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Abstract

Background: Functional magnetic resonance imaging (fMRI) studies indicate that the brain organizes its activity into
multiple functional networks (FNs) during either resting condition or task-performance. However, the functions of these FNs
are not fully understood yet.

Methodology/Principal Findings: To investigate the operation of these FNs, spatial independent component analysis (sICA)
was used to extract FNs from fMRI data acquired from healthy participants performing a visual task with two levels of
attention and working memory load. The task-related modulations of extracted FNs were assessed. A group of FNs showed
increased activity at low-load conditions and reduced activity at high-load conditions. These FNs together involve the left
lateral frontoparietal cortex, insula, and ventromedial prefrontal cortex. A second group of FNs showed increased activity at
high-load conditions and reduced activity at low-load conditions. These FNs together involve the intraparietal sulcus, frontal
eye field, lateral frontoparietal cortex, insula, and dorsal anterior cingulate, bilaterally. Though the two groups of FNs
showed opposite task-related modulations, they overlapped extensively at both the lateral and medial frontoparietal cortex
and insula. Such an overlap of FNs would not likely be revealed using standard general-linear-model-based analyses.

Conclusions: By assessing task-related modulations, this study differentiated the functional roles of overlapping FNs. Several
FNs including the left frontoparietal network are implicated in task conditions of low attentional load, while another set of
FNs including the dorsal attentional network is implicated in task conditions involving high attentional demands.
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Introduction

Recent functional magnetic resonance imaging (fMRI) studies

demonstrate that the human brain organizes its activities into

multiple functional networks (FNs) [1–3]. Some FNs show

consistent spatial patterns (i.e., involve same key brain regions)

across studies using different populations either at resting

condition or during cognitive tasks [4]. These FNs include but

not limited to the dorsal attention network (DAN), right

frontoparietal network (RFPN), left frontoparietal network

(LFPN), executive control network (ECN), insula network,

temporal network, and anterior and posterior default mode

networks (DMNs), though they may have different names in

different studies [1–3,5,6]. Understanding the functions of these

FNs will help understand brain functional organization.

Many studies extract FNs from blood-oxygenation-level-depen-

dent (BOLD) signal time series acquired at resting condition, and

postulate the functions of different FNs based on their anatomical

locations [7–10]. However, such postulations may not always be

accurate because the function of any given brain region is not fully

understood yet. Furthermore, multiple studies, including one from

our group, report overlaps of multiple FNs showing different

timecourse and task-related modulations [4,11–14]. For example,

the DAN, ECN, LFPN, and RFPN all involve the frontoparietal

cortex and insula and overlap at both the medial and lateral

frontoparietal cortex [4]. They are postulated to exert cognitive

control functions [7–9]. This raises the question ‘What are the

similarities and difference in their cognitive control functions?’.

Several studies have assessed FN modulations during different

cognitive tasks. For example, a recent study extracted FNs from

fMRI data acquired during a stop-signal task [15] and found that

both LFPN and RFPN increased activity at ‘‘stop success’’ trials

and decreased activity at ‘‘go’’ trials. However, the two FNs

showed opposite modulation at ‘‘stop error’’ trials: activity

increased in the RFPN but decreased in the LFPN when

participants failed to stop at the stop signal. In another study

using a working memory task, the DAN increased activity and the
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LFPN decreased activity as working memory load increased from

a low to a high level [16]. Findings from these two studies indicate

that the DAN, LFPN, and RFPN contribute differently to some

tasks, but may exert synergistic functions in other contexts. This

knowledge of different functions among the DAN, RFPN, and

LFPN might not be revealed by analyzing fMRI data acquired at

resting condition only.

To further understand the functions of different FNs, this study

used spatial independent component analysis (sICA) to extract FNs

from an fMRI dataset acquired during a visual target identification

task. This dataset has been analyzed using a general-linear-model-

based (GLM-based) method in an earlier publication [17]. SICA is

one of the most commonly used methods for extracting FNs from

BOLD time series [18]. The specific aim of this secondary analysis

was to assess the task-related modulations of the timecourses of

FNs at low and high task loads separately. Based on findings from

our recent study using a similar task [4], we predicted that several

FNs including the DAN would show increased activity at high load

conditions, while several other FNs including the LFPN would

show increased activity at low load conditions.

Methods

The original study was approved by the Institutional Review

Board of University of California Los Angeles (UCLA). The

current study employed sICA to extract FNs from an fMRI dataset

used in a recent publication, which used SPM2 (Statistical

Parametric Mapping, Welcome Department of Cognitive Neurol-

ogy, London) to assess how different cognitive loads affect

distractor-related modulations of BOLD signal in the brain [17].

The sICA approach employed in the current study was similar to

the methods used in another recent study [4], which used sICA to

extract FNs from an fMRI dataset acquired during a visual target

identification task with four levels of task loads, and was focused on

the number and spatial extent of FN overlap. The current study

was different from [4] by using a different visual target

identification task with two levels of task loads and each with

two conditions, one with distractors and the other without

distractors. The original purpose of this factorial design is to

assess task-load effects on distractor related neural correlates

(please see [17] for detail). The main aim of the current study was

to use sICA to assess FN modulation at low vs. high task load,

though FN overlap was also described for the purpose of

consistency with findings reported in [4]. Findings in the current

study are novel and interesting, and have not been described

before. Since the participants, task design, fMRI acquisition, and

sICA approach have been described in detail previously [4,17]

they will only be described briefly here.

Participants
This study included 23 participants (ages 23–41 years, all right-

handed, 11 females) recruited from the community of the

University of California Los Angeles (UCLA). All participants

gave written informed consent to participate in this study, which

was approved by the Institutional Review Board of UCLA.

Task Design
The task used 16 schematic faces as relevant stimuli and 64

scene pictures as background distractors. Faces were composed

from different combinations of five facial features (shape of face,

eyes, nose, and mouth, and face color). Each facial feature had two

different forms (e.g., shapes: round and oval; colors: yellow and

blue). The scene pictures were presented as the background of the

relevant stimuli. The task used a 262 factorial design with two

perceptual loads (low, high) and two distractor conditions (with,

without). At low load, any face with an oval nose was a target;

participants could simply search this feature to identify the target.

At high load, targets were defined by face color and shape of eyes,

mouth, and face. Participants were required to search for these

four features in conjunction to identify the target.

Stimuli for each condition were grouped into blocks with the

same 16 faces used in every trial block. These 16 face images,

either alone or overlaid on a distractor image, were presented one

by one in random sequence within each block. Each image was

presented once for 100 ms. The interstimulus interval was 1.1 s,

and the duration of each block was 19.2 s. The instruction ‘‘Please

identify’’ was presented above an instruction image for 5 s before

each trial block. There were four targets randomly positioned in

the presentation sequence in each block. During scanning, each

subject performed three functional runs using three different task

scripts. Within each run, each block condition was repeated four

times, and the whole run lasted 387.2 s. In the distractor condition

at each load level within each run, each stimulus had a different

distractor, but the same 64 pictures were used for both low- and

high-load conditions.

Imaging Data Acquisition
Functional images were acquired using gradient-echo EPI

scanning sequence (TR/TE=1500/30 ms, Flip angle = 70u, 26
slices, 3 mm thick with 1.2 mm skip, 3.163.1 mm2 in plane pixels)

with a Siemens Allegra 3T system. The scanning plane was tilted

rostrally from the AC-PC line by 20u. The relatively thin scanning

slice and tilted scanning plane were used to reduce susceptibility-

related signal loss at the basal forebrain [19]. Each functional run

acquired 258 volumes.

Procedures of Spatial Independent Component Analysis
(sICA)
Each BOLD time series was motion-corrected, normalized to

the MNI (Montreal Neurological Institute) template, and

smoothed with a 5-mm kernel using SPM5 (Statistical Parametric

Mapping, Welcome Department of Cognitive Neurology, Lon-

don). Group ICA (GIFT, http://icatb.sourceforge.net/, ver-

sion1.3 h) was used to extract spatially independent components

(ICs) [20,21]. The Infomax algorithm was used to extract 23 ICs

[22], the optimal number of ICs as estimated by the minimum

length description (MLD) criteria [23]. The Infomax algorithm

generated a spatial map and a timecourse of the BOLD signal for

each IC. This analysis was repeated 50 times using ICASSO for

assessing the repeatability of ICs [24]. The stability index of each

IC was greater than 0.90 (Fig. S1). Finally, IC timecourses and

spatial maps were back-reconstructed for each participant

[20,25,26].

A systematic procedure was used to diagnose artifacts and FNs.

First, the association of each IC’s spatial map with a priori

probabilistic maps of white matter (WM), cerebrospinal fluid

(CSF), and gray matter (GM) in MNI space provided with SPM2

was assessed using GIFT spatial sorting. Six ICs (i.e., 2, 3, 9, 11,

21, and 23) showed high correlations (r2.0.05) with CSF or white

matter and low correlations (r2,0.01) with gray matter indicating

that they might be artifacts rather than hemodynamic change.

IC18 showed very low correlations (r2,0.001) with gray matter

and was treated as artifact. Finally, visual inspection revealed that

IC19 showed a typical activation pattern of artifact, i.e., a ring of

activation around the edge of the brain [27], and was also treated

as artifact. Therefore, eight ICs were excluded from further

analysis as artifacts (due to head motion, eye movement,

ventricular pulsations, etc.).

Opposite Modulation of Brain Functional Networks
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For defining significant brain regions associated with each IC,

we normalized back-reconstructed spatial maps of each IC into z-

scores [7,20]. The z-score of each voxel within a spatial map

reflects its contribution to the associated timecourse. The

normalized spatial maps of z-scores of each participant were

averaged together across the three runs, and the averaged maps of

z-scores were entered into second-level random effects analysis

(one-sample t test). Therefore, a group level t-map was generated

for each IC, and this t-map was used to identify the brain regions

involved in the corresponding IC. The significance threshold was

set at voxel height p,0.001, False-Discovery-Rate (FDR)-correct-

ed for multiple comparisons of voxel-wise whole-brain analysis

(equivalent to t.4.5), and in conjunction with k.5 (where k

indicates the voxel cluster extent).

Assessing Task-related Modulation Over Timecourses
To examine task engagement of each IC, a design matrix for

each participant was constructed using SPM5. This design matrix

represents the onset of each task block, convolved with a box-car

hemodynamic response function. The five-second instruction

period before each block was modeled implicitly as task baseline.

The temporal sorting tool from GIFT was used to assess

engagement of each FN during different task conditions. It uses

multiple regression to assess the goodness of fit between the

timecourse of each IC and the predicted hemodynamic response

function of each task condition. It generates a beta value for each

IC and each task condition of each fMRI run. A greater beta value

usually indicates a greater engagement of an IC during a specified

task condition. For each IC, this regression generated four beta-

weight values for each functional run, one for each task condition

(i.e., low load without distractors (L), low load with distractors

(LD), high load without distractors (H), and high load with

distractors (HD)). These beta-weight values represent the corre-

lations between IC timecourses and the canonical hemodynamic

response model of task conditions, and index the engagement of

ICs during specific task conditions [25]. An increase or decrease in

beta-weight values at one task condition relative to another

indicates an increase or decrease in task-related activity in the IC.

The beta-weights of each IC for each task condition across three

runs of each subject were averaged. The SPSS general linear

model (GLM) for repeated measures was used to assess the main

effects and interactions of task loads and distractors on the beta-

weights of each IC. The significance threshold was set at p,0.05,

corrected using Bonferroni-correction for multiple comparisons of

15 ICs (equivalent to p,0.003 before correction). Any ICs

surviving this significance threshold were treated as task-related

ICs and post-hoc one-sample t-tests were performed to assess their

beta-weights for each task condition against zero. For these post-

hoc analyses, statistical significance was set at p,0.05 without

correction for multiple comparisons. A positive beta-weight

significantly different from zero indicates a task-related up-

modulation of timecourse or increase in activity of the IC during

a specific task condition relative to the baseline condition (i.e., task

instruction), and a significant negative beta-weight indicates a task-

related down-modulation of timecourse or decrease in activity of

the IC. Table S2 presents group mean beta-weight values of each

IC at each task condition, p values of one-sample t-tests against

zero, and p values of load and distractor effects on beta-weights.

Assessing IC Overlap
For assessing IC overlap, Xjview (http://www.alivelearn.net/

xjview8/) was used to convert ICs into binary masks. Only

significant voxels surviving the statistical threshold described above

(i.e., p,0.001, FDR-corrected, and k.5) were converted into

voxels with value of ones in the output mask, while all other voxels

were converted into voxels with values of zero. These masks from

different ICs were added together. Within the output map, any

voxel with a value of two or higher indicated that two or more IC

shared this voxel, i.e., overlapped at this voxel.

Results

Task Performance
The task performance data have been presented before [17]. In

summary, participants showed faster response times (RTs) and

lower error rates at low- relative to high-load conditions,

indicating that the high-load conditions demanded more attention

and working memory.

Load Effect on ICs
Seven of the 15 ICs showed significant main effects of task load.

The seven ICs can be divided into two groups based on the

direction of load-related modulations. The first group includes ICs

4, 7 and 16 and showed significantly increased beta weights at low-

relative to high-load conditions (Fig. 1, Fig. S2 and Table S1).

Relative to the control condition, they showed positive beta-

weights at low-load conditions, but negative beta-weights at high-

load conditions. IC4 involves the left frontoparietal cortex, insula,

and precuneus/posterior cingulate (PCC), consistent with the

LFPN [4,6,15]. IC7 involves the insula and adjacent ventrolateral

prefrontal cortex (PFC), perigenual anterior cingulate cortex

(ACC), bilaterally, consistent with the insula network [1,4,7].

IC16 involves the medial PFC, consistent with the anterior DMN

[4,16,28,29].

The second group includes ICs 12, 13, 17, and 22, and showed

task-related opposite modulation to the first group. They showed

significantly increased beta-weights at high- relative to low-load

conditions (Fig. 2, Fig. S2 and Table S1). Relative to the control

condition, they showed negative beta-weights at low-load condi-

tions, but positive beta-weights at high-load conditions. IC12

involves the medial and lateral PFC, consistent with the executive

control network (ECN) [2,30]. IC13 involves the frontal eye field

(FEF) and intraparietal sulcus (IPS), bilaterally, consistent with the

DAN [5,8,28]. IC17 involves the cerebellum, thalamus, and

striatum, consistent with the cerebellum network [27,28]. IC22

involves the superior parietal lobule, anterior aspects of the PFC,

and caudate heads, bilaterally, consistent with the parietal-frontal

network [31,32].

IC Overlap
Consistent with our recent findings [4], multiple ICs showed

extensive overlap with each other. ICs within the first group

overlapped with each other at the medial and lateral PFC, parietal

cortex, and ventral temporal cortex. Likewise, ICs within the

second group overlapped at these brain regions (Fig. 1 & 2).

Furthermore, ICs from the two different groups overlapped

extensively at the lateral and medial PFC, parietal and temporal

cortex, insula, intraparietal sulcus, thalamus, and striatum, even

though they showed task-related opposite modulation (Fig. 3).

Relative to the second group, the non-overlapping region of the

first group occupied more of the ventral, anterior, and peripheral

brain regions including the lateral, anterior, and ventromedial

PFC and lateral superior parietal lobule. Relative to the first

group, the non-overlapping region of the second group occupied

the more dorsal, central, and posterior regions of the brain

including the thalamus, basal ganglia, midbrain, posterior PFC,

intraparietal sulcus, and insula. Furthermore, the second group

covered the cerebellum not covered by the first group. Therefore,

Opposite Modulation of Brain Functional Networks
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the high load conditions activated more brain regions (i.e., the

thalamus, basal ganglia, and cerebellum) and more tightly

organized brain regions relatively to the low load conditions.

Distractor Effect on ICs
ICs 1 and 10 showed significant main effects of distractors; i.e.,

increased beta-weights in the conditions with distractors relative to

those without. IC1 involved the medial visual cortex, consistent

with the medial visual network (MVN), while IC10 involved the

Figure 1. ICs activated at low-load conditions. A. Colors on the Montreal Neurological Institute (MNI) T1 templates show the spatial
distributions of positive sub-networks from ICs exhibiting increased activity at low- relative to high-load conditions. Only clusters surviving
corrections for voxel-wise whole-brain analyses are shown. The numbers at the bottom right of each brain image indicate Z coordinates in MNI space.
The color bar indicates t values. The ‘‘Beta-weight’’ column shows values of beta-weights at low- and high-load conditions. Error bars indicate
standard errors (SEs) of the mean. The p value on each panel indicates the statistical significance of the main effect of task load on beta-weight. The
‘‘Timecourse’’ column shows task-load-related modulations in the timecourses of related ICs within 30 s after the onset of task blocks in the four task
conditions. For x-axis, 0 represents the onset of task blocks and the block duration is 19.2 s. B. Yellow-red colors on T1 templates indicate brain
regions covered by one or more ICs. The color bar indicates the number of overlapping ICs. The number below each brain image indicates the Z
coordinates in MNI space. Abbreviations: L: low load without distractors; LD: low load with distractors; H: high load without distractors; HD: high load
with distractors; R: right.
doi:10.1371/journal.pone.0087078.g001
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lateral visual cortex, consistent with the lateral visual network

(LVN) [1,27]. ICs 4, 5, 10, and 13 showed distractor-by-load

interaction effects on beta-weights; i.e., greater distractor-related

increases in beta-weights at low- relative to high-load conditions.

However, none of the interaction effects survived correction for

multiple comparisons.

Other ICs
The remaining six ICs (i.e., ICs 5, 6, 8, 14, 15, and 20) did not

show significant main effects of task load or distractors (Fig. S2 and

Table S1). ICs 5, 6, 8, 15, and 20 were consistent with the

sensorimotor network, orbitofrontal network, temporal network,

RFPN, and posterior DMN, respectively [1,3,5,6,28,33]. To our

best knowledge only IC14 was not described in previous

publications. The six ICs, except IC14, showed more or less

Figure 2. ICs activated at high-load conditions. A. Colors on the Montreal Neurological Institute (MNI) T1 templates show the spatial
distribution of positive sub-networks from ICs exhibiting increased activity at high- relative to low-load conditions. B. Yellow-red colors on T1
templates indicate brain regions covered by one or more ICs. Please see fig. 1 legend for additional details.
doi:10.1371/journal.pone.0087078.g002
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reduced beta-weights during task conditions relative to the control

condition, especially during the high-load conditions (Table S1).

However, the reductions in beta-weights did not survive correction

for multiple comparisons.

Discussion

Previous studies have demonstrated that some FNs show

consistent spatial patterns across different populations [1,2,4].

Here, the ‘‘consistent spatial pattern’’ means that the correspond-

ing ICs identified in different studies involve common key brain

regions, and do not mean that they are exactly identical [30].

These FNs maintain their general spatial patterns during cognitive

tasks with more or less task-related modulations including changes

in spatial extents and strengths of internal functional connectivity

[27,30,34–38]. The current study identified 15 ICs. All except one

showed spatial patterns consistent with reported ICs, suggesting

that our sICA identified appropriately FNs existing in healthy

participants.

Relative to our recent study [4], the new data presented in the

current study include: 1) explicit description of task-related

increases in activity at low task load, but decreases in activity at

high task load of several ICs; and 2) detail presentation of task-

related decreases in activity at low task load, but increases in

activity at high task load of another several ICs. Previous studies

have reported ‘‘task-negative’’ and ‘‘task-positive’’ networks, but

rarely describe task-related activity increases in ‘‘task-negative’’

networks and task-related activity decreases in ‘‘task-positive’’

networks. The significance of these new findings will be discussed

in more details in following discussions. Finally, the new data

Figure 3. Overlap of ICs activated at low- and high-load conditions. The yellow color on the Montreal Neurological Institute (MNI) T1
templates indicates brain regions covered by overlap of ICs activated at low- and high-load conditions. The blue color indicates brain regions covered
by ICs activated at low-load conditions, while the red color indicates brain regions covered by ICs activated at high-load conditions. The number
below each brain image indicates the Z coordinates in MNI space. Abbreviation: R: right.
doi:10.1371/journal.pone.0087078.g003
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presented in the current study include the explicit description of

different spatial distributions of ICs activated at different task

loads.

ICs Activated at Low-load Conditions
ICs 4 (i.e., LFPN), 7 (i.e., insula network), and 16 (i.e., anterior

DMN) demonstrated increased activity at low-load conditions but

decreased activity at high-load conditions. This finding was

consistent with our prediction that LFPN would show increased

activity at low relative to high load conditions. The three ICs

together involve the left ventrolateral and ventromedial PFC, TPJ,

insula and ACC. Most of these brain regions are associated with

the so-called ventral attentional network (VAN), which often shows

activity increases during stimulus-triggered bottom-up attentional

shifting and activity decreases during tasks with high cognitive

loads [8,39–42]. Here, we need to indicate that the definition of

VAN is not fully consistent in the literature. Some authors indicate

that the VAN involves mainly the right TPJ and ventrolateral PFC

[43], others suggest that it involves both hemispheres and includes

TPJ, ventrolateral PFC, insula, orbitofrontal cortex, and ACC

[41,44,45]. The current low-load conditions required participants

to identify the targets by searching a feature singleton; i.e., oval

nose, among a stream of round noses. Therefore, the low-load

conditions may activate the VAN by triggering attention shifting

between targets and non-targets. This interpretation of the current

finding is consistent with data from several previous studies. First,

the LFPF increased activity when stimuli changed from ‘‘go’’

signals to ‘‘stop’’ signals during a go/no-go task and a stop-signal

task [15,33], and decreased activity during a working memory task

as working memory load increased from a low to a high level [16].

Second, the insula network increased activity when the standard

stimulus changed to an oddball during an auditory oddball task

[46]. Finally, the anterior DMN showed stimulus-induced activity

during tasks with low cognitive load [47,48].

The current IC15 is consistent with the RFPN and involves the

right TPJ and ventrolateral PFC. These brain regions are main

components of the VAN and usually increase activity during

stimulus-triggered spatial attentional shifting [8,43,49]. In the

current study, it showed a tendency of reduced activity during low-

load conditions, different from the LFPN showing task-related

activity increases, probably due to a lack of spatial attentional

shifting during the low-load conditions. Therefore, the LFPN and

RFPN exhibit different functional roles during low-load condi-

tions, even though both associated with the VAN. Therefore, the

VAN probably involves multiple sub-networks. SICA often

separates the DMN into two or three sub-networks [28,50]. The

current study identified two ICs related to the DMN: the anterior

and posterior DMNs, respectively. The posterior DMN showed a

tendency of reduced activity at low-load conditions, different from

the anterior DMN showing activity increases. This finding

demonstrates that the DMN is not a homogenous FN.

ICs Activated at High-load Conditions
ICs 12, 13, 17, and 22 showed activity increases at high- relative

to low-load conditions. This finding supported our prediction that

DAN (i.e., IC13) would show increased activity at high relative to

low load conditions. During the high-load conditions, participants

need to keep four facial features in the attentional set and actively

search for them in conjunction. Therefore, these task conditions

impose a high demand on top-down attentional control, a

hypothesized function for the DAN [8,43,49]. The current

findings indicate that four ICs, not DAN (i.e., IC13) alone,

contribute to top-down control. This finding is consistent with the

data from several previous studies. For example, the ECN (i.e.,

IC12) increased activity during an anti-saccadic task [30], the

DAN (i.e., IC13) and cerebellum network (i.e., IC17) increased

activity as working memory load increased from a low to a high

level [16], and the parietal-frontal network (i.e., IC22) increased

activity during semantic processing [31]. However, we cannot rule

out the possibility that some of the four ICs associate with central

processes other than top-down attentional control, such as motor-

responses.

Healthy participants often show increased activity in the so-

called task-positive networks and decreased activity in the DMN

during cognitive tasks, especially those with high cognitive loads

[51–54]. In the current study, ICs 12, 13, 17, and 20 were task-

positive networks because they showed increased activity during

high-load conditions. However, they also showed decreased

activity during low-load conditions. While task-related deactiva-

tion of the ‘‘task-positive networks’’ has not been regularly

reported, the current finding is consistent with data from several

studies. For example, during a stop-signal task, the LFPN and

DAN showed task-related opposite modulations. The DAN was

activated at ‘‘go’’ trials but deactivated at ‘‘stop’’ trials while the

LFPN was deactivated at ‘‘go’’ trials but activated at ‘‘stop’’ trials

[15]. Another study used sICA to extract nine FNs from an fMRI

data set. Two of these FNs increased activity during motor

sequence learning, while the remaining seven decreased activity.

The deactivated FNs involved the dorsolateral PFC and intrapar-

ietal sulcus (IPS), typical regions of task-positive networks [55].

Furthermore, the VAN and DAN often show opposite modula-

tions during stimulus-triggered bottom-up attentional shifting

[41,56]. Therefore, the current finding of task-related opposite

modulations of ICs 4, 7, and 16 vs. ICs 12, 13, and 17 during low-

load conditions is similar to the opposite modulations of the VAN

and DAN during stimulus-triggered bottom-up attentional shift-

ing. Such opposite modulations indicate that there may exist

intrinsic mechanisms for preventing interruption of central

processing by inhibiting competing processes, consistent with the

interpretation of opposite modulations of the DMN and task-

positive networks [51–54].

IC Overlap
In fMRI, the BOLD signal acquired from each voxel represents

a mixture of source signals originated from many different neurons

within a voxel and signals from other physiological and non-

physiological activities. SICA uses higher-order statistics to extract

source signals with independent spatial distributions by separating

the signal mixture of each voxel. One of its earliest applications in

fMRI demonstrated this unique capability of sICA by separating

the BOLD signal mixture from a single voxel into as many as six

independent components (ICs) and an average of 3.19 ICs per

voxel ([57], fig. 16 legend). Consistent with this finding, several

later studies report overlap of FNs generated by sICA, even

though each of those FNs shows unique timecourse and/or task-

related modulations [15,27,30,38,46,58–60]. However, this im-

portant feature of brain functional organization has been ignored

in most published fMRI studies.

More recently three independent groups including us system-

atically assessed overlap of FNs in four fMRI studies using sICA of

two different falvors [4,11–14]. Findings from the four studies

together indicate: 1) that multiple FNs overlapped with each other;

2) that overlapping FN showed different, or even opposite task-

related modulation; 3) that sICA revealed more extensive brain

regions implicated in task performance relative to GLM based

analyses; and 4) opposite modulation of overlapping FNs

contributed to the negative finding of GLM based analyses at

some brain regions. We interpret IC overlap as an indication of

Opposite Modulation of Brain Functional Networks

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e87078



the same brain regions supporting multiple cognitive processes

simultaneously, consistent with previous interpretations of FN

overlap [58–60], and predict that the overlap of multiple FNs

associated with different cognitive processes will facilitate interac-

tions among them relative to different FNs occupying segregated

regions.

The current finding of FN overlap has several important

implications. First, previous data on VAN and DAN overlap are

not entirely consistent. Several studies report extensive overlap

between the VAN and DAN [61,62], others partial overlap

[40,63], and still others little or no overlap [49,64]. The current

findings are consistent with the data indicating partial overlap.

Second, questions exist as to whether FN overlap indicates that the

same neural substrates are involved in all overlapping FNs or

whether different neural substrates from the same brain regions

are involved in different FNs. Animal studies report that different

neurons in the same brain region show different timecourses

[65,66], consistent with the notion that different neurons from the

same brain region may be involved in different FNs. However, it is

possible that the same neurons may be involved in multiple FNs

either concurrently or in sequence. Third, the current findings of

FN overlap further support previous evidence of there being no

sharp border between the DMN and task-positive networks [67].

Finally, the findings indicate that future fMRI studies should

identify not only anatomical locations of task-related changes in

BOLD signal, but also the FNs implicated in these changes,

because BOLD signal from the same locations could be from

different FNs with different timecourses and functions.

In addition to their overlap, the non-overlapping regions of the

two IC groups show different distributions. Relative to the ICs

activated at low load, the ICs activated at high load cover more

brain regions including the thalamus, basal ganglia, midbrain, and

cerebellum. This finding is consistent with previous evidence that

more cerebellar and subcortical regions are recruited as cognitive

load increases from a low to a high level [68,69]. Furthermore, the

brain regions activated at the high-load conditions appear to be

more tightly organized than those activated at the low-load

conditions, suggesting that communications between these regions

may be more efficient than communications between regions

activated at low load conditions.

FMRI studies often use low load condition as a control and high

load condition as a test, and assess neural correlates of brain

function under investigation by subtracting task-related activity at

low load condition from activity at high load condition [70–72].

The implicit assumption of this design is that both low and high

load conditions involve the same brain regions and the high load

condition activates the brain regions to a greater extent in both

amplitude and spatial extent than the low load condition. The

current finding indicates that this assumption may not always be

correct and investigators should explicitly assess the brain regions

activated at different task loads before using this type of study

design.

ICs Activated by Distractors
Two ICs (i.e., 1 and 10) showed increased activity in the

conditions with distractors relative to those without distractors.

Both ICs involve the visual cortex and therefore this finding is

consistent with the data of distractors inducing activity increases in

the visual cortex as revealed by GLM-based analysis [17]. Several

ICs showed interaction effects of task load and distractor condition

on their activity; i.e., distractors induced a greater increase in

activity at low- relative to high-load condition. Though this

interaction effect did not survive correction for multiple compar-

isons, this finding is consistent with the data of distractors inducing

a greater increase in activity in both the visual and frontoparietal

cortex as revealed by GLM-based analysis [17].

Methodological Consideration
SICA has several limitations. First, the spatial extent of FN

overlap is influenced by selected statistical threshold for defining

FNs. More strict threshold will lead to less FN overlap relative to

less strict threshold. The current study used voxel level p,.001,

FDR corrected for the whole brain analysis, and K .5 as

threshold. This threshold is very strict relative to the threshold of

voxel level p,.01 or.001 without correction, combined with

cluster p,.05 corrected for the whole brain analysis commonly

used in GLM-based analysis. Second, the spatial pattern of each

IC may be different depending on the different number of ICs

extracted [73], and the numbers and extent of FN overlap may

change for the different numbers of extracted ICs. However, it has

been demonstrated that ICs remain accurate for a large range of

numbers of ICs [73]. Third, there is no reliable method to

accurately identify which IC represents true source signal and

which IC represents artifacts generated by ICA. However, many

ICs generated by sICA are very consistent in spatial patterns

across different studies and populations [2,27,30]. Finally, it has

been suggested that the constraint of spatially independence of ICs

generated by sICA limits its capacity to detect FN overlap [74,75].

However, this constraint does not mean that different ICs cannot

overlap with each other in space. It rather means that the spatial

patterns (i.e., spatial distributions in the brain) of different ICs are

independent from each other [57,76].

In conclusion, this study generated important findings by

applying sICA to fMRI data acquired during a task with

parametric loads of attention and working memory. Two groups

of ICs were implicated separately in low vs. high task loads. The

first group including ICs 4 (i.e., LFPN), 7 (i.e., insula network), and

16 (i.e., anterior DMN) increased activity at low load conditions

and reduced activity at high load conditions. The second group

including ICs 12 (i.e., ECN), 13 (i.e., DAN), 17 (i.e., cerebellum

network), and 22 (i.e., parietal-frontal network) showed opposite

changes of task-related activity relative to the first group, even

though the two groups overlapped with each other extensively.

Therefore, this secondary analysis of published data revealed that

DAN, ECN, and LFPN contributed to cognitive controls at

different cognitive demands. The different functional roles of these

FNs might not be revealed by studying fMRI data acquired at rest

condition alone.
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