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The current role of the virtual elements of artificial 
intelligence in total knee arthroplasty
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• The current applications of the virtual elements of artificial intelligence (AI), machine 
learning (ML), and deep learning (DL) in total knee arthroplasty (TKA) are diverse.

• ML can predict the length of stay (LOS) and costs before primary TKA, the risk of transfusion 
after primary TKA, postoperative dissatisfaction after TKA, the size of TKA components, and 
poorest outcomes. The prediction of distinct results with ML models applying specific data 
is already possible; nevertheless, the prediction of more complex results is still imprecise. 
Remote patient monitoring systems offer the ability to more completely assess the 
individuals experiencing TKA in terms of mobility and rehabilitation compliance.

• DL can accurately identify the presence of TKA, distinguish between specific arthroplasty 
designs, and identify and classify knee osteoarthritis as accurately as an orthopedic 
surgeon. DL allows for the detection of prosthetic loosening from radiographs.

• Regarding the architectures associated with DL, artificial neural networks (ANNs) and 
convolutional neural networks (CNNs), ANNs can predict LOS, inpatient charges, and 
discharge disposition prior to primary TKA and CNNs allow for differentiation between 
different implant types with near-perfect accuracy.

Introduction

Artificial intelligence (AI) is an iterative process by which 
a machine captures information, transforms it into 
knowledge, and produces reactions that modify the 
environment. AI is a broad concept, involving virtual 
(computing) and physical (robotic) elements (1). AI is 
ubiquitous in today’s society, as personal assistants (Alexa, 
Siri), viewing recommendation algorithms for video-on-
demand platforms (Netflix), image and video processing 
applications (FaceApp), and self-driving cars (Tesla) (1). AI 
has enormous potential for improving health care; within 
a few years, it is feasible that AI will change the way daily 
clinical practice is conducted (2).

In this article, we have analyzed the virtual elements 
of AI with respect to their usefulness in total knee 
arthroplasty (TKA) (Table 1). A PubMed (MEDLINE) and 
Cochrane Library search of studies related to the virtual 
elements of AI in TKA was analyzed. The key words used 
were ‘artificial intelligence AND TKA’. The main inclusion 
criteria were that the articles were focused on the virtual 
elements of AI. Studies not focused on such virtual 
elements were excluded. The searches were from the 
beginning of the search engines until 24 February 2022. 

The number of papers found was 93, of which 23 were 
finally chosen (Fig. 1).

What is artificial intelligence?

The term AI was established in 1956 by John McCarthy 
(3) who used this term to refer to computer capabilities 
and processes that are similar to human intelligence. AI 
implies a learning capacity, that is, the ability to perform 
tasks that have not been specifically programmed. An AI 
must be able to analyze information and make decisions 
in a similar way to a human being (4, 5).

Machine learning (ML) is a branch of AI that uses 
various systems and algorithms to learn and refine its 
operation through the use of data (6). Deep learning (DL) 
is a type of ML that can learn complex tasks by using large 
volumes of training information (7). DL uses an artificial 
neural network (ANN) composed of neurons arranged in 
a hierarchy. The network can process basic information at 
the initial level and forward it to the next level where it is 
integrated with data from other neurons and passed on to 
the next level. This process is performed iteratively until 
the system learns the task (e.g. analyzing, classifying, and 
segmenting radiological images) (8).
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Convolutional neural networks (CNNs) are a DL 
subtype that are highly effective in image processing. 
CNNs use a complex series of layers and learnable filters 
through which data is passed, resulting in a final layer or 
output layer. When comparing CNNs to a conventional 
ANN used in DL, CNNs use the location of pixels in images 
to decrease the computational processing complexity and 
parameter requirements per layer (9).

One of the major advantages of DL and CNNs is 
their ability to learn independently which features in 
the input data lead to the results once the output data 
has been labeled. Given that CNN training is repetitive, 
there is a relationship between the database size and the 
algorithm’s performance. DL algorithms require less time 
and computational power to analyze new data than other 
AI techniques (2).

Virtual elements of artificial intelligence 
(computer science) in TKA

This section reviews the current role and possible uses of 
ML and DL (ANNs and CNNs) in TKA.

Machine learning 

In Table 2, the main ML models and their characteristics are 
summarized: supervised learning, unsupervised learning, 
semi-supervised learning, and reinforcement learning.

Validity in making predictions

Validity in predicting TKA component size According to 
Kunze et al., predicting the size of prosthetic components 
for each patient before implanting TKA is crucial for 
avoiding the excessive costs associated with additional 
surgical trays and the morbidity associated with imperfect 
sizing (10). Kunze et al. demonstrated that ML algorithms 
can accurately predict the size of TKA components in real 
time. In their study, the authors analyzed 17 283 patients 
who underwent primary TKA between 2012 and 2020, 
with 9 different implant types. The primary variables were 
the final sizes of the femoral and tibial components 
extracted from automated inventory systems. Five ML 
algorithms were trained with routinely corrected 
demographic variables (age, height, weight, body mass 
index (BMI), and sex), using 80% of the study population 
and internally validated on an independent set of the 
remaining 20% of patients. The algorithm’s performance 
was assessed by precision, mean absolute error, and root 
mean-squared error. The accuracy of the stochastic 
gradient boosting (SGB) model was 83.6% for predicting 
a ±4-mm deviation in the true anteroposterior femoral 
diameter and 95% for predicting a ±1 deviation in the size 
of the true femoral component. The SGB model’s accuracy 
was 83% for predicting a ±4-mm deviation in the true 
medial/lateral tibial diameter and 97.8% for predicting a 
±1 deviation in the size of the true tibial component. 
Patient sex was the characteristic that most influenced the 
SGB model’s predictions for femoral and tibial component 
sizing. Subsequently, a TKA implant sizing application was 
created. The new ML algorithms published by Kunze et al. 
demonstrated good to excellent performance in predicting 
the size of TKA components. Patient sex played an 
important role in this prediction (10).

Table 1 Virtual elements of artificial intelligence (AI).

Machine learning (ML)
Deep learning (DL)
*Artificial Neural Networks (ANNs)
*Convolutional Neural Networks (CNNs)

Figure 1
Flow chart of our search strategy 
regarding the role of artificial intelligence 
(AI) in total knee arthroplasty (TKA). The 
main inclusion criteria were that the 
articles were focused on the virtual 
elements of AI. Studies not focused on 
such virtual elements were excluded.
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Validity in predicting length of stay and costs before pri-
mary TKA In 2018, Navarro et al. employed a predictive 
naïve Bayesian model to develop an ML algorithm using 
preoperative big data that could predict the length of stay 
(LOS) and inpatient costs after primary TKA (11). The 
study included 141 446 patients who underwent primary 
TKA. The algorithm’s performance was calculated using 
the area under the receiver operating characteristic curve 
(AUC (area under the curve)) and the percent accuracy. 
The ML algorithm required several parameters, such as 
age, race, sex, and comorbidity scores (‘risk of disease’ 
and ‘risk of morbidity’), demonstrating a high degree of 
validity, with an AUC of 0.7822 and 0.7382 for LOS and 
cost, respectively. As patient complexity increased, addi-
tional costs increased at levels of 3, 10, and 15% for mod-
erate, major, and extreme mortality risks, respectively. This 
ML algorithm demonstrated excellent validity in predict-
ing LOS and costs prior to primary TKA (11).

Validity in predicting transfusion after TKA Jo et  al. 
conducted a level II evidence study to identify preoperative 
variables to create an ML model and to provide a web-
based transfusion risk-assessment system for clinical use. 
The authors retrospectively reviewed 1686 patients who 
underwent TKA (12), collecting data on 43 preoperative 
variables, including medication history, laboratory values, 
and demographic characteristics. Variable selection was 
conducted using the recursive feature elimination 
algorithm. The transfusion group was defined as patients 
with hemoglobin levels <7 g/dL after TKA. A predictive 
model was developed using the gradient boosting 
machine, and the model performance was evaluated 
using the AUC. For external validation, data sets from an 
independent institution were tested with the model. Of 
the 1686 patients who underwent TKA, 108 (6.4%) were 
classified into the transfusion group. Six preoperative 
variables were selected, including preoperative 
hemoglobin level, platelet count, surgery type, tranexamic 

acid level, age, and body weight. The predictive model 
demonstrated good predictive performance using all six 
variables (AUC 0.842; 95% CI 0.820–0.856). Performance 
was also good according to external validation, using 400 
data points from an independent institution (AUC 0.880; 
95% CI 0.844–0.910). The web-based predictive model 
for transfusion after TKA using an ML algorithm with six 
preoperative variables was validated. The model proved to 
be simple and performed well, showing that it can be 
used prior to TKA to predict the transfusion risk, thereby 
enabling appropriate precautions to be taken for high-risk 
patients (12).

Validity in predicting patient dissatisfaction following 
primary TKA Kunze et  al. conducted a study on 430 
post-TKA patients to develop ML algorithms that could 
predict patient dissatisfaction (13). The authors performed 
a retrospective review of the patients between 2014 and 
2016 and considered the following preoperative variables 
for the prediction: demographics, medical history, flexion 
contracture, knee flexion, and outcome scores (patient-
reported health state, Knee Society Score (KSS) and KSS-
Function). Recursive feature elimination was employed to 
select features that optimized algorithm performance. Five 
supervised ML algorithms were developed by training 
with ten-fold cross-validation three times. These algorithms 
were then applied to an independent testing set of patients 
and evaluated by discrimination, calibration, Brier score, 
and decision curve analysis. Forty (9%) patients were 
dissatisfied with the outcome after primary TKA after a 
minimum follow-up of 2 years. The random forest 
algorithm achieved the best performance in the 
independent testing set not used for algorithm 
development (c-statistic 0.77, calibration intercept 0.087, 
calibration slope 0.74, and Brier score 0.082). The most 
important predictors of dissatisfaction were age, number 
of medical comorbidities, presence of one or more drug 
allergies, preoperative patient-reported health state score, 

Table 2 Machine learning (ML) models.

Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning

Data scientists supply input, 
output, and feedback to 
fabricate model (as the 
definition)

Uses deep learning (DL) to get 
conclusions and patterns through 
unlabeled training data

Fabricates a model through a combination 
of labeled and unlabeled data, a set of 
categories, suggestions, and exampled 
labels.

Self-interpreting but based on a system of 
recompenses and punishments learned 
through trial and error, looking for maximum 
reward. 

Example algorithms
*Linear regressions *Apriori *Generative adversarial networks *Q-learning
+Risk evaluation +Searcher +Policy creation
+Sales forecasting +Word associations +Audio and video manipulation +Consumption decrease

+Sales functions +Data creation
*Support vector machines *k-means clustering *Self-trained Naïve Bayes classifier *Model-based value estimation
+Image classification +Performance monitoring +Natural language processing +Linear tasks
+Financial performance 
comparison

+Searcher intent +Estimating parameters

*Decision tree
+Predictive analytics
+Pricing
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and preoperative KSS. This model demonstrated good 
discriminative ability in identifying patients at higher risk 
of dissatisfaction (13).

Validity in the identification of optimal sagittal component 
position in TKA In 2021, Farooq et al. attempted to find 
the optimal sagittal component position in TKA. Using ML 
algorithms, the authors performed a level III evidence 
study in which they identified the implant’s sagittal 
position that could predict the best results (14). The 
authors retrospectively analyzed 1091 TKAs (67% female). 
All were posterior cruciate ligament-retaining or sacrificing 
with an anterior-lip (49.4%) or conforming-bearing 
(50.6%) and were performed with modern perioperative 
protocols. Preoperative and postoperative tibial slope and 
postoperative flexion of the femoral component were 
measured with standardized radiographic protocols. The 
analysis groups were classified according to satisfaction 
scores and the KSS question ‘Does this knee feel normal to 
you?’ ML algorithms were employed to identify the 
optimal sagittal alignment zones that predicted higher 
satisfaction scores and that resulted in the knee ‘always 
feeling normal’. The mean age and median BMI were 66 
years and 34 kg/m2, respectively. The ML model predicted 
a higher likelihood of being ‘satisfied or very satisfied’ and 
that the knee ‘always felt normal’, with a tibial slope 
change closer to native (−2 to +2°) and a femoral 
component flexion of 0 to +7°. Poorer outcomes were 
predicted with any femoral component extension, femoral 
component flexion beyond +10°, and the addition or 
removal of >5° of the native tibial slope. That is, better 
patient-reported outcomes were predicted when 
approximation of the native tibial slope and incorporation 
of some flexion of the femoral component was achieved. 
Deviation from the native tibial slope and excessive femoral 
flexion or any extension of the femoral component pre-
dicted the poorest outcomes (14).

Validity of a wearable and machine learning-based 
surveillance platform

In a pilot study, Ramkumar et al. intended to validate the 
practicability of a remote patient monitoring (RPM) system 
in terms of the incidence of data interruptions and patient 
acceptance (15). Individuals downloaded the RPM mobile 
application before surgery to collect baseline activity and 
Patient-Reported Outcomes Measures (PROMs) data, and 
the wearable knee sleeve was paired to the smartphone 
during admission. The following parameters were 
collected up to 3 months after surgery: mobility (step 
count), range of motion, PROMs, opioid consumption, 
and home exercise program compliance. Validation was 
determined by the acquisition of continuous data and 

patient tolerance at semi-structured interviews 3 months 
after surgery. Of the 25 enrolled individuals, 100% had 
uninterrupted passive data collection. Of the 22 available 
for follow-up interviews, all encountered the system 
motivating and engaging. Ramkumar  et  al. stated 
that RPM offers the ability to more completely assess 
the patients experiencing TKA in terms of mobility and 
rehabilitation compliance (15).

Can machine-learning algorithms predict early revision TKA?

El-Galaly et  al. studied whether ML algorithms predict 
early revision TKA in the Danish Knee Arthroplasty Registry 
(16). They used the aforementioned Registry to construct 
models to foresee the probability of revision TKA within 2 
years of primary TKA. Age, post-fracture osteoarthritis, and 
weight were considered important preoperative factors 
within the ML models. During validation, the models’ 
performance was not different from the non-informative 
models, and with area under the curves (AUCs) ranging 
from 0.57 to 0.60, no models reached the predetermined 
AUC threshold for a clinical useful discriminative capacity. 
Although a number of well-known presurgical risk factors 
for revision were coupled with four different ML methods, 
El-Galaly could not build up a clinically useful model 
capable of predicting early TKA revisions (16).

The prediction of distinct results with ML models applying 
specific data is already possible

In a systematic review with grade III of evidence, 
Hinterwimmer et al. analyzed ML algorithms for outcome 
prediction in TKA (17). The studies presented in such a 
review showed fair to good outcomes (AUC median 0.76/
range 0.57–0.98), while heterogeneous prediction models 
were analyzed: complications (6), costs (4), functional 
result (3), revision (2), satisfaction after surgery (2), 
surgical procedure (1), and biomechanical properties (1) 
were studied. The modified Coleman Methodology Score 
median was 65 (range 40–80) points. The conclusion 
was that the prediction of distinct results with ML models 
applying specific data is already possible; nevertheless, 
the prediction of more complex results is still imprecise.

Deep learning 

Validity in detection and classification

Automated detection and classification of knee arthro-
plasty According to Yi et al., preoperative identification 
of TKA is important for revision surgery planning. How-
ever, up to 10% of implants are not identified before sur-
gery. The authors developed and tested the performance 
of a DL system to perform automated radiographic identifi-
cation of the presence or absence of a TKA, differentiate a 
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TKA from a unicompartmental knee arthroplasty (UKA), 
and differentiate two different primary TKA models (18). 
The authors collected 237 anteroposterior knee radio-
graphs with equal proportions of native, TKA, and UKA 
knees and 274 anteroposterior knee radiographs with 
equal proportions of 2 TKA models. Data augmentation 
was employed to increase the number of images for deep 
convolutional neural network (DCNN) training. A DL sys-
tem based on DCNNs was trained on these images. Receiver 
operating characteristic curves with AUC were generated. 
Heatmaps were created using class activation mapping to 
identify the image features most important for DCNN deci-
sion-making. The two DCNNs trained to detect TKAs and 
distinguish between TKA and UKA achieved an AUC of 1. 
Heatmaps demonstrated appropriate emphasis of arthro-
plasty components in decision-making. The DCNN trained 
to distinguish between the two TKA models achieved an 
AUC of 1. Heatmaps showed an emphasis of specific unique 
features of the TKA model designs, such as the femoral 
component anterior flange shape. The DCNN was able to 
accurately identify the presence of a TKA and distinguish 
between specific arthroplasty designs (18).

Validity in automated detection and identification

Validity in identifying arthroplasty implants from knee 
radiographs According to Karnuta et al., revisions and 
reoperations for patients undergoing TKA, UKA, and distal 
femoral replacement require accurate identification of the 
implant manufacturer and model. Failure to do so can 
delay medical care, increase morbidity, and increase the 
financial burden. The authors investigated whether a DL 
algorithm could accurately identify the TKA implant 
manufacturer and model from plain radiographs (19). 
They trained, validated, and externally tested a DL 
algorithm to classify TKA implants among nine different 
implant models from retrospectively collected 
anteroposterior plain radiographs. Performance was 
evaluated by calculating the AUC, sensitivity, specificity, 
and accuracy compared with a reference standard implant 
model from operative reports. The training and validation 
data sets consisted of 682 radiographs from 424 patients. 
After 1000 training epochs by the DL algorithm, the model 
discriminated nine implant models with an AUC of 0.99, 
an accuracy of 99%, a sensitivity of 95%, and a specificity 
of 99% on the external test data set of 74 radiographs. 
Ultimately, this DL algorithm, using single radiographs, 
differentiated nine TKA implants from four manufacturers 
with near-perfect accuracy (19).

Validity in preoperatively predicting value metrics for 
primary TKA  Ramkumar et al. developed and validated 
an ANN that learns and predicts LOS, inpatient charges, 

and discharge disposition prior to primary TKA. They also 
applied the ANN to propose a risk-based, patient-specific 
payment model (PSPM) commensurate with case 
complexity (20). Utilizing data from 175 042 primary TKAs 
from the National Inpatient Sample and an institutional 
database, an ANN was created to predict LOS, charges, 
and disposition utilizing 15 preoperative variables. 
Outcome metrics included accuracy and AUC for a receiver 
operating characteristic curve. Model uncertainty was 
stratified by All Patient Refined comorbidity indices in 
establishing a risk-based PSPM. The dynamic model 
showed ‘learning’ in the first 30 training rounds with AUC 
of 74.8, 82.8, and 76.1% for LOS, charges, and discharge 
disposition, respectively. The PSPM showed that as patient 
comorbidity augmented, the risk increased by 2.0, 21.8, 
and 82.6% for moderate, major, and severe comorbidities, 
respectively. The reported DL model showed ‘learning’ 
with acceptable validity, reliability, and responsiveness in 
predicting value metrics, offering the ability to 
preoperatively plan for TKA episodes of care. This model 
may be applied to a PSPM proposing tiered reimbursements 
reflecting case complexity (20).

Artificial neural networks 

Validity in making predictions

Artificial neural network prediction of same-day discharge 
following primary TKA based on preoperative and 
intraoperative variables In 2021, Wei et al. used an ANN 
model to determine the preoperative and perioperative 
variables that could predict same-day discharge for TKA 
patients (21). Data for their study were collected from the 
National Surgery Quality Improvement Program database 
from 2018. The authors included patients who underwent 
primary, elective, and unilateral TKA with the diagnosis of 
primary osteoarthritis. The authors analyzed demographic, 
preoperative, and intraoperative variables and compared 
the ANN model with a logistic regression model, which 
was a conventional ML algorithm. Variables collected from 
28 742 patients were analyzed for their contribution to the 
length of hospital stay. The ANN model’s predictability 
(AUC 0.801) was similar to that of the logistic regression 
model (AUC 0.796) and identified the following important 
predictors of same-day discharge: preoperative sodium 
level, international normalized ratio, BMI, age, type of 
anesthesia, operative time, dyspnea status, functional 
status, race, anemia status, and chronic obstructive 
pulmonary disease. Six of these variables were also 
statistically significant in the logistic regression analysis. In 
summary, both ANN modeling and logistic regression 
analysis revealed clinically significant factors for predicting 
the patients who can be safely discharged on the same day 
as the TKA procedure (21).
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Convolutional neural networks 

CNNs can identify and classify knee osteoarthritis as 
accurately as a fellowship-trained orthopedic surgeon

According to Schwartz et  al., the use of a CNN to 
classify osteoarthritis severity could significantly reduce 
variability. The authors therefore conducted a study to 
retrospectively obtain knee radiographs from consecutive 
patients presenting for an arthroplasty consultation (22). 
The images were graded by four TKA surgeons using the 
International Knee Documentation Committee (IKDC) 
scoring system. The intraclass correlation coefficients 
(ICCs) for surgeons alone and for surgeons with a trained 
CNN were compared with 4755 different images. Four 
trained surgeons graded 1780 human knees. The ICC 
among the four surgeons for all possible IKDC grades was 
0.703 (95% CI 0.667–0.737). The ICC for the four surgeons 
and the trained CNN was 0.685 (95% CI 0.65–0.719). The 
CNN was able to identify and classify knee osteoarthritis as 
accurately as an orthopedic surgeon (22).

Validity in the automated detection of implant loosening

In 2020, Shah et  al. evaluated the ability of various 
CNN models to diagnose prosthetic loosening from 
preoperative radiographs and investigated the inputs 
that could improve their performance (23). The authors 
analyzed 697 patients operated on for first revision 
total hip arthroplasty or first revision TKA between 
2012 and 2018. Preoperative anteroposterior and lateral 
radiographs and historical and comorbidity information 
were collected from the patients’ electronic records. Based 
on the surgical notes, each patient was defined as having 
loose or fixed components. The authors trained a series 
of CNN models to predict the diagnosis of loosening. 
The constructed CNN provided good results in detecting 
loosening from radiographs alone. The first model built 
with only the radiographic images as input had an 

accuracy of 70%. The final model, which was built by 
fine-tuning a publicly available model named DenseNet, 
combining the anteroposterior and lateral radiographs 
and incorporating information from the patients’ history, 
had an accuracy, sensitivity, and specificity of 88.3, 70.2, 
and 95.6%, respectively, on the independent test data 
set. The model’s performance was better in the total hip 
arthroplasty revision cases (accuracy of 90.1%) than in 
the TKA revision cases (accuracy of 85.8%). This study 
demonstrated that CNN can detect prosthetic loosening 
from radiographs. The model’s accuracy increased when 
highly trained public algorithms were employed and 
when clinical data were added to the algorithm (23). 
Table 3 summarises the main current uses of IA systems 
(virtual elements - informatics) in TKA.

Conclusions

The current use of the virtual elements (informatics) of IA 
in TKA offers several options of interest. ML can predict LOS 
and costs prior to a primary TKA; the risk of transfusion after 
a primary TKA; postoperative dissatisfaction after TKA; the 
size of TKA components; and poorer outcomes (deviation 
from the native tibial slope and excessive femoral flexion 
or any extension of the femoral component predict poorer 
outcomes). DL makes it possible to accurately identify the 
presence of TKA, distinguish between specific arthroplasty 
designs and identify and classify knee osteoarthritis as 
accurately as an orthopedic surgeon. ANNs can predict 
LOS, inpatient charges, and discharge disposition prior 
to primary TKA. CNNs can differentiate between different 
implant types with near-perfect accuracy and can detect 
prosthetic loosening from radiographs. A remote patient 
monitoring (RPM) system offers the ability to more 
completely assess the patients experiencing TKA in terms 
of mobility and rehabilitation compliance. The prediction 

Table 3 Main current uses for artificial intelligence (AI) systems (virtual elements – computing) in total knee arthroplasty (TKA).

System used Current uses of AI (reference)

Machine learning (ML) • Prediction of the size of TKA components (10).
• Prediction of the length of stay and costs before primary TKA (11).
• Prediction of the risk of transfusion after primary TKA (12).
• Prediction of the postoperative dissatisfaction after TKA (13).
• Prediction of the poorest outcomes: Deviation from the native tibial slope and excessive femoral flexion or any 

extension of the femoral component can predict the poorest outcomes (14).
• Validation of wearable and ML-based surveillance platforms (15).
• Prediction of distinct results with ML models applying specific data (17). 

Deep learning (DL) • Accurate identification of the presence of TKA and differentiation between specific arthroplasty designs (18).
• Differentiation between different implant types: A DL algorithm using plain radiographs can differentiate between 

nine TKA implants from four manufacturers with near perfect accuracy (19).
• Prediction of value metrics for primary TKA (20).

Artificial neural networks (ANNs) * Detection of perioperative factors that can predict discharge on the same day of surgery: preoperative sodium level, 
INR, BMI, age, type of anesthesia, operative time, dyspnea status, functional status, race, anaemia status, and COPD (21).

Convolutional neural  
networks (CNNs)

• Identification and classification of knee OA with the same precision as an orthopedic surgeon (22). 
• Detection of prosthetic loosening from radiographs. Its accuracy increases when using highly trained public 

algorithms and when clinical data are added to the algorithm (23).

COPD, chronic obstructive pulmonary disease; INR, international normalized ratio; OA, osteoarthritis.
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of distinct results with ML models applying specific data 
is already possible; nevertheless, the prediction of more 
complex results is still imprecise.
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