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A multi-state dynamic process confers
mechano-adaptation to a biological
nanomachine

Navish Wadhwa 1,2,5 , Alberto Sassi 3,5, Howard C. Berg4 & Yuhai Tu 3

Adaptation is a defining feature of living systems. The bacterial flagellar motor
adapts to changes in the external mechanical load by adding or removing
torque-generating (stator) units. But the molecular mechanism behind this
mechano-adaptation remains unclear. Here, we combine single motor ele-
trorotation experiments and theoretical modeling to show that mechano-
adaptation of the flagellar motor is enabled by multiple mechanosensitive
internal states. Dwell time statistics from experiments suggest the existence of
at least two bound states with a high and a low unbinding rate, respectively. A
first-passage-time analysis of a four-state model quantitatively explains the
experimental data and determines the transition rates among all four states.
The torque generated by bound stator units controls their effective unbinding
rate by modulating the transition between the bound states, possibly via a
catch bond mechanism. Similar force-mediated feedback enabled by multiple
internal states may apply to adaptation in other macromolecular complexes.

Through billions of years of evolution, living organisms have devised
myriad ways to move around1. For single-celled bacteria, one of the
most common mode is swimming in aqueous environments by the
rotation of thin helical filaments called flagella2–4. Flagellar rotation is
powered by an intricate nanomachine, the flagellar motor (dia-
meter ~ 50 nm), a macromolecular complex assembled from more
than 20 types of proteins through a highly regulated process5,6. The
core structure of the motor consists of a rotor that traverses the cell
envelope, and an inner-membrane embedded stator that surrounds it
and generates force7–9. The stator is made up of individual units that
anchor in the peptidoglycan layer of the cell wall and dissipate ion
motive force to generate rotation10–15.

A central feature of living systems is their ability to adapt to
changes in their environment. Previous work on adaptation has largely
focused on biochemical networks in sensory systems, such as the
bacterial chemotaxis signaling pathway16. Much less is known about
howmacromolecular complexes adapt to changes in their mechanical
environment. The bacterial flagellar motor has emerged as an cano-
nical example of an adaptive macromolecular complex17,18. An

important recent discovery is that instead of being static once
assembled, the motor is a dynamic complex that continuously adapts
to external mechanical demand by remodeling itself19,20. Under high
load, the motor adds force-generating stator units and thus increases
its output (and vice versa)21–24, by tuning the dynamic turnover of the
stator units between a motor-bound set and an inner membrane-
embedded pool25,26. The goal of this study is to elucidate the physical
mechanism underlying mechano-adaptation of the motor.

Previous work modeled the assembly of a stator unit into the
motor as a two-state process, with a bound (“on”) and an unbound
(“off”) state. The rate of transition from the bound to unbound state
decreases with increasing motor torque in response to higher
load21–23,27. While this simple model captures population-averaged
kinetics, its broader validity has not been thoroughly tested. Indeed,
recent work by Perez-Carrasco and co-workers found that the asym-
metry observed in the timescales of relaxation to steady state (in
population-averaged data) from either a large or a small number of
stator units could not be explained by a simple, two-statemodel28. This
gap could be best resolved by the introduction of a third, strongly
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bound state into the model28. Similarly, by analyzing the steady state
distribution of the time intervals between binding and unbinding
events in single motors, Shi et al. discovered the existence of an
additional short-lived “hidden” state inwhich the stator unit transiently
disengages from the rotor while remaining assembled in the motor29.
These examples suggest that, to gain a deeper understanding of the
mechanisms that enable adaptive stator remodeling, we must go
beyond population-averaged data and analyze the statistics of single
binding andunbinding events in individual flagellarmotors. Themotor
behaviormust be described not just in steady state but also during the
adaptation process.

Here, we conduct a detailed analysis of remodeling events in
single flagellar motors of Escherichia coli as they adapt to a sudden
increase in load. From the distribution of dwell times of these events,
we find clear signatures of additional states beyond the simple bound
and unbound states. Motivated by these observations, we propose a
new model with four states (unbound, loosely bound, tightly bound,
and transiently unbound). This treatment provides a coarse-grained
approximation for a more complete model in which a bound stator
unit can occupy a continuum of states with different dissociation
rates. We present a theoretical treatment of the coarse-grained
model using first-passage-time analysis, which allows us to calculate
key statistics for the dwell time analytically. Our coarse-grained
model demonstrates excellent quantitative agreement with the
dwell-time statistics extracted from experimental data. Finally, we
discover new features of the on-process, whereby the on-rate of an
incoming stator unit is a non-monotonic function of the number of
previously bound units. Put together, this work reveals that the
mechanosensitive remodeling of the flagellar motor is powered by
molecular interactions that are more nuanced and complex than
previously thought.

Results
Single-motor electrorotation experiments
To accurately measure the dynamics of flagellar motors during the
adaptation process, we conducted a large number of single-cell
experiments with the bacterium Escherichia coli. We tethered indi-
vidual E. coli cells to a surface via a short flagellar stub, causing the
motor to rotate the cell body instead of the flagellar filament and
thus operate under a very high load (Fig. 1a). In the initial phase of the
experiment, we observed the cell rotation for 30 s. We then applied a
high frequency rotating electric field to the cell, which exerted a
large external torque on it in the same direction as themotor torque.
This greatly reduced the load acting on the motor and stimulated
mechano-adaptation in the motor via the release of bound stator
units. We kept electrorotation ON for a total of 6 min. At the end of
6 min, we turned electrorotation OFF, which suddenly increased
motor load. Once again, the motor adapted, this time by the
sequential addition of stator units, with the motor speed increasing
in a stepwise fashion over time (Fig. 1b). This phase of the experiment
also lasted for 6 min, during which we made continuous measure-
ments of the motor speed at a high temporal resolution.

The time trace of the motor output (i.e., rotation speed) consists
of discrete levels that correspond to different number of stator units
driving the motor (Fig. 1b). We used a step-fitting algorithm (see
“Methods”) to extract these discrete levels from the noisy speed data
at each time instant (black line in Fig. 1b). Once the levels were
identified, we associated them with a corresponding number of sta-
tor units, assuming that when the speed is close to 0 Hz no units are
bound to the rotor. Each new higher level is then due to the addition
of a single unit. To validate our analysis pipeline, we plotted the
entire set of extracted speed levels against the number of stator units
associated with those levels (Supplementary Fig. 1a). The approxi-
mately linear dependence of rotation speed on the number of bound
stator units is consistent with the generally accepted view that, under
high load, each stator unit supplies the same torque, resulting in
uniform spacing between successive speed levels25,30. In addition, we
plotted the distribution of the maximum number of stator units
(Nmax) observed during the remodeling process (Supplementary
Fig. 1b). In agreement with previous observations in E. coli, we find
that the number of stator units bound to the motor is at most 1131.
The observed variation in Nmax could be caused by insufficient
observation time or different packing arrangements of stator units
around the circumference of the rotor.

The simplest possible model for the molecular interactions
underlying stator remodeling is one in which a stator unit can exist in
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Fig. 1 | Single-motor electrorotation experiments. a Experimental strategy. The
cell is tethered to a surface via a short flagellar stub (left). A high-frequency rotating
electric field then applies an external torque (red) on the cell, which decreases the
motor load (middle). Under low load, themotor releases its bound stator units. The
electrorotation torque is then switchedOFF, which increases the load on themotor
(right). In response, themotor recruits stator units, leading to stepwise increases in
rotation speed. b Motor speed (gray) as a function of time in an electrorotation
experiment, showing fitted steps (black). The dashed lines indicate the discrete
speed levels. c Distribution of the dwell times τ from the electrorotation experi-
ments (red squares), as well as from simulations of two different scenarios of the
two-state model (koff = 0.0005 s−1, green triangles; koff = 0.05 s−1, purple disks). Bin
size dτ = 3 s.
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one of only two states—an unbound state, in which the stator unit
diffuses freely in the inner membrane, and a bound state, in which it
interacts with the rotor to generate torque. Indeed, this simple model
has successfully described the population-averaged kinetics of stator
remodeling and its dependence on experimental parameters, such as
load21–23. To further test its validity, we simulated two different sce-
narios (with different dissociation rates koff) of the two-statemodel for
the entire stator complex. We compared distributions of dwell times
for these simulations with the experimentally observed distribution
(Fig. 1c). We find that neither of the two scenarios of the two-state
model fully agree with the experimental data. While the two-state
model with a larger koff (= 0.05 s−1) is consistent with the experiments
for small dwell times (τ ≤ 50 s), it lacks the long-time tail (τ ≥ 50 s)
observed in the experiments. Conversely, the two-state model with a
smaller koff (= 0.005 s−1) does generate a long-time tail consistent with
the experiments, but it disagrees with the experimental distribution
for short dwell times. In Supplementary Note 2, we describe several
other disagreements between the two-state model and our experi-
ments with respect to dwell time statistics. Taken together, these
disagreements between the two-state model and our experimental
data suggest the existence of additional states that introduce addi-
tional timescales to the distribution of dwell times.

A mechanistic model for stator dynamics
Motivated by the multiple timescales observed in the distribution of
dwell times, we propose a minimal model for stator binding that
provides a mechanistic understanding of stator dynamics. Our model
is based on the assumption that the affinity between the rotor and a
single stator unit is not constant. As a simple approximation of this
assumption, we define two separate states for each bound stator unit,
characterized by different rates of unbinding. The addition of these
internal states leads to the emergence of additional time scales in the
distribution of dwell times, in line with the experimental evidence.

Figure 2a illustrates the key elements of ourmodel. Away from the
motor, a stator unit is in the diffusive state (D) inwhich itfloats freely in

the inner membrane and the proton channels inside it are closed.
When a diffusing stator unit collides with a rotor, it may transition to a
bound state (Fig. 2a), in which it is tethered to the peptidoglycan (PG)
layer of the cell envelope and the proton channels open. Subsequently,
protons flow through the stator unit and generate torque (Γ) that
drives the rotation of the rotor, which has a radius R. Newton’s third
law dictates that a counter force F = Γ/R acts on the stator unit in the
opposite direction (Fig. 2a). This counter force moves the tethered
stator unit away from its landing point by a displacement that depends
on the force F, and thus on the torque Γ. We hypothesize that the rate
at which the stator unit unbinds from the rotor decreases with
increasing displacement from the landing point (see Supplementary
Note 1 for details). To simplify the problem, instead of modeling a
continuous displacement that depends on the torque, we use a coarse-
grained approximation (Fig. 2b) to describe the internal state of a
bound stator unit as being in one of two possible states: a loosely
bound (L) state with a higher unbinding (off) rate koff,l, and a tightly
bound (T) state with a lower off rate koff,t≪ koff,l. The loose state (L)
corresponds to a stator unit with a small displacement; the tight state
(T) represents a stator unit with a large displacement. Despite being
identical in terms of torque production, the difference in their dis-
placement leads to different off rates. This enables the flagellar motor
to undergo load-dependent remodeling, as described next.

This coarse-grainedmodel has two important features that dictate
its behavior. The first is that, when a freely diffusing stator unit in the
D-state binds the motor, it enters the loose state (L) by definition, at a
rate kon. The on rate for the entire complex, k+, depends upon the
number of available sites (Ntot −N), where Ntot is the total number of
sites and N is the number of occupied sites. It can additionally depend
on other parameters, such as the motor speed ω, which is linearly
proportional to the number of attached stator unitsN (Supplementary
Fig. 1a). The second important feature of this model is that the tran-
sition rates (kl and kt) between the loose state (L) and the tight state (T)
depend on the torque (Γ). In particular, kt

k l
increases with torque so that

the equilibrium probability of a bound stator unit to be in the tight
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Fig. 2 | Amulti-statemodel for adaptive stator remodeling. aAn unbound stator
unit is in a closed state (D) inwhich it freely diffuseswithin the innermembrane and
does not translocate protons. Upon interacting with a rotor of radius R, the stator
unit transitions into a loosely bound state (L). In this state, the protons startflowing
through the stator unit, resulting in the production of a torque Γ on the rotor. As a
reaction, a force F = Γ/R acts on the stator unit, which displaces it in the direction of
the force. This displacement away from the point of tether lowers the off rate and
results in a tightly bound state (T). A bound stator unit can occasionally detach

from the rotor, resulting in a transiently unbound “hidden” state (H).b A simplified
4-state model of stator dynamics. A stator unit can go between the diffusive state
(D) and the loosely bound state (L)with anon rate, kon andanoff rate koff,l. From the
L state, it can go to the tightly bound state (T) with a rate kt and back with a rate kl,
both of which depend on the torque (Γ). From the T state, it can transition to the D
state at a much lower off rate koff,t. This model also includes the transiently
unbound hidden state (H). The H state couples with either the T or the L state with
rates kh and k−h.
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state Pt = kt/(kt + kl) increases with torque. Consequently, the effective
(observed) off rate ~koff = Ptkoff,t + ð1� PtÞkoff,l, which is averaged over
the two bound states (T and L), is smaller at higher torque because the
tight state has amuch smaller off rate koff,t(≪ koff,l), which is set to zero
(koff,t = 0) hereafter for simplicity. Thus, torque controls the effective
off rate by controlling the internal dynamics of the bound stator units.

While the above described states (D, L, and T)may be sufficient to
describe the on process from freely diffusion unbound stator units and
the torque dependence of the off process, our data as well as previous
work29 suggest that there is an additional "hidden” unbound state
different from D. Specifically, a bound stator unit can occasionally
become detached from the rotor at a rate kh. The detached unit
quickly attaches again to the rotor with a much higher rate k−h≫ kh,
resulting in this hidden state being very short lived. To account for this
finding, we introduce this hidden state (H) into our model (Fig. 2b).
The H-state is an unbound state (it does not exert force on the rotor).
However, it is not the same as the diffusive state (D) because the stator
unit stays in the vicinity of the rotor and quickly rebinds with the rotor
and becomes attached again. The short-lived H state is evidenced by
the fastest decay time scale in the observed distribution of dwell times
(leftmost data points in Fig. 1c).

Altogether, we have the minimal 4-state (D-L-T-H) model that
describes the dynamics of stator assembly (Fig. 2b). Aside from the
rates (k±h) related to the fast transient state (H), themodel is definedby
four rate parameters: kon, koff,l, kt, and kl. The on rate kon can addi-
tionally depend on N because of its dependence on the rotation speed
ω, which is linearly proportional to N (Supplementary Fig. 1a). These
important biophysical parameters are hard to measure directly. In the
following, we determine their values from a statistical analysis of the
remodeling data obtained from single flagellar motors during their
adaptation to a sudden increase in load.

The statistics of dwell times and first-passage-time analysis
Due to a separation of timescales, i.e., the transition rate k−h from theH
state to the bound state being larger than the other rates, we simplify
our analysis by first identifying the H states in the time series using a
short time-scale threshold for the duration of the H states (Supple-
mentary Fig. 2). From the H states identified in the experimental data,
the kinetic rates (k±h) to and from the H state can be determined.

Once the short-lived H states are identified, we can separate them
from the rest of the time series and focus on analyzing the transitions
between the other three states (L, T, and D), which enable mechano-
adaptation in the motor. An N-stator state ends with either an increase
or decrease in N (N→N ± 1). The stochastic dynamics of N are con-
trolledbyboth theon (‘+’) andoff (‘−’) processes, andwhether the ‘+’or
the ‘−’ transition is observed depends on which of the two happens
first. Thus, the statistics of dwell times can be understood as a first-
passage-time (FPT) problem32 with two independent stochastic pro-
cesses (‘+’ and ‘−’). Mathematically, when the number of stator units
reaches N at time t =0, we can compute the survival probability S(t),
i.e., the probability the motor stays in state-N at a later time t ≥0. The
distribution P(τ) for dwell time τ can then be determined from
S(t): PðτÞ= � dS

dt ∣t = τ
In our model, the on process has a time-independent rate

k+ = (Ntot −N)kon(N), where kon(N) is the on rate for a single stator unit.
However, the off process has a rate k−(t∣N) that is time-dependent
becauseof the existence of the twobound states and their different off
rates. This can be understood by considering a unit-i (i = 1, 2, . . ,N) that
binds to the rotor at time ti( ≤0) in the L state. Its survival probability
Si(t) can be determined analytically:

SiðtÞ= ce�σ + ðt�tiÞ + ð1� cÞe�σ�ðt�tiÞ, ð1Þ

where σ ± = 1
2 ½ðkl + kt + koff,lÞ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkl + kt + koff,lÞ2 � 4klkoff,l

q
� are the two

eigenvalues of the transition rate matrix for the two bound states (T

and L), and c = σ +�kl�kt
σ +�σ�

is a constant (see Supplementary Note 3 for
detailed derivation). The off rate for the unit-i can then be determined
from Si for t ≥ ti:

k�,iðtÞ= � S�1
i

dSi
dt

=
cσ + e

�Δσðt�tiÞ + ð1� cÞσ�
ce�Δσðt�tiÞ + ð1� cÞ , ð2Þ

whereΔσ = σ+ − σ−. Equation (2) shows that k−,i starts with the “bare” off
rate k−,i(ti) = cσ+ + (1 − c)σ− = koff,l when the stator unit first becomes
bound at t = ti and decreases to its equilibrium value k−,i(∞) = σ− at
t − ti≫ τe with τe =Δσ−1 is the timescale to reach equilibrium between
the two bound states (T and L).

The overall off rate (summed over all the bound stators),
k�ðt∣NÞ=

PN
i= 1 k�,iðtÞ, thus also depends on time, which indicates a

non-Markovian (memory) effect due to the existence of the hidden
bound states. Here, the T-state and the L-state are called “hidden”
states because we can not tell them apart directly from the experi-
mental observations, i.e., torque (or speed) of the motor. Given the
rates k+(N) and k−(t∣N), the survival probability satisfies:

dSðt∣NÞ
dt

= � ðk + ðNÞ+ k�ðt∣NÞÞS, ð3Þ

which can be solved with the initial condition S(0∣N) = 1 to obtain a
closed-form expression for the survival probability:
Sðt∣NÞ= exp½�k + t�

QN
i= 1

SiðtÞ
Sið0Þ. Details of the FPT analysis and derivation

of the solution for S(t∣N) are given in the Supplementary Note 3.

Quantitative comparison between experiments and theory
First, we estimated the transition rates to and from the H state as
kh ≈NH/Ttot and k−h ≈ 1/τH, where NH is the number of occurrences of
the short-lived H state, τH is their average dwell time, and Ttot =∑Niτi is
a weighted sum of dwell times where each weight is the number of
stator units that are already bound. From our experiments, we have
NH = 43, 〈Ttot〉 = 136620 s, and τH = 4.1 s, leading to kh ≈0.0003 s−1

and k−h ≈0.24 s−1, which are in excellent quantitative agreement with
the rates determined previously by measurements of steady-state
motor dynamics29.

Next, for each N, we separated the statistics for dwell times into
two distributions: P+(τ∣N) and P−(τ∣N), which are the probabilities for
observing the N→N + 1 and N→N − 1 transitions, respectively, for the
first time at t = τ, where t =0 is the time when the N-state is first
reached. The overall distribution of τ regardless of the end state is
P(τ∣N) = P+(τ∣N) + P−(τ∣N). The observed histograms for these dwell
times (Supplementary Fig. 4) show the occurrence of long dwell times
far outside of the exponential distribution with a shorter mean dwell
time, which indicates the existence of multiple timescales even for a
given N. In our model, from the survival probability S(t∣N) obtained by
solving Eq. (3) for each N∈ [0,Ntot], we can determine the two dwell-
time distribution functions P+(τ∣N) = k+(N)S(τ∣N) and P−(τ∣N) = k−(τ∣N)
S(τ∣N), which can be compared with the observed distribution of
dwell times.

From the distribution of dwell times for each N, we compute
several key statistical properties that characterize the underlying sto-
chastic process:

f ± ðNÞ �
Z 1

0
P ± ðτ∣NÞdτ, hτiðNÞ=

Z 1

0
τPðτ∣NÞdτ,V ðNÞ � σ2

τ

hτi2 ,
ð4Þ

where f± is the fractionof ‘+’ (on) or ‘−’ (off) transitions (f+ + f− = 1);〈τ〉
(N) is the mean dwell time for the N-stator state; V is the variance of
dwell time σ2

τ � R1
0 ½τ � hτiðNÞ�2Pðτ∣NÞdτ normalized by the square of

its mean, which measures the magnitude of the variation in dwell
times. We can also define〈τ±〉(N) = ∫P±(τ∣N)dτ as the average ‘+’ or ‘−’
dwell time, and we have: 〈τ〉(N) =〈τ+〉(N)f+(N) +〈τ−〉(N)f−(N).
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These characteristic properties correspond to the lower order
moments of the distributions of dwell time, which are less susceptible
to measurement noise. Therefore, comparisons of these properties
betweenmodel and experiments lead to robust estimates of themodel
parameters.

In Fig. 3, we show the comparison between experimental data and
our model results for the average dwell time〈τ〉, the fraction of the
‘+’ events f+, and the normalized variance V for different numbers of
stator units N (see Supplementary Note 5 for additional details on
model fitting). The agreement between the experimental data and our
model results supports our theory, which incorporates multiple hid-
den bound states. This is seen most clearly in the normalized variance
V (Fig. 3c). If there were only one bound state, the dwell time dis-
tribution would be a single exponential distribution, which would lead
to V = 1 (Supplementary Note 2). From the experimental measure-
ments, we found 〈V〉 = 2.0 ±0.4. The large normalized variance can
only be explained by a model with multiple bound states like the one
we proposed in Fig. 2, which leads to a theoretical value
〈V〉 = 1.75 ± 0.4, consistent with experiments (see Supplementary
Note 4 for additional discussion on the possible role of cell-to-cell
variability).

The quantitative agreement between our model and the
experimental data confirms the existence of multiple bound states.
Furthermore, it allows us to determine the dominant off rate koff,l
from the L-state and the transition rates (kt, kl) between the two
bound states (T and L), which are not possible to measure directly. In
particular, from the fitting of our model to the experimental data
(Fig. 3), we determined the values of key model parameters:
c = 0.30 ± 0.11, σ+ = 0.19 ± 0.1 s−1, and an upper bound for the much
lower rate σ− ≤0.0005 s−1 (see Supplementary Note 5 for details). In
the regime σ+≫ σ−, which is valid at high load, these model para-
meters are related to kt, kl, and koff,1: σ+ ≈ kt + kl + koff,l, σ� = k lkoff,l

σ +
, and

c≈ koff,l
σ +

, from which we obtain: koff,l ≈ cσ+ = 0.057 ± 0.023 s−1, kt ≈ (1 − c)
σ+ = 0.13 ± 0.07 s−1, and kl ≈ σ−/c ≤0.0017 s−1. Thus, the results of our
fit show that, at high load, kt≫ kl, which leads to a much decreased
effective off rate σ� ≈ ð1 + kt=kl + koff,l=klÞ�1koff,l≪koff,l. The reason for
this significant decrease in the off rate at high load is that, once
bound in the L-state, a stator unit quickly transitions to the more
stable T-state. The range of equilibrium off rate σ− at high load
inferred from our experiments is consistent with those measured in
previous experiments29. At low load, the equilibrium is shifted
towards the L-state, i.e., kt≪ kl, and our model predicts a much larger
effective off rate σ− ≈ koff,l = 0.057 s−1, which is in excellent agreement
with previous measurements at low load21.

On rate depends on the number of bound units
Our analysis also provides new information about the on process.
Based on the FPT analysis, we have P+(τ∣N) = k+(N)S(t∣N), which leads to
f + ðNÞ=

R1
0 P + ðτÞdτ = k + ðNÞ

R1
0 Sðτ∣NÞdτ = k + ðNÞhτi. Therefore, we

can obtain the on rates for different stator number N, k+(N) = f+(N)/
〈τ〉(N), from the observed f+(N) and 〈τ〉(N). Furthermore, we can
obtain kon = k+/(Ntot −N) as the on rate for each empty binding site. In
Fig. 4, we plot kon(N) for different values of N = 0, 1, . . . , 8. This plot
reveals several interesting features about the on process. First, the
nucleation rate, or the initial on rate for N =0: kon(0) ≈0.0037 s−1 is
much smaller than the on rates for N ≥ 1. Second, the on rates for N ≥ 3
are roughly the same, with kon(N ≥ 3) ≈0.0067 s−1. Third, the on rates
for N = 1, 2 are higher than the rates for N ≥ 3. The first two features
were also reported in a recent study by Ito et al.33. At high load, the
motor speed is linearly proportional toN and the low initial on rate has
been attributed to a possible dependence of kon on the rotational
speed ω in a nonlinear, sigmoid-like fashion33. However, as far as we
know, the enhancedon rates forN = 1 andN = 2 havenotbeen reported
before. Thesehigh rates are related to the short averagedwell times for
N = 1 and N = 2 (Fig. 3a).

We do not understand the molecular details of how a freely dif-
fusing (unbound) stator is incorporated into a rotating motor. The
dependence of kon(N) on N is likely caused by effect(s) of the motor
speed on the on rate. The non-monotonic dependence we found fur-
ther suggests that theremay bemultiple counteracting effects. On the
one hand, a higher motor speed may enhance both the probability of
collisionbetween adiffusive unbound stator unit and the rotor and the
collision strength, effects that could contribute to a higher on rate33.
On the other hand, a higher speed would also mean a shorter contact
time, which could lead to a lower on rate, as previously suggested by
Wadhwa et al.22. By combining these two possible counteracting
effects, we use a minimal phenomenological model to fit the data:

konðNÞ= konð0Þ× f 1ðNÞ× f 2ðNÞ, ð5Þ

where f1(N)(f2(N)) is a monotonically increasing (or decreasing) func-
tion of N that describes the speed-dependent enhancing (reducing)
effect of the on rate with f1(0) = f2(0) = 1. Here, we chose the simplest
formswith the smallest number of parameters for these two functions
that are consistent with previous studies22,33. As shown in Fig. 4, this
simple model yields reasonable agreement with the experimental
results, which supports the hypothesis that the motor speed may
affect the on process through two opposing mechanisms. While the
functional form of kon(N) is speculative, the agreement between this
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model and the experimental data offers f1 and f2 as a starting point for
specific quantitative hypotheses for how the binding process is
affected by motor rotation.

Discussion
In this study, we combined quantitative measurements of the
remodeling dynamics of single motors and first-passage-time
analysis of the statistics of dwell times. We also developed and
tested a minimal four-state model that quantitatively captures
multiple experimental observations of the remodeling dynamics
of the motor. A short-lived unbound state (H), proposed in a pre-
vious study of the steady-state motor dynamics29, is confirmed in
our analysis of the transient dynamics of motor remodeling. This
H-state elucidates the existence of very short time scales in the
distribution of dwell times, but it is not essential for mechano-
adaptation. More importantly, our study reveals the existence of
multiple states for a stator unit bound to the motor, each with a
different unbinding rate. This multiplicity of bound states is what
confers mechano-adaptation to the motor.

In all sensory adaptation systems, a key common feature is the
existence of multiple internal states that can be modulated in
response to changes in external stimuli16. For example, bacterial
chemoreceptors have multiple methylation sites that allow chemor-
eceptors to adapt to changes in ligand concentrations by adjusting
their methylation levels34,35. The multiple bound states of the stator
unit identified here serve as the internal adjustable states necessary
for adaptation of the bacterial flagellar motor to changes in external
mechanical signals. The transitions between these bound states
introduce additional timescales in the transient dynamics of motor
remodeling, which allows us both to explain the experimental results
and determine the transition rates between them.

As noted in the introduction, another recent study (performed
concurrently with our work) proposed a model in which the bound

state is split into two states with different unbinding rates28. By
analyzing population-averaged kinetics of stator remodeling, Perez-
Carrasco et al. showed that a three-state model (also termed a ‘two-
state catch-bond model’) can explain the asymmetry observed in the
timescales of relaxation to steady state from either a large or small
number of stator units28. However, these authors found that a pre-
viously proposed two-state (bound, unbound) model, which inclu-
ded a speed-dependent on rate22, could also fit their data. While a
careful Bayesian analysis did not favor the three-state model (which
has more parameters) from the two-state model with a speed-
dependent on rate, the three-state (loosely bound, tightly bound,
unbound) model provided a better fit to the experimental observa-
tions. Therefore, the work by Perez-Carrasco et al. also provides a
strong evidence for the presence of multiple bound states in the
assembly of stator units in the flagellar motor.

Here, by analyzing the statistics of the dwell times of single
motors, we conclusively show that a two-state model is incompatible
with the experimental observations. We go a step further by including
the short-lived hidden state in our model and confirming its presence
in our experimental data. These advances are primarily enabled by the
detailed analysis of single binding and unbinding events using first-
passage-time methods, rather than by analyzing population averages.
The convergence between our study and that of Perez-Carrasco et al.,
which investigated different aspects of mechanosensitive stator
remodeling (dwell-time statistics vs. relaxation-time asymmetry),
makes the model with multiple bound states a strong candidate for
future theoretical and experimental work in this field.

The emerging picture for mechano-adaptive remodeling of the
bacterial flagellar motor is that the torque generated by bound stator
units controls their off rate bymodulating the transition rates between
the T-state (with a low or zero off rate) and the L-state (with a high off
rate koff,l), and thus the equilibrium between the two bound states. In
particular, the ratio kl

kt
and consequently the effective off rate decrease

with the torque Γ. As a result, a higher load leads to a higher Γ, which
increases the number of bound stator units. This feedbackmechanism,
mediated by torque in the case of flagellar motor, is another key
common feature of all adaptive systems16.

Quantitatively, we find that the motor can tune its effective off
rate over a wide range (>100 fold) from a very low rate (≤0.0005 s−1) at
high torque (near stall) to amuch higher rate (~0.057 s−1) at low torque.
Thus, the motor can adapt to changes in the mechanical load by
adjusting the number of stator units over a range ofNtot from0 to 11. In
our experiments, the motor drove the rotation of tethered cells and
therefore operated close to stall. As a result, our data can only be used
to determine the values of kt and kl at high torque (near stall). In the
future, it will be interesting to use the modeling and analysis frame-
work developed here to analyze data from experiments performed at
different loads—for example, by using flagella labeled with beads of
different sizes—to dissect the dependence of kl and kt on torque and to
quantify the torque-mediated feedback mechanism.

As first pointed out by Nord et al.23, the large reduction in the
unbinding (off) rate of stator units with an increase in torque is
reminiscent of the general catch-bond phenomenon, in which the
lifetime of a receptor-ligand bond increases with tensile force
applied to the bond36. In the case of stator units, however, the
molecular mechanism causing the differences in off rates for dif-
ferent bound states remains unclear. In Fig. 2, we suggest a sce-
nario in which the off rate may depend on the physical location
(relative to its tethering position) of a bound stator unit, which is
affected by the torque it generates. Another possibility is that the
binding strength is increased by the torque through mechanically
induced allostery in which torque production (and the resultant
force) may propagate through the stator unit and cause con-
formational changes in the peptidoglycan binding domain of the
stator unit. Indeed, these are only two of the several possible
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scenarios that can lead to the catch-bond phenomenon36. Cur-
rently, there is no evidence to rule out either of these scenarios,
both of which can be described by our model with two bound
states (T and L). However, the presence of two bound states makes
the binding of the stator unit to peptidoglycan analogous to the
catch-bond behavior of FimH-mannose37,38, kinetochore-
microtubule39, and vinculin-F-actin interactions40, all of which
also consist of two bound states. These contrast with the selectin-
ligand41 and myosin-actin42 interactions, which exhibit a single
time scale in their dwell time distributions.

What sets the relatively slow timescale of transition from the L
state to the T state, as seen in a relatively small value of kt = 0.13 s−1? As
we speculated before, the L and T statesmight correspond to different
physical displacements of a bound stator unit. It is possible that such
displacement of a bound unit is hindered by a large energy barrier in
either the conformation spaceor thephysical space that leads to a slow
transition rate. Another intriguing possibility is that the rate kt is
related to the recruitment of protein FliL, which has recently been
shown (in Borrelia burgdorferi as well as in Helicobacter pylori) to form
a ring-like structure around each bound stator unit43,44. In B. burgdor-
feri, FliL forms a partial ring before the binding of a stator unit, and
oligomerizes into a full ring after a stator unit binds. This is believed to
stabilize the bound stator unit in its active, torque-generating state. It
is therefore possible that the L and T states respectively correspond to
partial and full FliL ring around a bound stator unit. However, given
that kt is a function of torque, how FliL oligomerization might be
affected by torque is unclear. These ideas can be tested by measuring
kt at different torque levels and at different expression levels of FliL.
We leave these experiments to future studies.

Our study also reveals several interesting features of the
dependence of the on rate on the number of stator units. Pre-
viously, Wadhwa et al. suggested a model in which the on rate
decreases with motor rotation speed, and therefore with an
increase in the number of stator units22. In contrast, recent work
by Ito et al. found that the on rate increases with motor rotation
speed, specifically when going from ω = 0 to ω > 033. Our data
reveal that the actual behavior is a combination of the two. The
observed on rate has a non-monotonic dependence on the num-
ber of stator units: the on rate for N = 0 is smaller than that for N =
1 or 2, where it peaks. At N > 2, the on rate decreases. Indeed, a
phenomenological model that combines features of these two
competing effects successfully captures the observed trend. The
non-monotonic dependence of the on rate on the number of
bound stator units suggests that the on process may contain two
(or more) steps with opposing dependence on the motor rotation
speed. In principle, the on rate could depend on the number of
bound stator units (via a possible cooperative binding effect) as
well as on the motor speed ω. However, in our current experi-
ments at high load, ω is linearly proportional to N, which makes it
impossible to separate the dependence on N and ω. Future
experiments that systematically measure the on rate under dif-
ferent loads are needed to understand the on process and its
dependence on N and ω.

A model with multiple bound states with mechanically regulated
transition rates, such as the one proposed here for the bacterial stator
units, also provides a possiblemechanism for downstream signaling of
mechanical signals. It is conceivable that, apart from regulating the
binding strength of proteins, force could also alter their biochemical
interactions with downstream signaling molecules. This could explain
the putative role of the bacterial flagellar motor, and stator units in
particular, in surface sensing during biofilm formation and differ-
entiation of swarmer cells45–48.

Overall, this work demonstrates the power of combining quanti-
tative data from single molecule experiments with detailed stochastic
analysis (e.g., first-passage-time analysis) to decipher the underlying

mechanisms in biological systems without requiring that all the
molecular details be known. Similar approaches should be applicable
to studying other stochastic dynamic processes in biology, especially
those that have to do with self-assembly of multi-protein complexes
and their regulation by intrinsic or extrinsic signals.

Methods
Bacterial strains and cultures
We used Escherichia coli strain KAF95 (alias HCB986; a derivative of
AW405) for all experiments. This strain is deleted for the chemotaxis
response regulator CheY. Consequently, the cells of this strain rotate
their flagellar motors exclusively counterclockwise. Additionally, this
strain is deleted for theWTflagellin gene FliCand transformedwith the
plasmidpFD313, which expresses sticky FliC, resulting in filaments that
readily attach to a variety of surfaces. Cells grown at 33 °C to OD600 =
0.5–0.6 were washed and resuspended in TES buffer (20 mM TES, 0.1
mM EDTA, pH = 7.5). The cells were then sheared by passing through a
20 cm long piece of polyethylene tubing (inner diameter 0.58mm) 60
times. The cells were then washed again to remove the sheared fila-
ments and re-suspended in TES buffer.

Electrorotation experiments
The electrorotation apparatus has been described before22,49.
Cells were introduced into a custom-built flow cell that consisted
of a circular sapphire window on one side and a circular glass
cover slip on the other side. Cells readily tethered to sapphire via
a short flagellar stub, which resulted in rotation of the cell body
around the point of tether. The flow cell also contained four
tungsten micro-electrodes whose tips were located at a short
distance from the sapphire surface. The electrodes were driven in
quadrature at 2.25 MHz to apply a rotating electric field on the
tethered cells. This field caused an external torque on the cell
body in the same direction as the torque applied by the flagellar
motor. The strength of the external torque could be tuned by
changing the amplitude of the rotating electric field. The tem-
perature of the sapphire window was held constant at 20 °C by a
circular Peltier element driven by a proportional controller. The
flow cell and electrode assembly was fixed on the 20× objective of
a phase contrast microscope. Rotating cells were imaged at 50 or
100 frames per second using a high-speed sCMOS camera (Edge
5.5; PCO-Tech). We selected such data from 58 different motors
for further analysis described below. Data collection was auto-
mated using a program written in LabView 2017 SP-1.

Data analysis and step fitting
Data analysis was performed using custom-written codes in Phython
3.6.4.Wemeasured the angular displacement of the cell body between
consecutive frames and multiplied it with the imaging frame rate,
followed by filtering with a median filter of order 15. This provided the
rotation speed of the motor as a function of time (gray line in Fig. 1).
We then proceeded to fit steps to the rotation speed to extract the
number of active stator units as a function of time. Of all the traces, we
selected only those for further analysis inwhich the rotation speedwas
below 1Hz at the end of the electrorotation phase, so that at most a
single stator unit was bound to the motor at the beginning of the high
load phase.

Our approach to step-fitting consisted of partitioning the total
time in smaller time intervals in such a way that minimized the point-
by-point distance between the fitted steps and the original trace. We
called ω(ti) the value of the rotation speed at time instant ti from the
original data and, given that the time increment δt was constant for
every step, we had ti = i∗δt. We called tn the total time of a given
experiment, where nwas the total number ofmeasurements per trace.

We needed to find an instant tl at which a step occured. The point
of the partition (the index l) was chosen in such away that the updated
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step function was as close as possible to the original data. More for-
mally, we defined the averages

hωi0,l =
1
l

Xl

k =0

ωðtkÞ, ð6Þ

and

hωil,n =
1

n� l

Xn

k = l

ωðtkÞ, ð7Þ

where〈ω〉0,lwas the average of the original data in the time interval
between t0 = 0 and tl and 〈ω〉l,n was the average of the data in the
interval between tl and the final instant tn. Then, lwas chosen in such a
way that the residualΔ, defined as sumof the squares of the difference
between the fitted step and the original data at each time instant:

Δ=
Xl

i =0

f ðtiÞ � hωi0,l
� �2 +

Xn

i = l

ωðtiÞ � hωil,n
� �2, ð8Þ

was minimal. The partition was then iterated several times. The for-
mula for Δ after K iterations was

Δ=
XK�1

i=0

Xli+ 1
k = li

ωðtkÞ � hωili ,li + 1
� �2

2
4

3
5, ð9Þ

where li was the index for the instant of at which the i-th step in the
fitted function occured and the indices were defined so that li < li+1 for
all values of i (i =0, 1, . . . ,K − 1).

The choice of the total number of iterations K was important in
order to avoid over-fitting. Todeterminewhen to interrupt the loop, at
each iteration we calculated the average ~Δ= hΔiα that was obtained by
partitioning at randomly generated instants tα rather than the specific
instants that minimize Δ to Δmin. Iteration was stopped as soon as
Δmin=

~Δ>0:995, i.e., when compared to an equal number of randomly
placed steps, an additional computed step did not improve the fit by
more than 0.5%.

The process described above resulted in a fitted step function g
for a given time tu, where li < u < li+1:

gðtuÞ= hωili ,li+ 1 : ð10Þ

At this stage, we needed to associate the discrete values of g to a
specific number of stator units. To do so, we determined whether
slightly different values of g during different time intervals cor-
responded to the same number of stator units. This was done with
a sorting method. First, we sorted all the values of g in ascending
order. Then, if two consecutive values of g (levels) differed by less
than 0.75 Hz, we assigned to them a new level given by the
weighted average of their current levels. Then, we associated a
number of stator units N to each level starting with N = 0 for the
level with a value close to 0 Hz and we added a stator unit for each
subsequent level.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data used in all analyses presented here are available from the
GitHub repository https://github.com/navishwadhwa/multi-state-
remodeling. Source data for Figs. 1c, 3, and 4 are provided with this
paper. Source data are provided with this paper.

Code availability
All codes used are available from the GitHub repository https://github.
com/navishwadhwa/multi-state-remodeling.
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