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A B S T R A C T   

Objective: The purpose of this study was to present the design, model, and data analysis of an interrupted time 
series (ITS) model applied to evaluate the impact of health policy, systems, or environmental interventions using 
count outcomes. Simulation methods were used to conduct power and sample size calculations for these studies. 
Methods: We proposed the models and analyses of ITS designs for count outcomes using the Strengthening 
Translational Research in Diverse Enrollment (STRIDE) study as an example. The models we used were 
observation-driven models, which bundle a lagged term on the conditional mean of the outcome for a time series 
of count outcomes. 
Results: A simulation-based approach with ready-to-use computer programs was developed to calculate the 
sample size and power of two types of ITS models, Poisson and negative binomial, for count outcomes. Simu
lations were conducted to estimate the power of segmented autoregressive (AR) error models when autocorre
lation ranged from � 0.9 to 0.9, with various effect sizes. The power to detect the same magnitude of parameters 
varied largely, depending on the testing level change, the trend change, or both. The relationships between 
power and sample size and the values of the parameters were different between the two models. 
Conclusion: This article provides a convenient tool to allow investigators to generate sample sizes that will ensure 
sufficient statistical power when the ITS study design of count outcomes is implemented.   

1. Introduction 

Interrupted time series (ITS) analysis is a strong quasi-experimental 
design that can be used to evaluate the effectiveness of a population- 
level intervention that is clearly defined at a given time point ([1–3]). 
ITS designs usually involve repeatedly collecting a particular aggregate 
level outcome pre- and post-intervention ([4,5]). The segmented time 
series regression model ([2]) with one discontinuity time point is the 
general tool used to evaluate such data, in which each segment can have 

a different level, trend, or both. That is, two-line segments are fitted 
simultaneously and separated at the intervention time point. A change in 
the “level” of the outcome is indicated by a discontinuity at the time 
point when the intervention was introduced, and the change in the 
“trend” is revealed by a change of slope. Statistical hypothesis tests [6] 
are typically used to detect changes in outcome after the implementation 
of intervention. ITS is typically used when randomized trials are infea
sible and has been extensively used on evaluating public health and 
health service interventions ([3,7]). The assumptions and advantages of 
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using ITS analysis have been thoroughly discussed ([8,9]). Although 
most studies have focused on aggregated level single-arm ITS design, 
two-arm ITS design ([4]) and individual level ITS models ([10]) have 
also been discussed. 

Modeling the time series of the observed count data is a more chal
lenging task than creating time series models for continuous data. Unlike 
modeling a normal time series of continuous data, according to Jung 
et al. [11], a potential model for the time series of the count data must be 
able to characterize both the dependence structure and the over
dispersion of data. Several models have been proposed and categorized 
into two types ([12]): observation-driven models, which bundle a lagged 
term on the conditional mean of the outcome; and parameter-driven 
models, driven by a dynamic process, which are reviewed by Cameron 
and Trivedi [13]. That is, observation-driven models directly model the 
conditional mean of current count data to historical data, and 
parameter-driven models can be considered to be a generalized linear 
model (GLM) with a pre-specified dependence structure. 

For the observation-driven models, the two most commonly used 
models are the generalized linear autoregressive moving average 
(GLARMA) model and the log-linear (LL) model. The GLARMA model 
was proposed by Shephard [14] and Davis et al. [15], and the LL model, 
first proposed by Zeger and Qaqish [16], has been further investigated 
by Fokianos and Fried [17,18], Woodard, Mateeson, and Henderson 
[19] and Douc, Doukhan, and Moulines [20]. Further discussion on 
theoretical properties, like the stationarity and ergodicity of the 
GLARMA and LL models, can be found in Dunsmuir and Scott [21] and 
Liboschik et al. [22]. The most common parameter-driven model is the 
Zeger model [23]. Considering the Gaussian linear process of the con
ditional mean of the outcome, the Zeger model was studied by Zeger 
[23] and Davis et al. [24]. Its equivalent logarithmic form was studied 
by Chan and Ledorter [25], Kuk and Cheng [26], Jung and Liesenfeld 
[27], and Jung and Tremayne [28]. 

Though count outcomes are the common practice in policy research, 
the ITS design of count outcomes has only made limited appearances in 
the literature. For instance, Walter et al. [29] modeled injury count data 
using the negative binomial log-linear model and fit the model by the 
maximum likelihood estimator. Wang, Olivier, and Grzebieta [30] 
considered the same model and compared the estimation performance 
between the maximum likelihood estimator, the full Bayesian estimator, 
and the empirical Bayesian estimator via simulation. However, the 
power of the statistical tests in ITS analyses with count data has never 
been studied. To address this gap, in this manuscript we conducted 
simulations to estimate the power and sample sizes in various settings. 
Here, we only considered the most basic two-phase single-arm ITS 
design for count outcomes. More complicated three-phase two-arm 
models are beyond the scope of this paper. A similar study on the 
two-phase ITS design of continuous data outcomes was conducted by 
Zhang, Wagner, and Ross-Degnan [6]. Herein, we solely focus on the 
observation-driven model for a time series of count data, in particular 
the LL models. We only consider the observation-driven models because 
they are designed to allow the likelihood to be evaluated easily, but the 
parameter-driven models usually involves high-dimensional integra
tion, which is computationally infeasible [15]. 

Table 1 
Estimated power testing H0 : β2 ¼ β3 ¼ 0 for the Poisson time series with a 
conditional mean model LL (0,1) when β2 þ β3 ¼ �0:25; ​ � 0:5; ​ � 1 based on 
200 simulated data sets and a statistical significance level of 0.05. The symbol “-” 
indicates that more than one fourth of the data sets cannot be successfully 
generated.  

γ1  Sample size 

18 24 32 48 56 64 80 96 

β2 þ β3 ¼ � 1  
� 0.9 0.08 0.18 0.33 0.78 0.94 1 1 1 
� 0.7 0.08 0.14 0.36 0.79 0.94 1 1 1 
� 0.5 0.11 0.21 0.38 0.82 0.96 1 1 1 
� 0.3 0.10 0.23 0.44 0.86 0.97 1 1 1 
� 0.1 0.12 0.27 0.45 0.89 0.98 1 1 1 
0 0.14 0.31 0.50 0.92 0.99 1 1 1 
0.1 0.15 0.33 0.54 0.93 0.99 1 1 1 
0.3 0.20 0.43 0.64 0.99 1 1 1 1 
0.5 0.29 0.56 0.79 0.99 1 1 1 1 
0.7 0.47 0.70 0.92 1 1 1 1 1 
0.9 0.88 1 1 1 1 1 1 1 

β2 þ β3 ¼ � 0.5  
� 0.9 0.05 0.10 0.12 0.28 0.47 0.63 0.94 1 
� 0.7 0.04 0.10 0.13 0.32 0.49 0.66 0.95 1 
� 0.5 0.05 0.12 0.15 0.33 0.52 0.69 0.98 1 
� 0.3 0.07 0.13 0.20 0.38 0.60 0.75 0.99 1 
� 0.1 0.08 0.15 0.18 0.48 0.66 0.85 1 1 
0 0.11 0.13 0.22 0.50 0.69 0.90 1 1 
0.1 0.11 0.15 0.25 0.54 0.76 0.92 1 1 
0.3 0.13 0.20 0.31 0.66 0.90 0.98 1 1 
0.5 0.17 0.27 0.38 0.91 0.97 1 1 1 
0.7 0.27 0.45 0.75 1 1 1 1 1 
0.9 0.74 0.97 1 1 1 1 1 1 

β2 þ β3 ¼ � 0.25  
� 0.9 0.03 0.07 0.06 0.15 0.15 0.22 0.43 0.71 
� 0.7 0.04 0.06 0.05 0.15 0.19 0.23 0.54 0.79 
� 0.5 0.04 0.10 0.07 0.16 0.17 0.26 0.47 0.83 
� 0.3 0.07 0.10 0.09 0.19 0.17 0.27 0.60 0.86 
� 0.1 0.05 0.10 0.08 0.17 0.26 0.32 0.65 0.97 
0 0.06 0.10 0.09 0.19 0.29 0.36 0.77 0.98 
0.1 0.07 0.09 0.14 0.21 0.30 0.36 0.80 1 
0.3 0.10 0.13 0.16 0.26 0.38 0.63 0.95 1 
0.5 0.13 0.14 0.18 0.39 0.67 0.85 1 1 
0.7 0.17 0.25 0.40 0.86 0.99 1 1 1 
0.9 0.40 0.69 0.99 1 1 1 – – 

β2 þ β3 ¼ 0.25  
� 0.9 0.06 0.06 0.06 0.15 0.17 0.21 0.46 0.74 
� 0.7 0.04 0.08 0.10 0.13 0.17 0.24 0.45 0.76 
� 0.5 0.05 0.08 0.07 0.15 0.19 0.26 0.51 0.86 
� 0.3 0.05 0.10 0.06 0.18 0.18 0.32 0.63 0.89 
� 0.1 0.07 0.12 0.07 0.17 0.23 0.35 0.69 0.93 
0 0.07 0.11 0.09 0.17 0.31 0.35 0.69 0.95 
0.1 0.07 0.11 0.11 0.22 0.30 0.40 0.79 0.99 
0.3 0.05 0.08 0.14 0.27 0.41 0.55 0.87 1 
0.5 0.10 0.13 0.15 0.39 0.63 0.80 1 1 
0.7 0.15 0.21 0.36 0.89 0.99 1 1 1 
0.9 0.26 0.42 0.97 – – – – – 

β2 þ β3 ¼ 0.5  
� 0.9 0.05 0.07 0.11 0.33 0.52 0.71 0.96 1 
� 0.7 0.04 0.10 0.13 0.35 0.57 0.71 0.93 1 
� 0.5 0.04 0.11 0.12 0.41 0.55 0.75 0.97 1 
� 0.3 0.07 0.12 0.17 0.47 0.64 0.86 0.99 1 
� 0.1 0.09 0.14 0.21 0.46 0.70 0.89 0.99 1 
0 0.09 0.12 0.24 0.52 0.76 0.94 1 1 
0.1 0.08 0.17 0.29 0.58 0.74 0.95 1 1 
0.3 0.13 0.15 0.30 0.69 0.89 0.98 1 1 
0.5 0.17 0.27 0.50 0.91 0.98 1 1 1 
0.7 0.33 0.55 0.93 1 1 1 1 – 
0.9 0.52 0.94 1 – – – – – 

β2 þ β3 ¼ 1  
� 0.9 0.15 0.22 0.44 0.91 0.98 1 1 1 
� 0.7 0.16 0.24 0.48 0.93 0.99 1 1 1 
� 0.5 0.20 0.29 0.52 0.92 0.99 1 1 1  

Table 1 (continued ) 

γ1  Sample size 

18 24 32 48 56 64 80 96 

� 0.3 0.21 0.36 0.56 0.96 0.99 1 1 1 
� 0.1 0.25 0.37 0.66 0.97 1 1 1 1 
0 0.32 0.48 0.70 0.99 1 1 1 1 
0.1 0.34 0.53 0.77 0.98 1 1 1 1 
0.3 0.45 0.69 0.90 1 1 1 1 1 
0.5 0.72 0.91 0.99 1 1 0.99 1 1 
0.7 0.98 1 1 1 1 – – – 
0.9 0.97 0.99 – – – – – –  
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2. Exemplar study: Strengthening Translational Research in a 
Diverse Enrollment (STRIDE) study 

The power and sample size calculation for the ITS design of count 
outcomes were motivated by the required statistical analysis of data 
generated from the STRIDE study, an ongoing five-year study aimed at 
developing an intervention to increase the engagement of African 
Americans and Latinos in translational research ([31]). Since the pri
mary outcome of the study is the number of African Americans and 
Latinos enrolled in ongoing translational clinical trials, to mitigate their 
historical underrepresentation in translational research, the STRIDE 
study is a representative example of the ITS design of count data. 

The STRIDE project is a partnership of the CTSAs (Clinical and 
Translational Science Awards program) at the University of Massachu
setts Medical School, the University of Alabama at Birmingham, and 
Vanderbilt University—three geographically diverse sites with large 
African American and Latino populations. The STRIDE intervention was 
motivated by previous studies of exposed barriers to research partici
pation ([32–34]). Participant and systematic barriers include limited 
research literacy, lack of trust stemming from historical abuses, lack of 
research staff training in appropriate cultural competency skills, and 
confusion of informed consent procedures in research. To overcome 
these barriers, the proposed multi-level intervention contains three 
components: (1) storytelling for the promotion of research literacy; (2) 
simulation-based training to improve culturally appropriate recruitment 
and informed consent; and (3) an electronic consent platform to enhance 
cultural competency. The STRIDE intervention builds synergistically on 
emerging work at each institution to create a new intervention that 
addresses barriers on multiple levels. The primary outcome of the 
STRIDE project is the number of recruitments of African Americans and 
Latinos, as well as the total recruitment. 

To test the effectiveness of the STRIDE intervention, we have 
recruited ongoing translational clinical studies at each of the three 
partnering CTSA hubs. Both the interventions and contemporaneous 
controls (i.e., clinical trials without STRIDE intervention) are introduced 
at each of the CTSA hubs. Each participating university layers the 
STRIDE intervention on one study, with another study serving as the un- 
intervened control. Thus, using the number of African American and 
Latino participants recruited, or the total number of participants, as the 
prime response variable (outcome), the STRIDE intervention will be 
evaluated by the two-arm ITS design and will include six ongoing 
translational research studies. Three studies will receive the interven
tion and comprise the study group, and the remaining three un- 
intervened studies will comprise the comparison group. The study out
comes are collected on a weekly basis. The change in study outcomes 
will be examined based on a two-phase framework (pre-implementation 
versus post implementation). 

3. Methods 

3.1. Design and analysis of a single-arm ITS study with count outcomes 

The STRIDE study has motivated our investigation of a time series 

Table 2 
Estimated power testing H0 : β2 ¼ β3 ¼ 0 for the negative binomial time series 
with a conditional mean model LL (0,1) when β2 þ β3 ¼ � 0:25; ​ � 0:5; ​ � 1 
based on 200 simulated data sets and a statistical significance level of 0.05. The 
symbol “-” indicates that more than one fourth of the data sets cannot be suc
cessfully generated.  

γ1  Sample size 

18 24 32 48 56 64 80 96 

β2 þ β3 ¼ � 1  
� 0.9 0.26 0.32 0.50 0.89 0.94 0.98 1 1 
� 0.7 0.27 0.32 0.53 0.89 0.97 1 1 1 
� 0.5 0.29 0.37 0.57 0.89 0.95 1 1 1 
� 0.3 0.32 0.41 0.60 0.93 0.97 0.99 1 1 
� 0.1 0.33 0.49 0.63 0.93 1.00 0.99 1 1 
0 0.36 0.49 0.66 0.96 0.99 1 1 1 
0.1 0.36 0.54 0.70 0.94 0.99 1 1 1 
0.3 0.39 0.59 0.79 0.95 1 1 1 1 
0.5 0.54 0.69 0.79 0.98 1 1 1 1 
0.7 0.67 0.84 0.91 1 1 1 1 1 
0.9 0.84 0.93 0.98 1 1 1 1 1 

β2 þ β3 ¼ � 0.5  
� 0.9 0.26 0.29 0.40 0.62 0.77 0.87 0.97 1 
� 0.7 0.28 0.31 0.43 0.65 0.79 0.87 0.97 1 
� 0.5 0.31 0.33 0.46 0.68 0.80 0.88 0.98 1 
� 0.3 0.33 0.36 0.50 0.72 0.86 0.90 0.97 1 
� 0.1 0.37 0.40 0.54 0.77 0.86 0.94 0.99 1 
0 0.39 0.43 0.54 0.81 0.84 0.93 1 1 
0.1 0.43 0.47 0.57 0.82 0.93 0.96 1 1 
0.3 0.38 0.55 0.65 0.85 0.94 0.98 1 1 
0.5 0.58 0.67 0.79 0.94 1.00 1 1 1 
0.7 0.66 0.87 0.88 0.97 0.98 1 1 1 
0.9 0.87 0.94 0.99 1 1 1 1 1 

β2 þ β3 ¼ � 0.25  
� 0.9 0.28 0.35 0.40 0.47 0.59 0.66 0.84 0.92 
� 0.7 0.29 0.37 0.40 0.52 0.55 0.60 0.89 0.95 
� 0.5 0.33 0.35 0.41 0.51 0.60 0.66 0.87 0.95 
� 0.3 0.36 0.38 0.47 0.57 0.73 0.77 0.88 0.95 
� 0.1 0.39 0.41 0.48 0.61 0.66 0.76 0.97 0.98 
0 0.39 0.46 0.49 0.70 0.79 0.82 0.90 0.99 
0.1 0.43 0.49 0.60 0.70 0.84 0.87 0.95 0.99 
0.3 0.46 0.56 0.63 0.80 0.86 0.93 0.97 1 
0.5 0.60 0.69 0.82 0.94 0.96 0.99 1 1 
0.7 0.76 0.85 0.93 0.98 1.00 0.99 1 1 
0.9 0.94 0.99 1 1 1 1 1 1 

β2 þ β3 ¼ 0.25  
� 0.9 0.33 0.42 0.51 0.63 0.70 0.77 0.84 0.93 
� 0.7 0.33 0.43 0.49 0.66 0.71 0.81 0.89 0.95 
� 0.5 0.37 0.47 0.53 0.59 0.72 0.78 0.91 0.95 
� 0.3 0.42 0.47 0.55 0.67 0.79 0.86 0.94 0.96 
� 0.1 0.47 0.48 0.60 0.81 0.79 0.89 0.95 1 
0 0.51 0.56 0.61 0.82 0.80 0.94 0.97 0.99 
0.1 0.59 0.61 0.65 0.85 0.88 0.94 0.99 1 
0.3 0.58 0.74 0.85 0.94 0.95 0.99 1 1 
0.5 0.80 0.86 0.96 0.98 1 1 1 1 
0.7 0.90 0.95 0.98 0.99 1 1 1 1 
0.9 0.99 1 1 1 1 1 – 1 

β2 þ β3 ¼ 0.5  
� 0.9 0.43 0.46 0.60 0.75 0.88 0.94 0.99 1 
� 0.7 0.44 0.52 0.56 0.75 0.88 0.94 0.99 1 
� 0.5 0.46 0.55 0.61 0.84 0.87 0.95 0.99 1 
� 0.3 0.49 0.57 0.66 0.83 0.92 0.97 0.98 1 
� 0.1 0.48 0.65 0.76 0.91 0.97 0.99 1 1 
0 0.57 0.69 0.76 0.90 0.97 1 1 1 
0.1 0.66 0.71 0.80 0.96 0.99 0.99 1 1 
0.3 0.78 0.86 0.90 0.99 1 1 1 1 
0.5 0.83 0.92 0.97 0.99 1 1 1 1 
0.7 0.96 0.99 1 1 1 1 1 – 
0.9 0.99 1 1 – – – – – 

β2 þ β3 ¼ 1  
� 0.9 0.58 0.69 0.82 0.96 1 0.99 1 1 
� 0.7 0.62 0.67 0.85 0.98 1 1 1 1 
� 0.5 0.64 0.73 0.90 1.00 1 1 1 1 

(continued on next page) 

Table 2 (continued ) 

γ1  Sample size 

18 24 32 48 56 64 80 96 

� 0.3 0.62 0.80 0.86 0.99 1 1 1 1 
� 0.1 0.74 0.84 0.94 1 1 1 1 1 
0 0.75 0.84 0.95 0.99 1 1 1 1 
0.1 0.82 0.91 0.98 1 1 1 1 1 
0.3 0.89 0.95 0.99 1 1 1 1 1 
0.5 0.94 1 1 1 1 1 1 1 
0.7 0.99 1 1 1 1 1 1 – 
0.9 1 1 1 1 1 1 – –  
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study design. In a two-phase ITS study, if all study subjects and sites are 
planned to be exposed to an intervention over time, then such a study is 
a single-arm ITS study. Let Yt represent the count outcome variable that 
is measured at time point t, let Tt be the actual or converted study time 
(in the simulation, we also considered the logarithm of the actual time to 
avoid model explosion) from the start to the end of the study, let Xt be a 
binary indicator for the second phase of the study, and let t0 be the time 
point after the onset of intervention. 

3.2. Observation-driven model 

Here, we give a brief introduction of the modeling framework for the 
observation-driven segment regression time series model of count out
comes. For a single-arm ITS design of count outcomes, a common kind of 
observation-driven time series build model on the logarithm of the 
conditional mean of the response Yt can be written as 

lnðμtÞ¼ β0þ β1Tt þ β2Xt þ β3ðTt � t0ÞXt þ gðF t� 1; θÞ (1)  

where F t� 1 ¼ fY0;⋯;Yt� 1 ; μ0;⋯;μt� 1g, μt ¼ EðYt jF t� 1Þ is the mean of 
Yt conditioning on the past responses and means, the function g joints 
current outcome with past outcomes that are correlated in the time se
ries, Tt is the actual time of the study, t0 is the time point of intervention, 
Xt is the binary indicator for the second phase of the study, and β0;β1;β2;

β3, and θ are unknown parameters. 
In observation-driven models, the effect of covariates on the outcome 

or its mean is complicated and difficult to interpret because the condi
tional mean also dependents on past outcomes ([15]). For the ITS 
design, the coefficient β0 is the regression intercept representing the 
starting level of the logarithm of the conditional mean, β1 is the slope of 
the logarithm of the conditional mean before the implementation of the 
intervention, β2 represents the change in the level of the logarithm of the 
conditional mean caused by the intervention versus non-intervention, 
and β3 represents the difference in the slopes of the logarithm of the 
conditional mean caused by the intervention versus non-intervention. 
The focus of the ITS analysis is to examine the significance of β2, 
which indicates an immediate intervention effect on the level change of 
the conditional mean, and the significance of β3, which indicates the 
intervention effect in terms of the change in the trend of the conditional 
mean. Note that the purpose of subtracting t0, the time point after the 
onset of intervention, from the study time Tt is to maintain the inter
pretation of the corresponding regression coefficients β3. 

Let ηt ¼ β0þ β1Tt þ β2Xt þ β3ðTt � t1ÞXt, while p and q are non- 
negative integers less than t. A variety of choices for g were proposed. 
For example, when gðF t� 1Þ ¼ θ ln Y*

t� 1 � ηt� 1, (model (1)) is the 
Zeger–Qaqish model [16], where Y*

t� 1 is a transition of the Yt� 1 

shielding influence from a zero value, such as Y*
t� 1 ¼ maxfYt� 1;cg, with 

s positive constant c; when gðF t� 1Þ ¼ Zt , where Zt ¼
Pp

j¼1
αjðZt� jþet� jÞþ

Pq

j¼1
γjet� j where et ¼

Yt � μt
νt 

is a scaling residual and νt is some scaling 

function of μt, and θ ¼ fall αj and γjg, the model is a generalized linear 
autoregressive moving average (GLARMA) model [14]; when gðF t� 1Þ ¼

Pp

j¼1
αj lnðμt� jÞ ​ þ

Pq

j¼1
γj lnðYt� j þ 1Þ, it is a log-linear (LL) model. Here, we 

will focus on LL models with low orders, i.e., small values of p and q. 
Specifically, we model the time series of counts via the LL model with 
p ¼ 0 and q ¼ 1, denoted by LL (0,1), which has the form 

lnðμtÞ¼ ηt þ ​ γ1 lnðYt� 1þ 1Þ: (2)  

Where the logarithm of the mean linearly depends on the logarithm of 
the last observation, which positively or negatively depends on γ1. Since 
we use some logarithm functions in this model, it is hard to develop 
formulas for the mean or the autocovariance function of lnμt or Yt. 

The most commonly used distribution for count data is Poisson dis
tribution, in which the conditional distribution of response Yt on past 
history F t� 1 is denoted by Yt jF t� 1 � PoissonðμtÞ, and the density has 
the form 

PðYt ¼ yjF t� 1Þ¼
expð � μtÞ

Γðyþ 1Þ
μy

t (3) 

Poisson distribution is simple and popular. However, Poisson dis
tribution is known to have equal mean and variance, which can be un
realistic in some settings. A more appropriate and flexible model for 
modeling count data with a larger overdispersion than Poisson (i.e., with 
greater variability) is negative binomial distribution. Denoting the 
conditional distribution of response Yt on past history F t� 1 to be 
Yt jF t� 1 � NBðμt ;φÞ, the density function for negative binomial can be 
expressed as 

PðYt ¼ yjF t� 1Þ¼
Γðφþ yÞ

Γðyþ 1ÞΓðφÞ

�
φ

φþ μt

�φ� μt

φþ μt

�y

(4)  

where φ > 0, with variance μt þ
μ2

t
φ . 

For many observation-driven models of count time series, the sta
tionarity and ergodicity of the process, which are used to develop con
sistency and asymptotic normality, are only partially discussed in some 
special and simple scenarios, the majority of which are still unclear. For 
Poisson responses with ηt ¼ η0 (constant), model (2) has a stationary 
distribution when jγ1j < 1 . More discussion on the stationarity and 
ergodicity of GLARMA and LL models can be found in Dunsmuir and 
Scott [21] and Liboschik et al. [22]. 

3.3. Simulation-based sample size and power calculation 

We used a simulation-based method to calculate the power of 
different statistical tests under different scenarios (different sample size 

Fig. 1. Surface plots of the estimated power for hypothesis test β2 ¼ β3 ¼ 0 of γ1 and sample size n. The left panel is for the Poisson time series with β2 þ β3 ¼ � 1; 
the right panel is for the negative binomial time series with β2 þ β3 ¼ � 1. 
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Table 3 
Estimated power testing H0 : β2 ¼ 0 for the Poisson time series with a conditional mean model LL (0,1) when β2 ¼ �0:25; ​ � 0:5; ​ � 1 based on 200 simulated data 
sets and a statistical significance level of 0.05. The symbol “-” indicates more than one fourth of the data sets cannot be successfully generated.  

γ1  Sample size 

18 24 32 48 56 64 80 96 

β2 ¼ � 1  
� 0.9 0.05 0.16 0.21 0.49 0.67 0.74 0.93 0.99 
� 0.7 0.06 0.17 0.25 0.53 0.65 0.77 1.00 0.99 
� 0.5 0.07 0.18 0.29 0.56 0.72 0.80 0.97 1 
� 0.3 0.10 0.24 0.30 0.60 0.77 0.87 0.98 1 
� 0.1 0.15 0.30 0.37 0.69 0.82 0.93 1 1 
0 0.15 0.31 0.38 0.75 0.87 0.98 1 1 
0.1 0.16 0.33 0.43 0.82 0.90 0.97 1 1 
0.3 0.23 0.39 0.57 0.90 0.99 1 1 1 
0.5 0.30 0.49 0.75 0.99 1 1 1 1 
0.7 0.46 0.67 0.95 1 1 1 1 1 
0.9 0.68 0.98 1 1 1 1 – – 

β2 ¼ � 0.5  
� 0.9 0.04 0.09 0.07 0.21 0.25 0.33 0.45 0.63 
� 0.7 0.05 0.10 0.09 0.20 0.25 0.35 0.45 0.69 
� 0.5 0.05 0.12 0.12 0.25 0.26 0.44 0.59 0.77 
� 0.3 0.07 0.13 0.15 0.29 0.31 0.45 0.65 0.86 
� 0.1 0.11 0.18 0.12 0.35 0.42 0.52 0.77 0.89 
0 0.11 0.17 0.16 0.39 0.46 0.55 0.80 0.99 
0.1 0.12 0.19 0.20 0.43 0.46 0.66 0.88 1 
0.3 0.15 0.23 0.25 0.60 0.73 0.87 0.98 1 
0.5 0.20 0.31 0.39 0.84 0.94 1 1 1 
0.7 0.22 0.41 0.75 1 1 1 1 1 
0.9 0.56 0.95 1 1 1 – – – 

β2 ¼ � 0.25  
� 0.9 0.03 0.05 0.06 0.12 0.13 0.11 0.16 0.22 
� 0.7 0.03 0.07 0.06 0.13 0.11 0.16 0.17 0.20 
� 0.5 0.04 0.08 0.07 0.14 0.14 0.14 0.19 0.25 
� 0.3 0.05 0.08 0.06 0.14 0.14 0.17 0.25 0.40 
� 0.1 0.07 0.11 0.07 0.16 0.20 0.17 0.29 0.47 
0 0.07 0.11 0.09 0.18 0.20 0.28 0.34 0.54 
0.1 0.09 0.13 0.10 0.14 0.22 0.27 0.43 0.63 
0.3 0.12 0.17 0.12 0.22 0.33 0.45 0.60 0.93 
0.5 0.13 0.15 0.25 0.43 0.56 0.74 0.98 1 
0.7 0.18 0.27 0.38 0.86 0.98 1 1 1 
0.9 0.33 0.72 0.99 1 – – – – 

β2 ¼ 0.25  
� 0.9 0.04 0.06 0.06 0.09 0.10 0.13 0.13 0.28 
� 0.7 0.04 0.09 0.05 0.11 0.11 0.17 0.17 0.23 
� 0.5 0.04 0.08 0.07 0.11 0.14 0.15 0.26 0.28 
� 0.3 0.05 0.10 0.08 0.12 0.19 0.16 0.31 0.34 
� 0.1 0.05 0.08 0.07 0.10 0.13 0.23 0.32 0.48 
0 0.07 0.10 0.10 0.15 0.17 0.19 0.35 0.50 
0.1 0.06 0.10 0.10 0.13 0.17 0.28 0.49 0.72 
0.3 0.09 0.11 0.10 0.25 0.40 0.45 0.76 0.97 
0.5 0.12 0.16 0.24 0.42 0.71 0.81 0.99 1 
0.7 0.13 0.27 0.49 0.94 0.99 1 1 1 
0.9 0.10 0.64 1 – – – – – 

β2 ¼ 0.5  
� 0.9 0.06 0.12 0.10 0.22 0.28 0.33 0.54 0.66 
� 0.7 0.07 0.12 0.13 0.25 0.39 0.46 0.58 0.68 
� 0.5 0.07 0.13 0.14 0.30 0.35 0.48 0.63 0.84 
� 0.3 0.12 0.12 0.15 0.35 0.36 0.52 0.79 0.94 
� 0.1 0.11 0.17 0.22 0.44 0.50 0.64 0.91 1 
0 0.11 0.165 0.21 0.46 0.53 0.73 0.92 1 
0.1 0.13 0.20 0.20 0.50 0.67 0.78 0.97 1 
0.3 0.16 0.21 0.43 0.79 0.86 0.96 0.99 1 
0.5 0.23 0.39 0.65 0.97 1 1 1 1 
0.7 0.43 0.72 0.95 1 1 1 1 1 
0.9 0.80 1 0.99 – – – – – 

β2 ¼ 1  
� 0.9 0.22 0.32 0.47 0.81 0.89 0.94 0.99 1 
� 0.7 0.24 0.35 0.51 0.84 0.89 0.95 1 1 
� 0.5 0.27 0.42 0.54 0.84 0.94 0.99 1 1 
� 0.3 0.33 0.46 0.70 0.90 0.97 1 1 1 
� 0.1 0.36 0.51 0.73 0.97 0.99 1 1 1 
0 0.42 0.59 0.80 0.98 0.99 1 1 1 
0.1 0.48 0.66 0.82 1 1 1 1 1 

(continued on next page) 
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Table 4 
Estimated power testing H0 : β2 ¼ 0 for the negative binomial time series with a conditional mean model LL (0,1) when β2 ¼ �1; ​ � 2; ​ � 3 based on 200 simulated 
data sets and a statistical significance level of 0.05. The symbol “-” indicates that more than one fourth of the data sets cannot be successfully generated.  

γ1  Sample size 

18 24 32 48 56 64 80 96 

β2 ¼ � 3  
� 0.9 0.02 0.05 0.32 0.91 0.96 1 1 1 
� 0.7 0.02 0.05 0.32 0.91 0.97 1 1 1 
� 0.5 0.03 0.05 0.34 0.94 0.97 1 1 1 
� 0.3 0.03 0.07 0.36 0.93 1 1 1 1 
� 0.1 0.03 0.08 0.40 0.94 0.99 1 1 1 
0 0.03 0.08 0.42 0.93 0.99 1 1 1 
0.1 0.03 0.11 0.43 0.93 0.99 1 1 1 
0.3 0.02 0.21 0.51 0.93 1 1 1 1 
0.5 0.07 0.22 0.53 0.97 1 0.99 1 1 
0.7 0.11 0.40 0.66 0.95 0.96 0.96 0.94 0.87 
0.9 0.22 0.50 0.66 – – – – – 

β2 ¼ � 2  
� 0.9 0.04 0.15 0.34 0.76 0.86 0.89 0.98 1 
� 0.7 0.05 0.18 0.39 0.78 0.87 0.94 0.99 1 
� 0.5 0.06 0.20 0.38 0.83 0.85 0.94 0.99 1 
� 0.3 0.07 0.21 0.42 0.84 0.96 0.95 0.98 1 
� 0.1 0.07 0.22 0.47 0.86 0.95 0.98 1 1 
0 0.07 0.24 0.50 0.84 0.95 0.97 1 1 
0.1 0.09 0.28 0.52 0.88 0.94 0.98 0.99 1 
0.3 0.12 0.34 0.58 0.87 0.93 0.98 1 1 
0.5 0.13 0.43 0.57 0.90 0.95 0.98 0.98 0.96 
0.7 0.25 0.50 0.67 0.93 0.92 0.92 0.90 0.54 
0.9 0.35 0.52 0.61 – – – – – 

β2 ¼ � 1  
� 0.9 0.06 0.11 0.20 0.34 0.36 0.45 0.57 0.65 
� 0.7 0.07 0.14 0.18 0.33 0.39 0.47 0.61 0.66 
� 0.5 0.09 0.17 0.22 0.36 0.37 0.55 0.62 0.69 
� 0.3 0.10 0.19 0.22 0.34 0.46 0.52 0.66 0.73 
� 0.1 0.13 0.19 0.22 0.40 0.51 0.53 0.64 0.72 
0 0.14 0.20 0.26 0.45 0.49 0.63 0.70 0.82 
0.1 0.13 0.23 0.26 0.42 0.52 0.58 0.72 0.73 
0.3 0.11 0.24 0.31 0.49 0.60 0.63 0.72 0.67 
0.5 0.20 0.29 0.35 0.51 0.59 0.63 0.49 0.38 
0.7 0.17 0.40 0.40 0.50 0.52 0.36 0.09 0.02 
0.9 0.31 0.31 0.35 – – – – – 

β2 ¼ 1  
� 0.9 0.15 0.23 0.28 0.42 0.44 0.52 0.56 0.71 
� 0.7 0.20 0.21 0.29 0.40 0.47 0.47 0.66 0.73 
� 0.5 0.18 0.24 0.29 0.41 0.46 0.52 0.66 0.77 
� 0.3 0.21 0.26 0.39 0.49 0.54 0.62 0.69 0.78 
� 0.1 0.17 0.32 0.39 0.56 0.59 0.62 0.72 0.82 
0 0.27 0.35 0.38 0.54 0.63 0.69 0.70 0.81 
0.1 0.24 0.27 0.39 0.56 0.61 0.59 0.73 0.80 
0.3 0.29 0.39 0.40 0.63 0.62 0.68 0.72 0.71 
0.5 0.32 0.42 0.56 0.62 0.62 0.67 0.60 0.58 
0.7 0.42 0.49 0.61 0.58 0.52 0.50 – – 
0.9 0.23 0.27 – – – – – – 

β2 ¼ 2  
� 0.9 0.53 0.64 0.75 0.88 0.94 0.93 0.98 0.99 
� 0.7 0.50 0.67 0.80 0.94 0.95 0.98 0.99 1 
� 0.5 0.58 0.67 0.81 0.94 0.96 0.99 1 1 
� 0.3 0.58 0.72 0.84 0.98 0.99 0.98 1 1 
� 0.1 0.67 0.77 0.86 0.98 1.00 0.99 1 1 
0 0.67 0.78 0.89 0.98 0.99 0.99 1. 1 
0.1 0.67 0.79 0.93 0.99 0.97 0.98 0.99 0.97 
0.3 0.79 0.82 0.88 0.92 0.97 0.97 0.94 0.93 
0.5 0.78 0.88 0.84 0.85 0.85 0.84 0.77 0.73 

(continued on next page) 

Table 3 (continued ) 

γ1  Sample size 

18 24 32 48 56 64 80 96 

0.3 0.64 0.83 0.96 1 1 1 1 1 
0.5 0.79 0.97 1 1 1 1 1 1 
0.7 0.99 1 0.97 1 1 1 1 1 
0.9 0.99 0.97 0.98 – – – – –  
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and parameter values) for the two-phase single-arm ITS design of the 
count outcomes. For an arbitrary two-sided statistical test with the null 
hypothesis H0 : β ¼ 0 versus the alternative H1 : β 6¼ 0, where β can be 
either a univariate regression coefficient or any combination of multiple 
coefficients defined in Section 3.2. Here, we considered three null hy
potheses in our simulation study: (i) β2 ¼ β3 ¼ 0, to test whether any 
changes (level, trend or both) exist after intervention; (ii) β2 ¼ 0, to test 
the change on level after intervention; and (iii) β3 ¼ 0, to test any trend 
changes after intervention. In this simulation-based sample size and 
power calculation, we considered the logarithm of actual time to avoid 
model explosion. β2 represented the change in the level of the logarithm 
of the conditional mean caused by intervention versus non-intervention, 
and β3 represented the difference in the slopes of the logarithm of the 
conditional mean caused by intervention versus non-intervention. For 
these three hypothesis tests, chi-square (Wald) tests were employed as 
test statistics, and the empirical power of these tests were calculated via 
simulation. 

For any statistical tests, the power under a pre-specified significance 
level is defined as the probability that rejecting the null hypothesis 
conditioning with the alternative hypothesis is true, i.e., 
PðReject H0jH1 is trueÞ. Since this probability is generally unknown, we 
used simulation to estimate the power. For the simulation-based 
method, a large number of datasets were randomly generated from the 
ITS model we introduced in Section 3.2, with pre-specified non-zero 
coefficients, and statistical hypothesis tests were conducted for each 
dataset. Then, the empirical power was estimated as the frequency that 
the null hypothesis was rejected divided by the total number of datasets. 
Denoting R as the number of datasets, this estimated power will 
approach the true power if the R is large enough. In our simulation 
study, we used R ¼ 200 and a significance level of 0.05 for all cases. 

We considered different scenarios for sample sizes, parameters, and 

correlation coefficients. For sample size n, i.e., the number of observa
tions over time, we considered the cases n ¼ 18; 24; 32; 48; 56; 64;
80; and 96, with equal numbers of observations uniformly distributed 
before and after policy intervention. For the negative binomial distri
butions, we specified the overdispersion parameter to be φ ¼ 2. The 
start value Y0 was set to be 0. We considered 3 hypothesis tests. For 
hypothesis test (i), we considered the different values of β2 þ β3, which 
are the expected level change plus the expected trend change after the 
intervention of conditioning on the same outcome history. In this case, 
we chose the parameter values to be �0:25; �0:5 and �1 for both the 
Poisson and negative binomial time series. For hypothesis test (ii), we 
considered the different values of β2, which is the expected level change 
caused by the intervention of conditioning on the same outcome history. 
For this test, with β3 specified to be 0, we chose the values of β2 to be �
0:25; �0:5; and �1 for the Poisson time series, and �1; �2; and �3 for 
the negative binomial time series. For hypothesis test (iii), we consid
ered the different values of β3, which is the expected trend change 
caused by the intervention of conditioning on the same outcome history. 
For this test, with β2 specified to be 0, we chose the values of β3 to be �
0:01; �0:05; and �0:1 for the Poisson time series, and �0:05; �0:1; and 
�0:25 for the negative binomial time series. Negative values for the 
parameters indicate a “decrease” (either level, trend, or both) after 
intervention, and positive values indicate an “increase” after interven
tion. We chose different parameter values between the Poisson and 
negative binomial models because negative binomial models usually use 
modeling count data with larger overdispersion than Poisson models. 
We also considered different values for coefficient γ1 in model (2), which 
represents the degree of dependence between the current conditional 
mean μt and historical outcomes. Here, we considered all cases from 
� 0.9 to 0.9, with a step of 0:2 and case γ1 ¼ 0, which represents the case 
with no correlation. 

Fig. 2. Surface plots of the estimated power for hypothesis test β2 ¼ 0 of γ1 and sample size n. The left panel is for the Poisson time series with β2 ¼ � 1; the right 
panel is for the negative binomial time series with β2 ¼ � 1. 

Table 4 (continued ) 

γ1  Sample size 

18 24 32 48 56 64 80 96 

0.7 0.70 0.78 0.74 0.74 – – – – 
0.9 – – – – – – – – 

β2 ¼ 3  
� 0.9 0.77 0.92 0.95 0.99 0.99 1 1 1 
� 0.7 0.85 0.87 0.98 0.99 1 1 0.99 1 
� 0.5 0.82 0.95 0.99 1 1 1 1 1 
� 0.3 0.89 0.98 1.00 1 1 1 1 1 
� 0.1 0.89 0.97 1.00 1 1 1 1 1 
0 0.93 0.96 0.99 1 1.00 1 1 1 
0.1 0.92 0.98 0.99 1.00 1.00 1 1 1 
0.3 0.93 0.97 0.95 0.96 0.97 0.97 0.96 0.97 
0.5 0.89 0.94 0.93 0.88 0.91 0.86 0.83 – 
0.7 0.77 0.79 0.71 – – – – – 
0.9 – – – – – – – –  
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Table 5 
Estimated power testing H0 : β3 ¼ 0 for the Poisson time series with a conditional mean model LL (0,1) when β3 ¼ �0:01; ​ � 0:05; ​ � 0:10 based on 200 simulated 
data sets and a statistical significance level of 0.05. The symbol “-” indicates that more than one fourth of the data sets cannot be successfully generated.  

γ1  Sample size 

18 24 32 48 56 64 80 96 

β3 ¼ � 0.10  
� 0.9 0.07 0.10 0.23 0.68 0.93 0.98 1 1 
� 0.7 0.08 0.11 0.26 0.76 0.97 1 1 1 
� 0.5 0.09 0.13 0.27 0.80 0.97 1 1 1 
� 0.3 0.09 0.12 0.27 0.82 0.99 1 1 1 
� 0.1 0.09 0.17 0.32 0.90 0.99 1 1 1 
0 0.12 0.17 0.34 0.94 1 1 1 1 
0.1 0.13 0.17 0.38 0.96 1 1 1 1 
0.3 0.15 0.24 0.51 0.98 1 1 1 1 
0.5 0.26 0.37 0.69 1 1 1 1 1 
0.7 0.38 0.53 0.93 1 1 1 1 1 
0.9 0.72 0.93 1 1 1 1 1 – 

β3 ¼ � 0.05  
� 0.9 0.05 0.07 0.11 0.24 0.49 0.69 0.94 1 
� 0.7 0.06 0.08 0.11 0.27 0.51 0.75 0.98 1 
� 0.5 0.09 0.08 0.14 0.31 0.55 0.77 0.99 1 
� 0.3 0.05 0.07 0.17 0.35 0.60 0.84 0.99 1 
� 0.1 0.06 0.08 0.15 0.40 0.67 0.89 1 1 
0 0.08 0.10 0.18 0.47 0.75 0.92 1 1 
0.1 0.07 0.11 0.19 0.55 0.84 0.96 1 1 
0.3 0.09 0.12 0.24 0.71 0.95 1 1 1 
0.5 0.16 0.18 0.35 0.87 1 1 1 1 
0.7 0.25 0.41 0.68 1 1 1 1 1 
0.9 0.43 0.79 1 0.99 1 1 1 – 

β3 ¼ � 0.01  
� 0.9 0.05 0.07 0.07 0.06 0.05 0.05 0.13 0.19 
� 0.7 0.05 0.09 0.05 0.09 0.07 0.09 0.15 0.19 
� 0.5 0.06 0.07 0.06 0.06 0.08 0.09 0.20 0.21 
� 0.3 0.05 0.09 0.08 0.07 0.07 0.11 0.16 0.33 
� 0.1 0.07 0.09 0.06 0.07 0.08 0.11 0.14 0.40 
0 0.08 0.09 0.08 0.08 0.09 0.12 0.19 0.38 
0.1 0.08 0.10 0.10 0.09 0.10 0.16 0.26 0.48 
0.3 0.09 0.09 0.08 0.12 0.11 0.19 0.34 0.72 
0.5 0.12 0.09 0.09 0.17 0.21 0.28 0.66 0.95 
0.7 0.14 0.15 0.14 0.24 0.42 0.70 1 0.99 
0.9 0.12 0.14 0.13 0.95 – – – – 

β3 ¼ 0.01  
� 0.9 0.07 0.07 0.06 0.08 0.10 0.08 0.14 0.19 
� 0.7 0.06 0.09 0.09 0.07 0.07 0.15 0.13 0.28 
� 0.5 0.06 0.10 0.07 0.10 0.06 0.11 0.19 0.25 
� 0.3 0.05 0.11 0.06 0.09 0.09 0.12 0.12 0.31 
� 0.1 0.09 0.10 0.09 0.09 0.07 0.14 0.18 0.37 
0 0.10 0.11 0.09 0.11 0.07 0.12 0.24 0.47 
0.1 0.08 0.12 0.10 0.09 0.12 0.15 0.34 0.50 
0.3 0.08 0.13 0.09 0.12 0.15 0.21 0.41 0.64 
0.5 0.11 0.10 0.12 0.16 0.25 0.36 0.64 0.90 
0.7 0.13 0.12 0.17 0.35 0.47 0.61 0.80 0.99 
0.9 0.16 0.11 0.06 – – – – – 

β3 ¼ 0.05  
� 0.9 0.08 0.10 0.16 0.45 0.50 0.78 0.98 1 
� 0.7 0.09 0.11 0.20 0.39 0.55 0.83 0.99 1 
� 0.5 0.09 0.12 0.20 0.49 0.66 0.82 1 1 
� 0.3 0.10 0.14 0.23 0.46 0.73 0.88 0.99 1 
� 0.1 0.12 0.15 0.17 0.58 0.78 0.94 1 1 
0 0.13 0.18 0.24 0.61 0.79 0.97 1 1 
0.1 0.13 0.18 0.25 0.71 0.88 0.98 1 1 
0.3 0.12 0.16 0.33 0.82 0.94 0.98 1 1 
0.5 0.13 0.22 0.49 0.87 0.97 0.99 0.99 0.97 
0.7 0.22 0.43 0.67 0.98 0.99 0.99 0.98 – 
0.9 0.22 0.30 0.83 – – – – – 

β3 ¼ 0.10  
� 0.9 0.13 0.19 0.36 0.90 0.99 1 1 1 
� 0.7 0.17 0.18 0.47 0.92 0.99 1 1 1 
� 0.5 0.16 0.23 0.43 0.95 1 1 1 1 
� 0.3 0.17 0.27 0.50 0.95 1 1 1 1 
� 0.1 0.19 0.25 0.53 0.97 1 1 1 1 
0 0.17 0.31 0.56 0.97 1 1 1 1 
0.1 0.20 0.32 0.64 0.99 1 1 1 1 

(continued on next page) 
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Table 5 (continued ) 

γ1  Sample size 

18 24 32 48 56 64 80 96 

0.3 0.19 0.40 0.75 0.98 1 1 1 1 
0.5 0.29 0.58 0.84 1 1 1 0.99 1 
0.7 0.48 0.71 0.88 0.98 0.98 – – – 
0.9 0.38 0.90 0.89 – – – – –  

Table 6 
Estimated power testing H0 : β3 ¼ 0 for the negative binomial time series with a conditional mean model LL (0,1), when β3 ¼ �0:05; ​ � 0:10; ​ � 0:25 based on 200 
simulated data sets and a statistical significance level of 0.05. The symbol “-” indicates that more than one fourth of the data sets cannot be successfully generated.  

γ1  Sample size 

18 24 32 48 56 64 80 96 

β3 ¼ � 0.25  
� 0.9 0.07 0.15 0.41 0.91 0.96 0.96 0.97 0.98 
� 0.7 0.08 0.15 0.41 0.94 0.95 0.96 0.97 0.99 
� 0.5 0.12 0.19 0.39 0.95 0.95 0.95 0.95 0.98 
� 0.3 0.13 0.20 0.44 0.94 0.95 0.96 0.95 0.95 
� 0.1 0.13 0.24 0.43 0.95 0.95 0.97 0.98 0.95 
0 0.15 0.25 0.46 0.93 0.94 0.95 0.97 0.95 
0.1 0.15 0.26 0.45 0.95 0.94 0.97 0.92 0.92 
0.3 0.18 0.31 0.51 0.94 0.95 0.93 0.94 0.89 
0.5 0.26 0.43 0.60 0.89 0.88 0.86 0.82 0.74 
0.7 0.32 0.51 0.65 0.68 0.66 0.64 0.55 0.48 
0.9 0.39 0.50 0.57 0.39 0.44 0.35 0.16 0.18 

β3 ¼ � 0.10  
� 0.9 0.08 0.09 0.19 0.51 0.73 0.86 1 1 
� 0.7 0.08 0.10 0.20 0.59 0.78 0.89 0.99 1 
� 0.5 0.09 0.12 0.19 0.55 0.80 0.92 1 1 
� 0.3 0.10 0.11 0.23 0.60 0.82 0.95 1 1 
� 0.1 0.08 0.14 0.24 0.61 0.83 0.93 1 1 
0 0.09 0.15 0.23 0.70 0.85 0.95 1 1 
0.1 0.11 0.18 0.27 0.72 0.84 0.99 1 1 
0.3 0.10 0.15 0.28 0.71 0.89 0.99 1 1 
0.5 0.17 0.26 0.37 0.73 0.87 0.95 1 0.99 
0.7 0.21 0.28 0.37 0.70 0.74 0.74 0.73 0.66 
0.9 0.30 0.36 0.34 0.39 – – – – 

β3 ¼ � 0.05  
� 0.9 0.09 0.09 0.10 0.18 0.27 0.36 0.71 0.89 
� 0.7 0.06 0.09 0.10 0.16 0.28 0.45 0.72 0.93 
� 0.5 0.09 0.08 0.10 0.21 0.28 0.44 0.72 0.93 
� 0.3 0.09 0.10 0.12 0.26 0.37 0.49 0.82 0.93 
� 0.1 0.09 0.12 0.12 0.27 0.40 0.54 0.79 1.00 
0 0.10 0.11 0.14 0.23 0.44 0.58 0.84 0.98 
0.1 0.11 0.10 0.17 0.26 0.39 0.56 0.87 0.99 
0.3 0.12 0.12 0.12 0.29 0.39 0.57 0.84 0.96 
0.5 0.17 0.16 0.18 0.32 0.43 0.60 0.81 0.93 
0.7 0.15 0.14 0.18 0.37 0.38 0.45 0.53 0.48 
0.9 0.21 0.17 0.17 0.14 0.07 – – – 

β3 ¼ 0.05  
� 0.9 0.10 0.11 0.09 0.16 0.30 0.30 0.49 0.66 
� 0.7 0.11 0.09 0.10 0.18 0.25 0.33 0.56 0.80 
� 0.5 0.12 0.13 0.11 0.23 0.31 0.40 0.65 0.81 
� 0.3 0.14 0.13 0.12 0.19 0.35 0.44 0.63 0.80 
� 0.1 0.10 0.10 0.12 0.24 0.29 0.36 0.61 0.74 
0 0.15 0.09 0.14 0.24 0.26 0.39 0.53 0.72 
0.1 0.10 0.15 0.13 0.20 0.27 0.33 0.49 0.66 
0.3 0.13 0.11 0.16 0.16 0.19 0.27 0.31 0.31 
0.5 0.17 0.13 0.10 0.16 0.14 0.12 0.15 0.12 
0.7 0.14 0.08 0.08 0.04 0.04 0.04 – – 
0.9 0.08 0.04 0.02 – – – – – 

β3 ¼ 0.10  
� 0.9 0.10 0.11 0.23 0.49 0.67 0.77 0.93 0.99 
� 0.7 0.11 0.13 0.25 0.53 0.69 0.82 0.93 0.98 
� 0.5 0.09 0.22 0.18 0.51 0.75 0.85 0.95 0.97 
� 0.3 0.14 0.18 0.26 0.56 0.72 0.84 0.93 0.98 
� 0.1 0.11 0.18 0.26 0.54 0.66 0.76 0.81 0.84 

(continued on next page) 
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4. Results 

Tables 1 and 2 show the estimated power for testing hypothesis (i) 
H0 : β2 ¼ β3 ¼ 0 for the Poisson and negative binomial time series for 
model (2), with β2 þ β3 ¼ �0:25; �0:5; �1; based on a significance 
level of 0.05. The estimated power increased as γ1, the sample size 
increased, or the values of the parameter became more significant (i.e., 
the absolute value of β2 þ β3 became greater). The trends of the esti
mated power of γ1 and sample size n are illustrated by the surface plots 
in Fig. 1. 

Table 3 and Table 4 show the estimated power for testing hypothesis 
(ii) H0 : β2 ¼ 0 for the Poisson and negative time series for model (2) and 
the pre-specified parameter values in the level change based on a sig
nificance level of 0.05. We considered β2 ¼ �0:25; �0:5; �1 for the 
Poisson time series in Table 3, and β2 ¼ �1; �2; �3 for the negative 
binomial time series in Table 4. For the Poisson models, the estimated 
power increased as γ1, the sample size increased, or the values of the 
parameter became more significant. For negative binomial models, the 
results were similar to those of the Poisson models, but the estimated 
power was decreased for very large values of γ1. The trends for the 
estimated power of γ1 and sample size n are illustrated by the surface 
plots in Fig. 2. 

Table 5 and Table 6 show the estimated power testing H0 : β3 ¼ 0 for 
the Poisson and negative time series with model (2) and the pre- 
specified values of the trend change parameter based on a significance 
level of 0.05. We considered β3 ¼ �0:01; �0:05; �0:10 for the Poisson 

time series in Table 5, and β3 ¼ �0:05; �0:1; �0:25 for the negative 
binomial time series in Table 6. Similar to the previous test, the esti
mated power increased as γ1, the sample size increased, or the values of 
the parameter became more significant for the Poisson time series. For 
the negative binomial time series, again, the estimated power increased 
first and then decreased as γ1 increased. This phenomenon can be more 
clearly observed for large values of the parameter. Further, when the 
value of the parameter was negative, the estimated power increased first 
and then decreased as the values of the parameter decreased. The dif
ference in the estimated power between the parameter values of the 
opposite signs is due to the fact that count data are defined based on the 
non-negative support. Thus, models are built on the logarithm of the 
conditional mean of the responses. The trends of the estimated power of 
γ1 and sample size n are illustrated by the surface plots in Fig. 3. 

For large absolute values of γ1, the time series were more likely to 
explode, i.e., the data in the certain time series can increase (or 
decrease) so fast that the computer program cannot generate values over 
a certain threshold because of this rapid expansion. It was also often 
impossible to generate a time series with the desired sample size. This 
situation usually happened for large sample sizes. Estimations do not 
exist for these exploded models, since data cannot be successfully 
generated, so the estimated powers are marked with the symbol “-” in 
the tables when more than one fourth of the simulations (more than 50 
times) could not generate a time series with the specified length. 

Table 6 (continued ) 

γ1  Sample size 

18 24 32 48 56 64 80 96 

0 0.14 0.19 0.23 0.53 0.64 0.74 0.76 0.74 
0.1 0.16 0.15 0.21 0.47 0.50 0.59 0.65 0.57 
0.3 0.12 0.17 0.23 0.28 0.30 0.32 0.36 0.36 
0.5 0.15 0.14 0.13 0.17 0.18 0.13 – – 
0.7 0.12 0.08 0.04 – – – – – 
0.9 0.07 – – – – – – – 

β3 ¼ 0.25  
� 0.9 0.31 0.45 0.68 0.94 0.94 0.95 0.96 0.94 
� 0.7 0.24 0.42 0.64 0.97 0.93 0.93 0.91 0.91 
� 0.5 0.19 0.41 0.72 0.89 0.90 0.91 0.87 0.82 
� 0.3 0.26 0.40 0.67 0.79 0.79 0.80 0.72 0.69 
� 0.1 0.27 0.36 0.56 0.62 0.61 0.62 0.56 – 
0 0.23 0.33 0.43 0.56 0.53 0.48 0.49 – 
0.1 0.22 0.29 0.45 0.38 0.41 0.34 – – 
0.3 0.20 0.27 0.22 0.19 0.20 – – – 
0.5 0.15 0.13 0.10 – – – – – 
0.7 0.07 – – – – – – – 
0.9 – – – – – – – –  

Fig. 3. Surface plots of the estimated power for hypothesis test β3 ¼ 0 of γ1 and sample size n. The left panel is for the Poisson time series with β3 ¼ � 0:1; the right 
panel is for the negative binomial time series with β3 ¼ � 0:2. 
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5. Discussion 

ITS is a powerful yet simple quasi-experimental design that has been 
widely applied to many population-based public health and health ser
vice intervention studies ([2,7]). In this article, we studied the models of 
ITS design for count outcomes. More specifically, we discussed low order 
log-linear models for ITS design, a special type of observation-driven 
model, with two distribution specifications (Poisson and negative 
binomial). Our study was motivated by the STRIDE study, which was 
designed based on the state-of-the-art power calculation method of the 
two-arm two-phase ITS design of continuous outcomes (the rate of Af
rican American and Latino participants recruited) proposed by Zhang 
et al. [6]. Because we were also interested in the number of African 
American and Latino participants recruited and the total number of 
participants, similar power calculation method using ITS design for 
count outcomes needed to be investigated. Herein, a simulation-based 
method was applied to demonstrate the power of hypothesis tests on 
level change, trend change, and the change of both (the sum of the level 
change and trend change) under different values of parameters, sample 
sizes, and autocorrelation coefficients (γ1) under pre-specified condi
tions. We focused our attention on single-arm ITS studies. Tests for 
two-arm ITS studies require future investigation. As anticipated, for 
Poisson models, the estimated power increased as γ1, the sample size 
increased, or the values of the parameter became more significant. For 
the negative binomial method, the estimated power increased as the 
sample size increased, or values of the parameter became more signifi
cant. However, the change of power showed a U-shape pattern as γ1 
increased for tests on level change and trend change and also increased 
as γ1 increased for the tests of the total change. Further, summarizing the 
results across the six tables, the power of the hypothesis tests with the 
same level of parameter values can vary widely depending on the type of 
tests (level, trend, or both) and the model specifications. 

Like most ITS designs, our simulation-based power and sample size 
calculations were based upon models at the aggregated data level. For 
instance, in the STRIDE study, the aggregate number of participants of 
African Americans and Latino descent will be collected weekly. How
ever, this type of analysis will not only lose information when individual 
level data are unavailable, but can also give an incomplete conclusion if 
the total number of participants increases simultaneously. Thus, 
although aggregate level ITS designs are the common practice, power 
and effect size calculations based on such an approach only consider the 
number of time tables, but not the number of observations at each time 
window. For this reason, individual level ITS designs for count data or 
ITS designs that account for the number of observations at each time 
window need to be further investigated. 

This study has several limitations. Firstly, we only considered 
observation-driven ITS models. Previous studies suggested that 
parameter-driven models are usually more complicated and computa
tionally intensive because full likelihood of these models involve high- 
dimensional integration. Yet parameter-driven models have better 
interpretability for their parameters than observation-driven models. 

Thus, the performance of parameter-driven models for ITS design, based 
on count outcomes, needs to be further studied and compared with our 
proposed models. Secondly, it may be too simplistic to assume that an 
intervention is implemented at a single time point. Using the STRIDE 
study as an example, it is reasonable to assume that a “ramp-up” period 
is required to allow the research assistants to complete their training and 
for the intervention to achieve full implementation. Further, the study 
contains a comparison group. Although the ITS study may still be valid 
with the absence of a control study ([7]), and adapt the three-phase 
design to a two-phase design ([35]), the strength of the inference will 
be weaker. Therefore, the power and effect size calculations of count 
outcomes for more complicated models like two-arm three-phase ITS 
design should be further investigated. Thirdly, as mentioned above, the 
integrated level ITS design does not consider the number of individuals 
at each timetable. Using the STRIDE study as an example, this limitation 
may yield incomplete conclusions, since we expect an increase in the 
number of African Americans, Latinos, and total participants. 
Individual-level ITS design could be a reasonable approach to overcome 
this issue, though only a few health policy studies ([36]) have taken such 
an approach. Fourthly, excessive zeros are an issue in health policy 
studies, including the STRIDE study. Our ongoing research seeks to 
extend our work to zero-inflated Poisson or zero-inflated negative 
binomial models. 

6. Conclusions 

Sample size and power calculations were conducted for ITS studies of 
count outcomes using an observation-driven model through the 
simulation-based methods presented in this article. Results varied 
among the different model specifications and the target of the study (i.e., 
investigating level change, trend change, or both). 
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Appendix 

This appendix includes the R program for conducting sample size and power calculations for the interrupted time series analysis of the count 
outcomes presented in this article. 

library(tscount) 
ITSC.single.group ¼ function(nsmp¼18, bet.inter, bet.time, bet.x1, bet.timex1, 

gam, time, time.intrv1, y0¼0, mu0¼3){ 
# nsmp: the sample size (the number of time points) 
# pchi.14: the upper quantile of chi-square (df) 
# time: a vector of time (start.time:final.time) 
# time.intrv1: indicator for onset of the intervention in time. 
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# Regression coefficients: 
# bet.inter: intercept coefficient 
# bet.x1: the coefficient for the binary indicator for the second phase of the study 
# bet.time: the coefficient for time 
# bet.timex1: the coefficient for the interaction of x1 and time 
# gam: the coefficient γ 
# mu0: the coefficient μ 
pchi.14 ¼ qchisq(0.95, 2) 
pchi.24 ¼ qchisq(0.95, 1) 
bet ¼ c(bet.inter, bet.time, bet.x1, bet.timex1 ) 
x1 ¼ c(rep(0,time.intrv1), rep(1,nsmp-time.intrv1)) 
logtime ¼ time 
logtime1 ¼ time-time.intrv1 
#——————— generate data ———————# 
x.t¼ model.matrix( ~ logtime þ x1 þ logtime1:x1-1 ) 
eta ¼ apply(cbind(1,x.t), 1, function(s){sum(s*bet)}) 
mu.lag ¼ mu0 
y ¼ rep(NA, nsmpþ1) 
y[1] ¼ y0 
for (i in 2:(nsmpþ1)){ 

e.lag ¼ gam*log(y[i-1]þ1) 
mu.lag ¼ exp(eta[i-1] þ e.lag) 
y[i] ¼ rpois(1,mu.lag) # or rnbinom 

} 
#——————— fit and test ———————# 
f.fit.LLA ¼ function(y, desg, y0, mu0,tst){ 

fit ¼ try(tsglm(y, model¼list(past_obs¼1), xreg¼desg, 
link ¼ "log", distr ¼ "poisson" ),silent ¼ T) # or "distr¼nbinom" 
if(class(fit)¼¼"try-error") tst¼-1 
if (tst ¼¼4){ 

est.q ¼ coef(fit)[4:5] #est 
covmatr ¼ try(solve(fit$info.matrix_corrected)[4:5,4:5],silent ¼ T) 
se.q ¼ try(se(fit)$se[4:5],silent ¼ T) #SE ¼sqrt(diag(covmatr)) 

if(class(se.q)¼¼"try-error"|class(covmatr)¼¼"try-error"){ 
covmatr¼NA 
se.q ¼ NA 
} 
Nloglik.tr ¼ scoring(fit)[1] # log-likelihood 
}else{ 
if(tst¼¼-1){ 
est.q¼NA 
se.q¼NA 
covmatr¼NA 
Nloglik.tr¼NA 
}else{ 
est.q¼NA 
se.q¼NA 
covmatr¼NA 
Nloglik.tr ¼ scoring(fit)[1] # log-likelihood 
} 
} 
list(est.q ¼ est.q, se.q¼se.q, Nloglik.tr¼Nloglik.tr, covmatr ¼ covmatr) 
} 
fit4 ¼ f.fit.LLA(y¼y[-1], desg¼x.t, y0¼y[1], mu0¼mu0, tst¼4) 
est ¼ fit4$est.q 
se.c ¼ fit4$se.q 
dif ¼ est/se.c 
if(any(is.na(dif))){ 

rej ¼ rep(NA,3) 
}else{ 

t23 ¼ dif^2 
est1 ¼ matrix(est,nrow¼1) 
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t1 ¼ est1%*%solve(fit4$covmatr)%*%t(est1) 
rej ¼ (c(t1> pchi.14 ,t23> pchi.24)) 

} 
rej 
} 
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