamber equipped with a
microscope camera [92]. The system is able to control
temperature, DO, pCO, and it can exchange media
while performing detailed stimulation protocols using a
single set of tubing [92, 187]. The expansion chamber
switches from static to dynamic culturing, applying short
centrifugation pulses in order to gently mix the cells
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after stationary intervals that promote cell contact and
clustering [188]. Its integrated enrichment and separ-
ation functionality has been successfully tested for
CD34+ hematopoietic stem cells [131, 189, 190], T cells
[191-194] and NK cells [195, 196], decreasing the risk of
contamination and increasing process consistency, while
reducing personnel and processing time [187], behaving
essentially as a “walk away” process for most of the cul-
ture period. However, the Prodigy system was designed
to be fully closed and automated, rather than to
maximize cell expansion. This characteristic is a limit to
use the system for protocols requiring large amounts of
cells [197]. Thus, if a vast amount of lymphocytes is re-
quired for infusion, there will be a need to perform sev-
eral expansions in multiple devices for a successful
therapy [198]. It is expected that new tubing sets with
enhanced culturing volume, or the integration of a
higher scale bioreactor within the platform [198] could
enable a fully automated system that is able to scale
from an initial expansion phase to a late cultivation stage
at higher culture volumes.

Most of the protocols developed for the Prodigy sys-
tem couple gene transfer and expansion (Table 11),
reaching transduction efficiencies in the range of 20—
30% [200, 201, 203], 50-60% [197, 202, 204] and 80%
[199]. Compared to rocking motion cultures, that re-
quire a pre-cultivation phase to generate enough cells, a
lower cell amount is needed to inoculate an NK [198] or
T cell culture [200, 201, 205]. The Prodigy-based lymph-
oid cultures have shown similar growth kinetics to static
systems, such as the G-rex [205], but final yield is usu-
ally lower [197, 198]. The maximum increase in cell
number is generally below 50 fold after 10-13 days of
culturing [187, 188, 197, 199, 202, 204] but there are
some higher yield exceptions [200, 203]. Despite of this,
over short periods of time, the observed fold expansion
is significantly higher than traditional methods, indicat-
ing a stable advantage of high yield in brief expansions
[202]. NK culturing protocols have consistently
reached target cell fractions around 99% [188, 198]
and T cells have been produced at around 95% purity
[187, 199, 203, 205]. The phenotype profiles of auto-
matically and manually expanded cells have been
found to be similar in NK [198] and T cells [197].
Gene expression analysis has shown just slight diver-
gences between NK cells expanded manually or
through automation and a similar IFN-y expression in
automated and manual NK cultures have been re-
ported [198]. However, IFN-y has also been found to
be decreased in Prodigy-based T cell cultures com-
pared to static protocols [187, 197]. Despite this, the
cytotoxicity of products from a Prodigy system have
been generally found to be compliant for their clinical
application [187, 188, 197, 201-204].
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Conclusions

The goal of this review was to describe and compare dif-
ferent bioreactors that are available for lymphoid cell ex-
pansion, summarizing their design features and overall
applicability to produce ACT products. Process yield,
purity and product functionality were compared to over-
all expansion results in the context of expansion proto-
col diversity across different devices. The dependency on
a carefully tuned stimulation strategy, high sensitivity to
initial conditions and process parameters, translate into
high unpredictability of the cultivation process. Reactors
are flexible enough to address various ACT challenges,
but also limited for some specific lymphocyte culture ap-
plications (Fig. 3) Lymphocytes are still frequently ex-
panded totally or partly in conventional, static culture
flasks or similar vessels. That is due to the fact that most
immune cell types can be grown using this simple and
cheap approach without special equipment, but also be-
cause those methods fulfill their purpose and, in some
instances, have been shown to be even more successful
than current bioreactors. The key difference between
static and dynamic bioreactor cultures resides in the
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possibility of process intensification through quality
driven approaches and the capacity of harnessing incre-
mental knowledge from ACT manufacturing in a sys-
tematic way, compensating for source variability and cell
complexity. Furthermore, the bioreactors’ ability to pre-
cisely control process parameters, mimicking in vivo
conditions better than in static cultures, could be benefi-
cial for product quality.

From the user perspective, the main challenges are
found in two directions: augment ACT scale and improve
process economics. That means increasing predictability
of critical process stages such as stimulation schedule,
feeding/splitting scheme, in-process testing or point of
harvest. During the transition to phase II/III clinical trials
and if cellular therapies for high impact cancers (e.g. lung
and pancreatic cancer) prove to be successful, a large pro-
duction scale has to be considered, needing thousands of
cell therapeutic doses per year. To get a stable manufac-
turing pipeline for the large-scale needs, tight process con-
trol through continuous monitoring in bioreactors must
be already extensively used in routine ACT expansion,
which is yet to be achieved. This will be instrumental in

Rocking

motion

Hollow fiber

Cells cultured (%)
N 50 KIW 19 LY 39
Ta  Omer
Minimum seeding
5 7
concentration (cells/mL) 10 10
Maximum volume (mL) 20 125
000
T cells Lower Lower
Expansion fold* NK cells ?
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Reactor design elements

Vessel size and scalability Wide range Limited Wide range Wide range Limited
Reusability Snglowse 0 ecel  munplense  SOIOWe
Process control Standard Standard Enhanced Limited Standard
Shear stress Low Medium High Low Low
:;;ﬂz:?::tation and Perfusion Perfusion Perfusion Fed-batch Fed-batch
Controlled gas transfer Controlled Controlled Controlled Non-controlled Controlled
Physiological congruency Low Cells in close Low Cells in close Cells in close

contact

Stirred G-rex process Prodigy
process
108 108 107
18 000 4 500 250
Better
Better Lower
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contact contact

Fig. 3 Summary of the features of the compared bioreactors. *

compared to static cultures in bags or flasks
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parameter targeting for optimization, contributing to-
wards process efficiency, increasing the accessibility of
therapies to patients.

From the research perspective, the efforts in the devel-
opment of ACT have been mostly product-oriented, with-
out thoroughly considering the importance of the
production process itself [14]. Bioreactors with associated
computational modeling and process control will be of
great benefit for understanding the mechanisms in which
process parameters interact with raw material attributes
and the selected stimulation strategy. In that way, cellular
metabolic profiles would also provide an additional
phenotypic information that can be used to guide cell fate
decisions directing the expansion of preferred cell subpop-
ulations in an automated fashion. This aspect of process
automation can be used to remove sampling requirements
and operator input on run conditions, thereby producing
a more consistent, metabolically driven control scheme.
The years to come will be framed by the transition to-
wards a process oriented and data intensive ACT para-
digm, that should translate current biological
understanding into a digitally driven predictive manufac-
ture approach, regardless of the design characteristics of
the culturing platform. Every bioreactor layout will still
define a specific niche within the immune cell therapeu-
tics, but only those that able to utilize batch-to-batch
process knowledge will remain competitive, as ACT is
made accessible to a wider range of patients demanding
higher flexibility and treatment opportunity.
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