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Abstract. Despite more than 70 years of research concerning 
medication for cancer treatment, the disease still remains one 
of the leading causes of mortality worldwide. Many cancer 
types lead to death within a period of months to years. The 
original class of chemotherapeutics is not selective for tumor 
cells and often has limited efficacy, while treated patients 
suffer from adverse side-effects. To date, the concept of 
tumor-specific targeted therapy drugs has not fulfilled its 
expectation to provide a key for a cure. Today, many oncology 
trials are designed using a combination of chemotherapeutics 
with targeted therapy drugs. However, these approaches have 
limited outcomes in most cancer indications. This perspective 
review provides a rationale to combine targeted therapy drugs 
for cancer treatment based on observations of evolutionary 
principles of tumor development and HIV infections. In 
both diseases, the mechanisms of immune evasion and drug 
resistance can be compared to some extent. However, only 
for HIV is a breakthrough treatment available, which is the 
highly active antiretroviral therapy (HAART). The principles 
of HAART and recent findings from cancer research were 
employed to construct a hypothetical model for cancer treat-
ment with a multi-drug regimen of targeted therapy drugs. 
As an example of this hypothesis, it is proposed to combine 
already marketed targeted therapy drugs against VEGFRs, 
EGFR, CXCR4 and COX2 in an oncology trial for non-small 
cell lung cancer patients without further treatment options.
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1. Overview of the mechanisms of anticancer drugs

Drugs for cancer treatment can be classified into the catego-
ries of chemotherapeutic drugs and targeted therapy drugs. 
Examples of chemotherapeutic drugs include alkylating or 
alkylating-like agents such as capecitabine, mitotic inhibitors 
such as paclitaxel and topoisomerase inhibitors such as irino-
tecan. All of these drugs act as cytotoxic or cytostatic agents 
by killing rapidly dividing cells.

Targeted therapy agents include endocrine therapy 
drugs such as tamoxifen, antigrowth factor drugs such as 
the monoclonal antibody trastuzumab against Her2 or the 
receptor tyrosine kinase inhibitor (RTKI), gefitinib against 
the epidermal growth factor receptor (EGFR) and anti-angio-
genesis drugs such as the monoclonal antibody bevacizumab 
against vascular endothelial growth factor (VEGF) or the 
RTKI sunitinib against VEGF receptors (VEGFRs) (1). All 
of these drugs act by specifically blocking signal transduction 
pathways involved in tumor development.

Historically, chemotherapeutic drugs were the first effec-
tive agents used against malignant diseases. In the 1940s it was 
discovered that a derivate of a chemical warfare agent, nitrogen 
mustard, was effective for treating lymphoma when applied 
to patients intravenously (2,3). Cytotoxic chemotherapies are 
based on the classical ‘principles of chemotherapy’ as defined 
by the observance that tumors exhibit a sigmoid-shaped 
Gompertzian growth curve and thus cytoxic drugs are most 
effective in killing tumor cells within the logarithmic growth 
phase (4). For many cancer indications, cytotoxic chemothera-
peutics are still the recommended first‑line therapy. These 
agents include the platinum-based drugs cisplatin or carboplatin 
for non-small cell lung cancer (NSCLC) (5) or capecitabine in 
combination with oxaliplatin for colorectal cancer (6,7). This 
class of drugs does not differentiate between cancerous and 
normal cells and thus induces systemic toxicity and adverse 
reactions (8,9). The current survival rates of cancer patients 
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mostly treated with cytotoxic chemotherapeutics and/or under-
going surgery and/or radiation therapy depends very much on 
the site of the primary tumor. Female breast in situ, uterine 
corpus and melanoma have 10-year relative survival rates of up 
to 100% (female breast in situ). In contrast the 5-year survival 
rate of patients with NSCLC and liver cancer is ~15% and in 
pancreatic cancer ~5% since cytotoxic chemotherapeutics are 
unable to cure metastatic disease even after successful surgical 
tumor resection (10,11). 

In contrast to cytotoxic chemotherapeutics, the concept 
of targeted therapy is aimed to specifically target a biological 
pathway that is critical for tumor development or tumor 
maintenance and that causes regression or destruction of the 
malignant process when it is inhibited (12). Endocrine therapy 
drugs were developed for inhibition or modulation of hormone 
receptors for hormone-sensitive tumors. The estrogen receptor 
modulator (SERM) tamoxifen was the first targeted therapy 
drug for anticancer treatment selectively inhibiting estrogen 
binding to its receptor (13). When administered as an adju-
vant therapy for primary treatment of estrogen receptor 
(ER)-sensitive breast cancer, tamoxifen was shown to reduce 
relapse and mortality rates (14), and to decrease recurrence 
rates in ER-positive breast cancer patients by 50% 15 years 
after diagnosis (13). 

Another example of targeted therapy drugs are inhibitors 
against the EGFR. EGFR is a well characterized example of 
a growth factor receptor which plays a central role in tumor 
development when becoming overexpressed and/or mutated. 
Overexpression and mutation of EGFR leads to proliferation, 
invasion of surrounding tissues, angiogenesis and distant 
metastasis (15). Activation of EGFR was also shown to 
influence resistance to cytotoxic chemotherapeutic agents. 
Intracellular signaling leading to all of these EGFR-mediated 
processes include the MAP kinase pathway, PI3K and Akt 
signaling. Several targeted therapy drugs have been approved 
by the FDA and EMEA for blocking the EGFR pathway 
either by binding to its ligand EGF (mAb panitumumab) or 
by inhibiting its tyrosine kinase activity (mAb cetuximab 
and RTKIs gefitinib and erlotinib) (16,17). Gefitinib (Iressa) 
for example is an orally available small-molecule RTKI (18) 
approved for the first‑line therapy of NSCLC patients with 
activating mutations of the EGFR tyrosine kinase domain (19). 
In a subgroup of the INTEREST trial including patients with 
activating EGFR mutations, gefitinib was shown to improve 
the progression-free survival (PFS) but not the overall survival 
(OS) when compared to docetaxel. The median survival of 
patients under gefitinib treatment was 14.2 months compared 
to 7.6 months in the overall population (20). 

Since the discovery of the impact of angiogenesis on tumor 
biology by Folkman (21) several angiogenesis targets have 
been confirmed, and small‑molecule RTKIs and monoclonal 
antibodies have been approved as targeted therapies for the 
treatment of different types of malignancies (22,23). One of the 
most prominent anti-angiogenic targets is the signal transduc-
tion by the VEGF via its receptors VEGR1-3. The monoclonal 
antibody bevacizumab (Avastin) binds to VEGF and was the 
first approved anti‑angiogenic therapy. Today bevacizumab is 
used as a first‑line therapy for colorectal cancer (CRC) and 
metastatic renal cell carcinoma (mRCC) (24). Several small 
molecule RTKIs that target VEGFRs have been approved 

for anticancer treatment. Among them are sunitinib (Sutent) 
for RCC and GIST, sorafenib (Nexavar) for RCC and inoper-
able HCC and vandetanib (Caprelsa) for late stage medullary 
thyroid cancer (25). However, the development of breakthrough 
targeted therapies based on anti-angiogenic and anti-growth 
cancer treatment has been unsuccessful until recently (26,27). 
Prolongation of survival by targeted therapies alone or in 
combination with cytotoxic chemotherapeutics often can only 
be achieved for several months to several years. Treatment of 
mRCC with sunitinib improved the OS by more than 2 years 
compared to treatment with interferon-α (28). Bevacizumab in 
combination with chemotherapy was found to prolong the life 
of patients with metastatic CRC only by 4 to 5 months (29). 
Drawbacks associated with the application of this class of 
drugs include resistance to anti-angiogenic therapies medi-
ated by the tumor microenvironment and stromal cells (30) 
and induction of tumor invasiveness (31). The most recent 
example of this failure is the revoke of FDA approval for the 
monoclonal anti-VEGF antibody bevacizumab for treatment 
of Her2-negative metastatic breast carcinoma at the end of 
2011 due to its unfavorable risk‑benefit profile. It could not be 
shown that bevacizumab significantly delays tumor growth or 
prolong the lives of women with breast cancer (32). Today, the 
design of clinical trials in oncology focuses on the combina-
tion of cytotoxic chemotherapeutics with targeted therapies. 
Biomarkers are used to stratify patients in order to predict the 
responsiveness for drug dose selection or to monitor therapy 
effectiveness of certain targeted therapy drugs (33).

2. Comparing the biological principles of tumor develop‑
ment and HIV infection

In many diseases of different origins, common underlying 
biological mechanisms play central roles. For example, the 
dysregulation of EGFR signal transduction is an important 
hallmark of certain malignancies as described above (17,34) 
and at the same time plays a critical role in poxvirus 
spreading (35). Inhibitors against EGFR developed for anti-
cancer treatment are effective against poxvirus infections (36). 
The observation and the analysis of common mechanisms in 
different types of diseases provide the opportunity to draw 
conclusions from the treatment of one disease to another. In 
a holistic model, the mechanisms of an HIV-1 infection and 
tumor development are comparable to a certain extent. These 
entirely different diseases have common features that follow 
the principles of the Darwinian evolutionary system. HIV-1 
comprises a viral genome of ~9,700 bases of single-stranded 
RNA (37) and replicates within an estimated average total 
of 10.3x109 virions/day (38). Thus, the disease driver of an 
HIV infection is primarily the replication rate (39) in combi-
nation with a high mutation rate introduced by the lack of 
proof-reading mechanism of the transcriptase enzyme (40) 
and secondarily the genetic variability (41). In tumor cells, the 
conditions are exactly opposite. The genome of a malignant 
human cell consists of ~3.2x109 base pairs, while its replication 
takes ~1-2 days (42,43). Thus, in tumors, the genetic heteroge-
neity instead of the replication rate is the primary evolutionary 
driver (44-47). Most importantly, in both diseases, in malig-
nancies and in HIV infections, the immune system is unable 
to control the disease due to the evolutionary drivers that steer 
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the processes of evasion from immunological responses. In 
HIV infections and in tumor development, these mechanisms 
include the generation of escape mutants and the suppression 
of the immune system (43,48-54). Additionally in tumor devel-
opment the regulation of rescue pathways plays a critical role 
to evade immunological responses (55,56).

3. Breakthrough in HIV treatment through the prevention 
of viral resistance using a multi‑drug regimen of targeted 
therapy drugs

Despite the anticipated common underlying biological 
mechanisms of HIV infections and tumor development, the 
development of an effective therapy concept against HIV 
was a great success while there is still no groundbreaking 
treatment for many types of cancer. At the beginning of the 
HIV epidemic, patients were treated with monotherapy of the 
nucleoside analogue reverse transcriptase inhibitor (NRTI) 
zidovudine developed in 1964. NRTIs selectively inhibit HIV 
reverse transcriptase and thereby specifically block transcrip-
tion of viral DNA from viral RNA. Even though this treatment 
exhibited some effect, the rates of progression-free survival 
were still low. In a hemophilic cohort of 111 patients treated 
solely with zidovudine and followed up for 11 years, the 
progression rates to AIDS, symptoms and death were as high 
as 85% (57). In 1996, only 16 years after the identification of 
HIV as the cause of AIDS, the breakthrough in HIV therapy 
was achieved when targeted therapy drugs were applied in 
a combinational protocol introducing the highly active anti-
retroviral therapy (HAART) (58). One year later the clinical 
superiority of a three-drug regimen over a two-drug regimen 
by using the selective protease inhibitor indinavir together 
with the NRTIs zidovudine and lamivudine was demon-
strated (59). Today, HAART consists of at least three drugs, 
including either a protease inhibitor or a non-NRTI (NNRTI) 
and two NRTIs. All three different drugs used in HAART are 
selective targeted therapy compounds against critical steps in 
the HIV-1 replication cycle. The drug class of HIV-1 protease 
inhibitors is among the first successful examples of highly 
selective targeted therapy drugs (60). A prospective cohort 
study evaluated the long-term effectiveness of HAART and 
showed a reduction in the progression to AIDS or death by 
86% (61).

The successful treatment of HIV by HAART shows that 
it is possible to control a disease that follows an evolutionary 
concept similar to cancer. In both diseases, primary evolu-
tionary factors, a high replication rate in HIV and a large 
genomic variability in cancer, define the route of evasion from 
immunological responses. HAART is successful because it is 
based on two key principles of treatment: i) high selectivity of 
drugs against disease‑specific targets, thus preventing severe 
toxicities, adverse reactions and damage of immune system 
components; and ii) effective combination of disease‑specific 
targets, thus preventing evolutionarily driven generation 
of escape mutants and drug resistances. Transferring these 
principles to cancer treatment would mean to address tumor 
targets as selective as possible reducing side-effects and to 
identify a multi-drug regimen of targeted therapy drugs for 
each type of malignancy preventing tumor cell rescue and drug 
resistance. However, at present most of the current anticancer 

drug therapies consist of chemotherapeutics that do not follow 
the principle of drug selectivity (5-7). These therapies lead to 
dose-dependent side-effects and adverse reactions but mostly 
have a modest to moderate effect on the malignant disease by 
prolonging survival times only by a few months to years at 
maximum (10). Most of these treatments have toxic effects on 
the hematological system and lead to opportunistic infections 
that have to be controlled in parallel to the chemotherapeutic 
treatment (8,62,63).

4. Implications for the design of a generic oncology trial 
with a multi‑drug regimen using targeted therapy drugs 
for NSCLC patients  not indicated for treatment

Lung cancer is the leading cause of cancer-related mortality 
worldwide. Histopathological grading identifies ~85% of lung 
cancers as NSCLCs and 15-20% as small-cell lung cancers 
(SCLCs). NSCLCs can be subdivided into squamous cell 
carcinoma and adenocarcinoma, accounting for 34 and 55% 
respectively, and into other subtypes such as large cell carci-
noma (64). For NSCLC cases up to grade IIIA, the standard 
of care is surgical resection of the primary tumor which can 
be supported by adjuvant chemotherapy and/or radiotherapy. 
However, most often NSCLC is diagnosed at advanced stages 
beyond stage IIIB. These tumors are treated with first-line 
neoadjuvant chemotherapies followed by tumor resection or 
alternatively combined with radiotherapy. First-line chemo-
therapies against NSCLC consist of platinum-based drugs 
(carboplatin or cisplatin) combined with third generation 
cytotoxic drugs such as docetaxel, paclitaxel, irinotecan, 
gemcitabin, vinorelbin and pemetrexed (5). Several targeted 
therapy drugs have been approved for the treatment of NSCLC. 
These include gefitinib, approved for first line therapy of 
NSCLC with activating mutations of the EGFR tyrosine 
kinase domain (19) and bevacizumab approved for treatment of 
non-squamous NSCLC in combination with platinium-based 
therapy (65). Another targeted therapy drug is crizitonib which 
inhibits the EML4-ALK fusion protein, an oncogenic driver 
in a small percentage of NSCLC patients (66). Second-line 
therapies include docetaxel, erlotinib, gefitinib, pemetrexed 
and platinum-based therapy (5). The 5-year survival rate for 
NSCLC patients is only ~15% (10) and thus the medical need 
for the development of effective treatment concepts for NSCLC 
patients is one of the greatest challenges for health care systems 
worldwide.

For the design of a clinical trial for NSCLC patients without 
further treatment options based on the concept of selectivity 
and adequate target combination as discussed above, four 
signaling pathways appear to be suitable targets against which 
drugs are already marketed in different indications:

VEGFR2‑VEGF. VEGF signaling is a well characterized target 
complex with proven importance for tumor angiogenesis and 
tumor development, including NSCLC (27). Among the VEGF 
receptors VEGFR2 facilitates tumor growth by inducing angio-
genesis in tumor endothelial cells (67). Evidence suggests that 
VEGFR2 signaling also influences the motility of tumor cells, 
such as in pancreatic cancer cells (68). Signal transduction by 
VEGFR2 is mediated through the Ras/Raf kinase pathway 
connected to MAP kinase signaling and the PI3K/Akt pathway 
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inducing angiogenesis by mediating cell proliferation and 
cell-survival of tumor endothelial cells (69). For blocking the 
VEGF/VEGFR2 signaling pathway, several targeted therapy 
drugs are available. These include the small-molecule RTKI 
sunitinib and the monoclonal antibody bevacizumab. Sunitinib 
is a multi-targeted tyrosine kinase inhibitor against VEGF 
receptors that also inhibits the activity of other tyrosine kinases 
shown to be involved in tumor growth (70). Bevacizumab is 
directed against VEGF and blocks binding of this ligand to 
VEGF receptors (71). Tumors that have been treated with selec-
tive VEGFR2 inhibitors develop hypoxic microenvironments 
by a compromised blood supply. It was shown that this effect 
is countered by upregulation of growth factors which have 
the capacity to replace VEGF and stimulate new blood vessel 
growth such as EGF and SDF1α as well as their receptors (30).

CXCR4‑SDF1α. The observation that treatment resistance to 
the blockage of VEGFR2 is mediated by EGF and SDF1α and 
their receptors qualifies these pathways as further potential 
targets for a multi-drug-regimen targeted therapy for NSCLC 
treatment. SDF1α and its receptors CXCR4 and CXCR7 were 
previously shown to be involved in tumor development and 
tumor metastasis (72-74). SDF1α signal transduction through 
CXCR4 is a well described pathway that leads to activation 
of JAK/Stat, MAPK/ERK and PI3K with phosphorylation of 
Akt (75,76). CXCR4 activation plays a role in tumor metastasis, 
induction of tumor growth and rescue of tumor cells from apop-
tosis (77,78). CXCR7 was recently identified as a receptor that 
affects tumor cell survival (79). SDF1α was shown to mediate 
the homing of hematologic stem cells to the bone marrow via 

CXCR4 signaling (80). High expression of CXCR4 correlates 
with insensitivity against treatment with sunitinib in mRCC 
and thus represents a possible mediator of therapy resistance in 
tumors (81). In addition, evidence indicates that SDF1α/CXCR4 
signaling induces EGFR activation in human trophoblast 
cells (82). Interestingly, a selective targeted therapy drug, 
plerixafor, against CXCR4 has been approved by the FDA for 
mobilization of hematopoietic stem cells from the bone marrow 
for collection from peripheral blood for autologous stem-cell 
transplantation in patients with non-Hodgkin's lymphoma 
(NHL) or multiple myeloma (MM) (83). Plerixafor shows an 
excellent safety profile even when administered in combina-
tion with cytotoxic chemotherapy in cancer patients (84). Most 
importantly, in an experimental setting, plerixafor was shown 
to be effective for the treatment of metastatic lung cancer, 
including NSCLC (72) and in inhibition of invasiveness of 
human CRC cells (85).

EGFR‑EGF. A further candidate of a targeted therapy 
multi-drug regimen is the EGFR oncogene pathway. Evidence 
for the increased expression of EGF in tumors treated with 
VEGFR inhibitors has been provided (30). As described 
above, inhibitors against EGFR signaling have already been 
approved for the treatment of EGFR-activated NSCLCs (19). 
Furthermore EGFR signal transduction steers similar intra-
cellular signaling cascades such as the SDF1α/CXCR4 axis, 
PI3K/Akt and MAPK (ERK1/2) (17) and thus may also be 
involved in drug resistance. In addition, EGFR was found 
to increase the expression of angiogenic factors such as the 
enzyme cyclooxygenease 2 (COX2) (86).

Figure 1. Hypothesis of overcoming the resistance to cancer treatment by the inhibition of different signaling pathways involved in non-small cell lung 
cancer (NSCLC) tumor growth by a multi-drug regimen of targeted therapy drugs. Intracellular signaling pathways activated by VEGFR, EGFR, CXCR4 
and E-prostanoid receptors (EP) in tumor cells and in endothelial cells found to be involved in NSCLC tumor growth and maintenance are shown. Recent 
observations indicate the existence of crosstalk mechanisms between several of these pathways leading to resistance against single-agent targeted therapies 
alone or in combination with chemotherapeutics. Multiple inhibition of intracellular connected pathways may overcome the tumor insensitivity for targeted 
therapies. Targeted therapy drugs such as sunitinib, gefitinib, etoricoxib and plerixafor are clinically evaluated and FDA approved. PGE2, prostaglandin E2; 
VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal growth factor receptor; COX2, cyclooxygenase 2.
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COX2‑E‑prostanoid receptors (EP). The COX2 metabolic 
pathway results in the production of prostaglandin E2 (PGE2) 
which activates G-protein coupled EP. COX2 is increased in 
cancer and other pathological conditions and is suspected to 
participate in carcinogenesis and in tumor angiogenesis. It was 
shown that the COX2 pathway indirectly induces the upregu-
lation of VEGF via the PKC pathway in NSCLC and in human 
lung fibroblasts (87,88). COX2 was reported to increase the 
expression of SDF1α and CXCR4 via PGE2 in myeloid-derived 
suppressor cells in ascites from ovarian cancer patients (89) 
and that it contributes to cell survival of human bladder 
cancer cells (90). In an experimental setting, the selective 
inhibition of COX2 reduced the growth of colon carcinoma 
cells in vivo (91). In malignant gliomas, COX2 inhibitors are 
currently been discussed for use in cancer treatment (92). 
Several selective targeted therapy drugs against COX2 [such 
as celecoxib (Celebrex) and etoricoxib (Arcoxia)] have been 
approved for the treatment of arthritis, osteoarthritis, dysmen-
orrhea and acute pain. The possible involvement in tumor 
development and the connection between COX2 signaling 
and the induction of VEGF, SDF1α and CXCR4 qualifies this 
enzyme as a potential candidate for a multi-drug regimen 
therapy for cancer treatment.

The combined use of inhibitors against VEGFR signaling, 
such as sunitinib or bevacizumab combined with the CXCR4 
inhibitor plerixafor and an inhibitor of EGFR signaling such 
as gefitinib and the COX2 inhibitor etoricoxib would block 
multiple signaling pathways in NSCLC. These pathways would 
be blocked at the receptor level while inhibiting multiple intra-
cellular connected downstream pathways involved in tumor 
development and treatment resistance (Ras/Raf, PI3K/Akt, 
Jak/Stat, MAPK, PKC) (Fig. 1). Thus, the simultaneous inhi-
bition of intracellular connected pathways in NSCLC tumors 
may overcome resistance mechanisms to targeted therapy 
drugs commonly noted in monotherapies or in a combina-
tion of targeted therapies with chemotherapeutics. All of the 
mentioned drugs are approved for different indications, and 
therefore their clinical profiles such as pharmacokinetics, phar-
macodynamics and toxicities are well known. They are readily 
available as study drugs for usage in a clinical trial.

In order to identify NSCLC patient subgroups that may 
respond to this therapeutic concept, inclusion criteria should 
require the proof of expression of the respective targets. 
Bronchoscopy is a standard diagnostic procedure in NSCLC 
that allows biopsy of tumor tissue. The collected tumor speci-
mens can easily be used for mRNA expression analysis of 
the respective targets by specific RT‑real time PCR or by a 
customized gene expression array.

Similar to treatment of HIV by HAART, the herein proposed 
combination of targeted therapy drugs for antitumor treatment 
would fulfill the requirement of i) being highly selective and 
ii) inhibiting multiple targets involved in disease mechanism 
simultaneously. This may offer the chance for NSCLC patients 
beyond treatment to achieve an antitumor effect.
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