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ABSTRACT While circulating cell-free DNA (cfDNA) is becoming a powerful marker for
noninvasive identification of infectious pathogens in liquid biopsy specimens, a microbial
cfDNA baseline in healthy individuals is urgently needed for the proper interpretation of
microbial cfDNA sequencing results in clinical metagenomics. Because noninvasive prena-
tal testing (NIPT) shares many similarities with the sequencing protocol of metagenomics,
we utilized the standard low-pass whole-genome-sequencing-based NIPT to establish a
microbial cfDNA baseline in healthy people. Sequencing data from a total of 107,763 pe-
ripheral blood samples of healthy pregnant women undergoing NIPT screening were ret-
rospectively collected and reanalyzed for microbiome DNA screening. It was found that
more than 95% of exogenous cfDNA was from bacteria, 3% from eukaryotes, and 0.4%
from viruses, indicating the gut/environment origins of many microorganisms. Overall
and regional abundance patterns were well illustrated, with huge regional diversity and
complexity, and unique interspecies and symbiotic relationships were observed for
TORCH organisms (Toxoplasma gondii, others [Treponema pallidum {causing syphilis}, hep-
atitis B virus {HBV}, and human parvovirus B19 {HPV-B19}], rubella virus, cytomegalovirus
[CMV], and herpes simplex virus [HSV]) and another common virus, Epstein-Barr virus
(EBV). To sum up, our study revealed the complexity of the baseline circulating microbial
cfDNA and showed that microbial cfDNA sequencing results need to be interpreted in a
more comprehensive manner.

IMPORTANCE While circulating cell-free DNA (cfDNA) has been becoming a powerful
marker for noninvasive identification of infectious pathogens in liquid biopsy specimens,
a baseline for microbial cfDNA in healthy individuals is urgently needed for the proper
interpretation of microbial cfDNA sequencing results in clinical metagenomics. Standard
low-pass whole-genome-sequencing-based NIPT shares many similarities with the sequenc-
ing protocol for metagenomics and could provide a microbial cfDNA baseline in healthy
people; thus, a reference cfDNA data set of the human microbiome was established with
sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant
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women undergoing NIPT screening. Our study revealed the complexity of circulating micro-
bial cfDNA and indicated that microbial cfDNA sequencing results need to be interpreted
in a more comprehensive manner, especially with regard to geographic patterns and coexis-
tence networks.

KEYWORDS NIPT, microbiome, cfDNA, population-based analysis, noninvasive prenatal
testing, cell-free circulating DNA

Microbes occupy habitats like the gut, skin, vagina, and other organs of the human
body, and these microbiota are thought to be essential for maintaining human

health (1–3). In recent years, bacterial and viral nucleic acid fragments have been iden-
tified from the circulation of asymptomatic subjects (4–7), which has enabled sequenc-
ing of circulating cell-free DNA (cfDNA) from liquid biopsy specimens for noninvasive
diagnosis of infectious diseases and improved our understanding of the possible func-
tions of the resident microbiota (8).

Noninvasive prenatal testing (NIPT) using massively parallel sequencing of cfDNA in
maternal plasma has recently changed the clinical paradigm of prenatal screening for
common fetal autosomal aneuploidies (9). Low-depth sequencing has been found to
be a cost-effective strategy for detecting genetic associations with special DNA viruses
for complex traits (10), suggesting that NIPT data may be used to establish a baseline
for blood microbes in peripheral blood and facilitate the clinical interpretation of infec-
tious diseases.

In our current study, we tried to capture the microbial signatures among peripheral
blood samples obtained in a nationwide population-based NIPT study and identify
their clinical significance. Based on data from a large set of samples, we constructed a
reference data set of peripheral blood microbes and filled in the blanks for background
microorganisms in China. Measuring the microbial abundance in each region helped
to correct the background values for pathogen identification. We also investigated the
bacterial and viral ecologies in human blood, as well as their coexistence and the inter-
actions between these microbes, via population-level coexistence network analysis
and conditional differential abundance analysis.

RESULTS
Quality control and simulation of potential saturation effect. Random individual

libraries sized from 1 to 2,000 were sampled from the collection. For each sample size,
1,000 sampling runs were done to conclude a boxplot. In total, 1,697 species were
detected (with at least 1 uniquely mapped read in all samples), out of 4,939 unique
species checked against the human microbiome reference genome (HMREFG) of the
Human Microbiome Project (HMP; http://hmpdacc.org/HMREFG/) list. The estimated
species counts and the associated standard deviations were illustrated using a box
plot for each sample size (Fig. 1A), and no saturation effect was found.

Subjects and general information. The 107,763 participants were recruited from
28 provinces, autonomous regions, and municipalities in mainland China. Inner
Mongolia, Tibet, and Qinghai were not included in this study due to lack of sufficient
samples. Among all the province-level territories in this study, Shandong (SD; 12.6
thousand), Jiangsu (JS; 10.8 thousand), and Hubei (HUB; 10.1 thousand) were the top
three most populous provinces (Fig. 2A). The participants’ median age was 32 6 5.52
years (mean 6 standard deviation), and the median gestational age was 13 weeks
(range, 11 to 20 weeks). Within the NIPT cohort, 1,524 different bacteria (1,524/1,734),
170 eukaryotes (170/326), and 139 viruses (139/1,866) were identified out of the known
species in the HMREFG. Among the 107,763 samples, only 2 samples contained no
reads connected to any known microorganism by mapping the high-quality reads to
HMREFG. Among the exogenous molecules detected in the cell-free DNA, more than
95% of DNA was from bacteria, 3% from eukaryotes, 0.4% from viruses, and the rest
from unsorted microorganisms, mainly due to the cumulatively large genome sizes of
bacteria and the resulting greater abundances of their DNA fragments. Among the
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listed detectable microorganisms from HMREFG, Bacillaceae was the largest family,
with Bacillus as the largest genus, followed by Enterobacteriaceae, Lactobacillaceae,
Clostridiaceae, and Vibrionaceae (Fig. 1B).

In Fig. 1C and D, the top 15 bacteria and top 15 viruses are illustrated, together
with their corresponding absolute abundances (read count) and relative abundances
in log10 reads per kilobase per million mapped reads (RPKM). Figure 1C lists the most
frequently detected bacteria. Among 1,524 different bacteria identified in the study
samples, Acinetobacter johnsonii was found in 47.4% of samples, Enhydrobacter aero-
saccus in 35.9%, and Delftia acidovorans in 34.3%. Analysis of sequence diversity identi-
fied the presence of bacterial strains of Acinetobacter and Pseudomonas. Among 139
different viruses identified in the study materials, the two most frequent opportunistic
viruses were human herpesvirus 7 (HHV-7) (0.85%) and hepatitis B virus (HBV) (0.8%),

FIG 2 The numbers of samples and differences in compositions of microbiota from peripheral plasma samples among different provinces in China. (A and
B) Sample numbers (in thousands) (A) and Shannon diversity (B) at the province level across China.

FIG 1 Outline of peripheral blood microbiome analysis in this nationwide study. (A) Species counts with different sample sizes to check for potential
saturation effect. (B) Top 5 families of detectable microorganisms from HMREFG. (C) Prevalence, log10(RPKM), and absolute abundance values of the top 15
most frequently detected bacteria. (D) Prevalence, log10(RPKM), and absolute abundance values of the top 15 most frequently detected viruses.
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listed in Fig. 1D. Analysis of sequence diversity identified the presence of both HHV-6
subtypes, A and B. The estimated proportions were 57% for subtype A and 43% for
subtype B. HHV-6A and HHV-6B were identified in 0.4% and 0.3% of samples, respec-
tively. A small proportion of individuals were found to carry sequences of other human
herpesviruses, including herpes simplex virus 1 (HSV1) and cytomegalovirus (CMV; also
known as HHV-5). Although HHV-8 was not on this top 15 list shown in Fig. 1D, it was
also observed with low abundances.

Geographic-area-associated genera of bacteria in plasma. Among all the prov-
ince-level territories in China, Shandong, Jiangsu, and Hubei were the top three con-
tributors of cohort samples. The numbers of samples from other provinces are also
included in the results shown in Fig. 2A. As shown by the results in Fig. 2B, we demon-
strated noticeable differences in the compositions of microbiota amino acid residues
in peripheral plasma samples among different provinces by Shannon index. The
Xinjiang Uygur Autonomous Region showed the highest level of diversity in terms of
microorganism species detected considering its sample size, whereas the capital city,
Beijing (BJ), exhibited a relatively lower level of complexity in its microbiota profile.
Whereas territories with fewer samples also showed reduced diversity estimates, this
was indicated also by examining the saturation simulation presented in Fig. 1A, in
which the number of detected species gradually stabilized when reaching 1,500 sam-
ples. In our case, territories like Ningxia (NX) and Gansu (GS) had relatively fewer sam-
ples included and, therefore, also showed lower diversity indexes.

The top 50 bacteria detected among the collected samples according to the levels
of abundance are listed in Fig. 3B, and the regional similarity metrics are illustrated in
Fig. 3A according to units of province, autonomous region, and municipality. After ter-
ritories such as Ningxia (NX) and Gansu (GS) with low sample sizes were excluded,
Beijing (BJ), Hainan (HN), and Xinjiang (XJ) showed rather distinct patterns. The heat
map indicated that XJ was comparatively the least similar to all other territories, while
Beijing was more similar to northern territories, such as Shandong (SD) and Tianjin (TJ),
and less similar to southern territories, including Shanghai (SH), Fujian (FJ), and
Guangdong (GD). Bacteria (including increased levels of Propionibacterium acne, A.
johnsonii, and E. aerosaccus) distinguishing XJ from other territories could be identified
in the results shown in Fig. 3B, whereas in Beijing, relatively low levels of bacteria most
commonly detected in other territories were found. For Hainan, a clear increase in

FIG 3 Identification of top 50 bacteria detected as analyzed by NIPT at the province level in China. (A) Bacterial abundance similarity metric across
provinces. (B) Abundance heatmap of the top 50 bacteria between provinces in China. B. thuringiensis serovar israelensis is listed as B. thuringiensis serovar.
SX, Shanxi; XJ, Xinjiang; HEB, Hebei; BJ, Beijing; TJ, Tianjin; CQ, Chongqing; SC, Sichuan; GZ, Guizhou; HUB, Hubei; HUN, Hunan; YN, Yunnan; GX, Guangxi;
GD, Guangdong; FJ, Fujian; JX, Jiangxi; SD, Shandong; AH, Anhui; HEN, Henan; LN, Liaoning; JL, Jilin; HLJ, Heilongjing; ZJ, Zhejing; SH, Shanghai; JS, Jiangsu;
HN, Hainan; NX, Ningxia; GS, Gansu.
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Bacillus thuringiensis serovar israelensis could be seen, which might be related to its
use as a biopesticide for its mosquitocidal activity, especially in tropical and subtropical
areas, to prevent the public health problem caused by Dengue fever (11).

TORCH panel analysis by NIPT across the country. TORCH (Toxoplasma gondii,
other, rubella virus, cytomegalovirus, and herpes simplex virus) denotes five congenital
infections that are important targets for prenatal screening at 12 to 26 weeks of gesta-
tion. In this study, we screened the common infections associated with congenital
anomalies based on the TORCH panel via NIPT sequencing, including target DNA seg-
ments from T. gondii, “other” organisms HBV, human parvovirus (HPV), and Treponema
pallidum (causing syphilis), and CMV and HSV. T. gondii is not part of the HMP, and
thus, no orgName or orgID is provided in Table 1. Rubella virus was not included as it
is an RNA virus. Also, no syphilis-positive sample was detected in our study. The preva-
lences and abundances of other TORCH-related organisms are listed in Table 1.
Additional data from other publications were also recorded to serve as a reference, in
which the clinical frequency (ClinicalFreq) is predefined elsewhere, mostly as the rate
of positive serological screening tests among the individual study populations, while
population frequency (PopFreq) is the frequency of nonzero samples of a particular or-
ganism directly derived from the indicator matrix of the study population. While the
exact level of correlation between our data and the previous studies is not directly ac-
cessible, it is obvious that HBV kept high prevalence in Chinese population.

Ningxia (NX), Hainan (HN), and Guangzhou (GZ) showed rather distinct patterns com-
pared to other territories, which can be seen by the results in Fig. 4A. Geographically, the
prevalence of TORCH organisms was apparently high in some territories (Fig. 4B to E). XJ
and some other territories in Southwest China had the highest prevalences of CMV and T.
gondii, which might be related to factors like low urbanization levels, agriculture-dominated
economic structures, and the natural environment. The prevalence rates of HPV and HSV
were slightly elevated in XJ but showed no evident change in other territories. The prevalen-
ces of Epstein-Barr virus (EBV) were elevated in Northeastern China but also showed no
obvious change in other territories (Fig. 4F). The prevalence of HBV was higher in Southern
China, especially in Hainan (Fig. 4G).

Virus existence-dependent microorganism interactions. The interactions between
TORCH organisms and other cataloged bacteria are shown in Fig. 5. Among the HPV-posi-
tive samples, the microecology shifted to being significantly enriched with Weissella para-
mesenteroides and Propionibacterium acne (Fig. 5C). In the samples with detectable HSV
amino acid residues, the microbiota showed increased enrichment (fold change of 7.44;
P , 0.001) of Bifidobacterium bifidum (Fig. 5D). We also observed a similar increase (fold
change of 6.96; P , 0.001) in the abundance of P. acne. Within the positive samples carry-
ing Toxoplasma gondii, increased levels of Pectobacterium carotovorum and Chthoniobacter
flavus were also observed (Fig. 5A). Their increased coexistence in T. gondii-positive sam-
ples suggests a complex human environment interaction. Within the positive samples car-
rying EBV, increased levels of HHV-6B and P. carotovorum were observed (Fig. 5D and E).
No significant changes in other detected microbiota were noted when HBV or CMV was
positive (Fig. 5B and F).

Weighted coexistence network analysis of microbial communities. Figure 6 shows
a virus-bacteria interaction network. The node color signifies the module membership,
and the node shape indicates the type of organism, with octagons representing bacte-
ria and diamonds for viruses. The network is undirected with at least one virus-type
node. The name-to-identification number (ID no.) mapping is shown in Table S1 in the
supplemental material.

The largest green cluster is composed of many different genera of bacteria (12), with one
of the most widely studied and medically important bacteria, Streptomyces (ID no. 246), and
Streptomyces phage (ID no. 247) as its center. The coexistence relationship is therefore largely
related to the soil-based bacteria and the ecosystem of other microorganisms in which
Streptomyces is known to play a critical role (13).

The pink nodes clustered within the beige module hold the largest number of viruses,
mainly bacteriophages. A smaller isolated cluster of bacteria is solely connected to Haemophilus
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phage (ID no. 117), including Aggregatibacter, Neisseria, Pasteurella, and Veillonella. There has
been accumulating evidence showing shared patterns and conditions in the colonization
and/or pathogenesis of these bacterial species (14), and Haemophilus phage could be a
common bacterial inhibition agent.

Vibrio phage (ID no. 272), originally belonging to the green cluster which centered
on Streptomyces phage (ID no. 247), appears to be a connecting hub to another
smaller beige cluster with Serratia (ID no. 225), Vibrio (ID no. 271), and Gardnerella (ID
no. 107). The beige cluster is mainly related to a group of bacteriophages that includes
Enterobacteria phage (ID no. 94), Kluyvera phage (ID no. 129), Morganella phage (ID
no. 156), porcine endogenous retrovirus E (ID no. 191), Salmonella phage (ID no. 221),
and Sodalis phage (ID no. 233). Also connecting to the hub, Leptolyngbya (ID no. 139)
has recently been found to exhibit an inhibitory effect on Vibrio (ID no. 271) (15), and
therefore, it might share a similar cohabitation pattern with Vibrio phage (ID no. 272).
The cyanobacteria and the waterborne nature of many bacteria suggest seafood as
their most likely origin, but not to the exclusion of factors like frequent environmental
contact of the host.

Actinomyces phage (ID no. 11), which coexists with another cluster of bacteria and
2 other bacteriophages, Propionibacterium phage (ID no. 195) and Staphylococcus
phage (ID no. 240), is the center of the light blue module. The cluster contains a group
of anaerobic and microaerophilic bacteria, such as Propionibacterium (ID no. 194),
Streptobacillus (ID no. 244), Staphylococcus (ID no. 239), and Anaerococcus (ID no. 26),
suggesting the gastrointestinal tract and oropharynx as their origin.

DISCUSSION

NIPT for fetal aneuploidy by scanning cfDNA in maternal plasma samples has
become a popular prenatal genetic test in China. In addition, cfDNA can also be used
to characterize the signatures of the peripheral blood microbiome and analyze the bur-
dens of bacteria, viruses, and other microbes quantitatively. Population-based studies
on the microbiome community may provide a microbial baseline to facilitate pathogen
identification in clinical practice. The distribution of viral DNA in blood plasma samples
has been detected via NIPT at the population level (10), which brings a novel insight
into viral prevalences and potential public health burdens. Given our low-depth
sequencing pipeline, which might have missed organisms of lower abundance in the

FIG 4 Heat map and geographic maps of organism prevalences from TORCH analysis by NIPT at the province level in China. (A) Virus abundance similarity
metric across provinces. Province abbreviations are listed in the legend to Fig. 3. (B to G) Prevalences of Toxoplasma (Toxo)-related (B), CMV-related (C),
HPV-related (D), HSV-related (E), EBV-related (F), and HBV-related (G) microorganisms across provinces in China.
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samples, the positive rate (1.1%) of HSV was slightly higher than those previously
reported in China; the positive rate of HBV was 0.8% in our current study, much lower
than those reported in China (27%) and worldwide (35.6%) (16–18), which may be
explained by the wide hepatitis B vaccine coverage in China and the good health sta-
tus of our subjects (healthy women aged 20 years to mid-30s and living in urban
areas). HBV DNA in plasma samples had a higher prevalence in Southern China than in
Central and Northern China, which agreed with a previous study (10). Otherwise, we
observed an increased enrichment of B. bifidum in the HSV-positive population; B.

FIG 5 Volcano plots show abundances of cataloged bacteria between samples with and without TORCH organisms. (A to F) Volcano plots of differential
abundance analysis between samples with and without Toxoplasma (Toxo) (A), CMV (B), HPV (C), HSV (D), EBV (E), and HBV (F).
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bifidum is considered probiotic and is frequently used to help maintain and restore the
normal balance of the gut microbiome (19). These findings further suggested the pos-
sible gut origin of microbial cfDNA fragments in plasma samples. In our current study,
we performed weighted coexistence network analysis of microbial communities to
identify coexistence of viruses and bacteria in the population, and such coexistence
revealed the complexity of the microbiome in peripheral blood and should be consid-
ered a key factor in the interpretation of microbial cfDNA sequencing results.

In this study, a quantitative baseline of microbial DNA in peripheral blood was
established via NIPT in pregnant women. The resulting range of detected exogenous
DNA could be considered a normal reference data set. Thus, infectious cases could be
identified when a certain microorganism is overly enriched. On the other hand, we also
hypothesize that, without a clinically defined infection, all samples detected with mi-
crobial DNA do not necessarily indicate that the microbe has caused damage or been
harmful to the host, and thus, we may use the indicator matrix as the input to calculate
population-level frequencies for any detected microorganism. Collectively, the data
provide the possibility of identifying microbiota and metabolic and regulatory net-
works, as well as correlations between microbial community structure and health and
special conditions.

This study also showed large geographic diversities of the microbiota. Territories in
China at similar latitudes showed the same cluster distribution features. The prevalence
rates of major viruses, including HBV, CMV, EBV, human parvovirus (HPV), and HSV,
also differed among different areas. Interestingly, two blood viromes from Europe and
China showed different viral distributions, in which the European virome appeared to
have a different viral distribution than was found in the pregnant Chinese women ana-
lyzed in a previous study (10, 20). Although this study used the neglectful data from
NIPT, which was not optimized for cfDNA microbiome reference study, the potential
pollution from skin puncture and vacuum blood collection tubes was not evaluated,

FIG 6 Weighted virus-bacterium coexistence network. The node color signifies the module membership. The node shape indicates the type of organism,
with octagons representing bacteria and diamonds for viruses. The name-to-identification number mapping is shown in Table S1.
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and direct comparisons were difficult due to the variations in sequencing protocols, our cur-
rent findings showed certain consistencies with the previous study in China (10, 21). HBV
was significantly enriched in both our current study and that of BGI; nevertheless, human
parvovirus B19 DNA showed a lower prevalence in our study than in that of BGI (10).

Accordingly, to characterize the ecology of human-associated microbial communities, this
population-based study analyzed blood microbial information in this largest-scale set of dis-
tinct, clinically relevant body habitats to date. We found the diversity and abundance of each
habitat’s signature microbes. These results delineated the normal range of structural and
functional configurations in the microbial communities of a healthy population, which may
enable future characterization of the epidemiology, ecology, and translational applications of
the human microbiota. Furthermore, these results suggested that different countries and
regions may have distinct normal reference intervals of microbes in peripheral blood, which
may be influenced by diet, geography, and environmental factors. Therefore, our current
study timely established a reference range of characteristic peripheral blood microorganisms.
Application of the data maybe helpful for early detection and interpretation of infectious dis-
eases, especially regional epidemic diseases, and provide pathogenic evidence for clinical di-
agnosis, which needs to be investigated and proved by a series of research studies.

Conclusion. Human microbiota may present in the peripheral blood in the form of
microbial cfDNA residues, with notable diversity and coexistence. Therefore, cfDNA-
based blood microbiota may be reflective of human microbiota, including gut micro-
biota, and also serves as a proxy of immune response in the presence of chronic or
acute exogenous pathogenic stimulants. With our microbial cfDNA baseline data set
constructed with peripheral blood samples from a phenotypically healthy population,
a notably elevated level of microbial amino acid residues or a perturbed cohabitation
pattern of a collection of microorganisms in blood might be indicative of a relevant
disease status. Such perturbances, after being quantified, may be adapted as potential
biomarkers and exert diagnostic value in the future.

MATERIALS ANDMETHODS
Ethical approval. The study was approved by the Ethics Committee of Beijing Hospital (2020BJYYEC-

046-01), and written informed consent was provided by all participants.
Study design. A nationwide retrospective meta-analysis was performed based on data collected

from 3 January 2016 to 31 December 2017 by continuously aggregating NIPT data of pregnant women
undergoing testing. In total, we included data from 107,763 samples in this study. All patients gave con-
sent to the collection of blood samples and the subsequent clinical genetic testing and to its anony-
mized usage for academic research. This study was reviewed and approved by the Institutional Review
Board of Beijing Hospital, China.

DNA extraction and sequencing. Peripheral venous blood (5 mL) from each patient was preserved
and delivered to the laboratory in EDTA tubes (Sekisui, Tokyo, Japan) or Streck tubes (La Vista, NE, US).
Plasma was separated after 2 rounds of centrifugation (22) and stored at 280°C until DNA extraction.
Cell-free DNA was extracted from plasma according to standard commercial protocols described in pre-
vious publications (22–24). The sequencing library was prepared using an NMPA certified kit (registration
no. 20173400331), and subsequently, 4.2 million single-end reads of 40 bp were generated for each sam-
ple library using NextSeq 550AR (Annoroad Gene Tech, Beijing, China). All procedures were performed
in a standard negative-pressure laboratory with constant temperature and humidity.

Preprocessing methods. Sequencing data from standard NIPT screening were collected and reana-
lyzed using the following pipeline. For each sample library, reads with perfect matches of the first 35 bp
to the human genome (hg19) were initially excluded while being used for routine NIPT screening with
an in-house aligner. The remaining reads with mismatches to hg19 were then identified in the second
alignment run using Burroughs-Wheeler Aligner (BWA) after adapter trimming. At the end of the first
two alignment runs, we considered the remaining reads to be a collection of nucleic acid molecules of
exogenous origin.

We downloaded the human microbiome reference genome (HMREFG) assembled by the NIH Human
Microbiome Project (HMP; http://hmpdacc.org/HMREFG/). The remaining reads were aligned to those
genome-level HMREFG reference sequences, with perfect matches only; after removal of PCR duplicates,
the uniquely mapped reads were counted to derive an abundance matrix for each sample library. In
order to remove potential contaminants during the experiment, and also as a standard internal quality
control (QC) step for aerosol monitoring, we set up a blank sample in every batch run. In this pipeline,
we trimmed the species, if any, present in the negative QC sample from other real samples of the same
batch. All these samples passed the internal quality control successfully without other contaminants.

Abundance matrix. Based on all the sample libraries collected, an abundance matrix was created with
rows and columns representing microorganisms and sample IDs, respectively. The raw count matrix was then
converted into an RPKM (reads per kilobase per million mapped reads)-like normalized abundance matrix by
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dividing the genome length of each organism while taking into account the sequencing depth per sample. A
logical indicator matrix can be created on the go if for a particular library and a named organism the normal-
ized abundance is greater than zero. A taxonomic tree of organisms from the top 5 most abundant families
was illustrated using GraPhlAn (25). The normalized abundance matrix was then aggregated into a regional
frequency matrix by summing up the sample columns of the region from the indicator matrix.

Detection model parameter estimation. With the large set of normal low-depth whole-genome-
sequencing (WGS) data from plasma samples, we devised a detection model similar to that described in Grumaz
et al. (1), where it is assumed that the abundance of any individual microorganism detected in plasma follows a
Poisson distribution, for which the single mean/variance parameter lambda can be estimated from a set of nor-
mally unaffected samples sequenced at a given level. With the estimated model, for each organism, one can pre-
dict the likelihood of any test sample that falls out of the normal range, which could be an indicator of sepsis.

However, for WGS-based NIPT, any individual library is sequenced at a rather shallow level, typically about
0.1� coverage of the human genome. It is not straightforward to derive such a model estimate based on a
single insufficiently sequenced library. In our current study, we used population-wide data to simulate WGS
data, which were sequenced at a much higher level. Individual libraries were sampled and merged with differ-
ent sizes (from 10 to 1000), corresponding to roughly 1� to 100� coverage of the human genome. For each
size level, 10,000-permutation resampling was performed to generate 10,000 simulated libraries. Poisson
model parameters were then estimated using the 10,000 artificial samples for all microorganisms listed in this
study. Then, 1,000 such permutation runs were similarly performed to assess the variation of the estimates.

Statistical tests for the detection model.We used the trained prediction model parameter to eval-
uate the probability of infection (above reference-level abundance) for each validation subject. Two sta-
tistics, including the sepsis-indicating quantifier (SIQ), adopted from the Grumaz et al. study (1), and the
P value obtained with the one-sided Poisson test, were generated. The lambda parameter ( el ) used in
both models was estimated from permutation output using the data from the reference panel with the
following equation:

~l i ¼ 1:644854� SDðl iÞ 1 medianðl iÞ

where i indicates the sequencing depth groups formed by permutation and aggregation and SD and
median are functions summarizing the standard deviation and median of all permutation sample esti-
mates of the lambda parameter at a given depth. The final parameter estimate el is the 95% upper con-
fidence interval of the permutation estimates.

Simulation of potential saturation effect.We also investigated the possible saturation effect when
sampling from a large collection of homogenously generated sequencing data with our certified experi-
mental protocol, so as to rule out extensive contamination in commercial reagents or common environ-
mental factors. We randomly drew and combined N (from 1 to 2,000) individual samples to form 1,000
pseudosamples for each N; also, the number of distinct species detected among these pseudosamples
was counted, and the standard deviations of the species count were calculated over 1,000 permutation
runs for each sample size N. Such a test could indicate a potentially saturated enrichment of most organ-
isms detected due to a common source of DNA contamination, when early equilibrium was reached for
the species count irrespective of the increasing combined sample size.

Geographic distribution of bacteria and viruses. We analyzed the abundances and complexity of dif-
ferent microorganisms in each province. The Shannon index based on microbial species profile was calculated
for each province. Then, we explored the geographic distribution of viruses detected in the studied populations
throughout mainland China by mapping the prevalences of viral sequences among 28 province-level territories.

Differential abundance analysis. We analyzed the differences in the abundance distributions of
the microbiome communities given whether certain species of interest were positively detected to see if
there were conditionally dependent interactions between some well-known species and others in
HMREFG. For any given organism of interest, a group of positive samples were selected by checking the
corresponding indicator matrix row; in addition, a negative set of samples were defined as samples that
did not contain any read of all these species of interest. All other species in the raw abundance matrix
other than these organisms of interest were tested between the two sets of samples using DESeq2 (26).
Top-ranking interacting species were illustrated in the volcano plots for each species of interests. An em-
pirical cutoff of a fold change greater than 2 and a P value smaller than 1E24 was used.

Weighted microorganism coexistence network analysis. With the collected samples, a weighted
microorganism coexistence network was constructed manually using the WGCNA package in R (27). To
simplify the analysis, for each genus, the species with the highest sum of RPKM values was selected to
be the representative of that genus. The normalized RPKM value of each target organism per library was
used as input. All data were first hierarchically clustered using the average linkage function and common
Euclidean distance. Organisms with invariant abundance profiles across samples were excluded from
the downstream analysis. WGCNA methodology, rather than using traditional distance or correlation-
based similarity measures, utilizes the topological overlap matrix (TOM) X ¼ v ij½ �,

v ij ¼
aij 1

X
u
aiuauj

min
X

u
aiu;

X
u
aju

n o
1 1 2 aij

; aij ¼ jcorðxi; xjÞjb

which not only estimates the closeness between a pair of nodes but also reflects each nodes’ relative inter-
connectedness to all other nodes. Thus, a TOM-based distance matrix may be a more robust and powerful
measurement in building such a network. It was then necessary to select an appropriate value for the soft
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thresholding power b (28). After the scale-free topology model fit with candidate b values for each set of
expression profiles was manually inspected, the minimal b value giving a coefficient of determination (R2)
higher than 90% was adopted. In the next step, modules of microorganisms were formed by hierarchical
clustering with the aforementioned TOM distance matrix, with an empirically specified minimal module size.
Modules were further merged based on the dissimilarity between their co-existence microorganisms, which
was defined as the first principal component of all targeted organisms within each module. Pairs of modules
with dissimilarity below 0.2, recommended by the WGCNA author, were then merged. Such a threshold in
turn corresponds to a correlation of 0.8 between module eigenorganisms. To further track down the key
player in each module and the regulation network, module membership (MM), defined as the correlation of
the abundance profile and each module eigenorganism, was applied.

The resulting TOM-based network was exported for visualization with Cytoscape (29). With nodes
representing microorganisms identified, an edge was defined as the TOM-based similarity between any
pair of two organisms. Different shapes representing the nodes were used to distinguish bacteria and
viruses.

Unless otherwise stated, all aforementioned statistical analysis was carried out in the statistical soft-
ware R (30).

Data availability. All sequencing data are managed by Annoroad Gene Technology Co., Ltd., and
are available upon reasonable request according to Chinese regulatory rules. Direct sharing of individual
raw genetic data from this project is not allowable according to the Human Genetic Resources
Administration of China (HGRAC). However, we have extracted summary data only related to microbiota
and made such anonymized summary data available to the research community. The partially processed
input data for the analysis have been submitted to Open Archive for Miscellaneous Data (https://ngdc
.cncb.ac.cn/omix/release/OMIX001022), the access to which might be subject to individual verification.
Also, to support reproducible research, the analytical scripts related to this study have been made avail-
able via GitHub (https://github.com/yd23/nipt-microbial-codes).
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