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Abstract

Technical Note

Introduction

In pathology, the study of cells (cytology) and tissue (histology) 
is performed by examining cells and tissues which were 
sectioned, stained, and mounted on a microscope glass 
slide under a light microscope. These studies typically aim 
at detecting changes in cellularity or tissue architecture 
for the diagnosis of a disease. Over the past few decades, 
technological advances in scanning technology enabled 
the high‑throughput conversion of glass slides into digital 
slides (whole slide images) at resolutions approaching those 
of traditionally used optical microscopes. Digital pathology 
has become an active field that holds promise for the future 
of anatomic pathology and raises many pattern recognition 
research challenges such as rare object detection/counting and 
robust tissue segmentation.[1‑3] In addition to the numerous 
potential patterns to recognize in digital slides, one of the 
key challenges for recognition algorithms is the wide variety 
of sample preparation protocols. These yield highly variable 
image appearances of tissue and cellular structures. Ideally, 
pattern recognition algorithms should be versatile so that 
they could be applied to several classification tasks and 
image acquisition conditions without the need to develop 
completely novel methods but using training datasets related 
to each novel task at hand. However, such an idealistic 
application of pattern recognition methods on real‑world 
applications requires the ground‑truth data to be carefully 
designed and realistic. We believe realistic data collection 

is an underestimated challenge in digital pathology that 
deserves more attention. In this technical note, we first discuss 
potential dataset issues in digital pathology. We then suggest 
guidelines and tools to set up better ground‑truth datasets and 
evaluation protocols.

Discussion

Potential sources of dataset variability and bias
Object recognition aims at designing methods to automatically 
find and identify objects in an image. The design of such 
methods usually requires ground‑truth datasets provided by 
domain experts and depicting various categories (or classes) 
of objects to recognize. In object recognition research, 
publicly available ground‑truth datasets are essential to enable 
continuous progress as they also allow algorithm quantitative 
evaluation and comparison of algorithms. However, computer 
vision dataset issues have been raised recently against datasets 
used for several years.[4‑11] We expect similar problematic 
issues might arise in the coming years in the emerging field of 

Effective pattern recognition requires carefully designed ground‑truth datasets. In this technical note, we first summarize potential data collection 
issues in digital pathology and then propose guidelines to build more realistic ground‑truth datasets and to control their quality. We hope our 
comments will foster the effective application of pattern recognition approaches in digital pathology.
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digital pathology if precautions are not taken when collecting 
new datasets.

Indeed, in some of these studies, published in the broader 
computer vision community, authors have shown that some 
hidden regularities can be exploited by learning algorithms to 
classify images with some success. For example, background 
environments can be exploited in several face recognition 
benchmarks.[6,7] Similarly, images of some object recognition 
datasets can be classified using background regions with 
accuracy far higher than mere chance[11] although images 
were acquired in controlled environments. In biomedical 
imaging, illumination, focus, or staining settings might also 
discreetly contribute to classification performance.[10] This type 
of fluctuation can lead to reduced generalization performance 
of classifiers as also observed in high‑content screening 
experiments where images of different plates can have quite 
different gray value distributions.[12]

Overall, these dataset biases will prevent an algorithm to work 
well on new images and are potentially guiding algorithm 
developers in the wrong direction. Moreover, the realism of 
several benchmarks has to be questioned beside the large 
amount of imaging data needed to analyze digital pathology 
applications. For example, in diagnostic cytology, a single patient 
slide might contain hundreds of thousands of objects (cells and 
artifacts). However, typical benchmarks  (e.g.,[13] in serous 
cytology, and[14] in cervical cancer cytology screening) contain 
only a few hundred individual cells from a limited number (or 
unknown number) of patient samples; hence, variations 
induced by laboratory practices and by biological factors are 
often not well represented. We believe that this partly explains 
why pattern recognition approaches had only a limited impact 
in cytology although there have been numerous attempts at 
designing computer‑aided cytology systems.[15]

The lack of details concerning data acquisition and evaluation 
protocols is also potentially hiding idiosyncrasies. An obvious 
sample selection bias would consist in collecting all examples 
of a given class (e.g., malignant cells) from a subset of slides 
while objects of another class (e.g., benign cells) are collected 
from another subset of slides. Such a data collection strategy 
might lead to classifiers that unwillingly capture slide‑specific 
patterns rather than class‑specific ones, hence have poor 
generalization performance. Similar problems might occur 
with other experimental factors, for example, when examples 
from slides stained in a different laboratory or stained on 
different days of the week are used, as it has been shown that 
these are major factors causing color variations in histology.[16] 
It has been reported that many other factors (e.g., variation in 
fixation delay timings, changes in temperature, etc.) can affect 
cytological specimens[17] and tissue sections,[18] hence the 
images used to develop recognition algorithms. Similarly, in 
immunohistochemistry, variable preanalytical conditions (such 
as fluctuations in cold ischemia, fixation, or stabilization time) 
could induce changes on certain marker expression, hence 
image analysis results.[19] Indeed, samples are prepared using 

colored histochemical stains that bind selectively to cellular 
components. Color variability is inherent to cytopathology and 
histopathology based on transmitted microscopy due to the 
several factors such as variable chemical coloring/reactivity 
from different manufacturers/batches of stains, coloring being 
dependent on staining procedures  (timing, concentrations, 
etc.). Furthermore, light transmission is a function of tissue 
section thickness and influenced by the components of the 
different scanners used to acquire whole slide images.

Data collection guidelines
While it would be hardly possible to avoid all dataset variability 
and bias, it is important that the protocols for data acquisition 
and imaging acquisition try to reduce the nonrelevant 
differences between object categories. Moreover, object 
recognition evaluation protocols should focus on challenging 
methods in terms of robustness.

Table 1 lists and organizes recommendations for less biased 
data collection based on lessons learned from the design of 
a practical cytology system,[20] from observations in digital 
pathology challenges,[21] from more general recommendations 
in the broader microscopy image analysis,[22,23,26] and from 
computer vision literature.[27] While all these recommendations 
might not be followed simultaneously due to current standard 
practices and limited resources, we recommend to follow the 
most of these whenever possible.

Dataset quality control
While following guidelines for the construction of a realistic 
ground truth should reduce dataset bias, it might not be possible 
to control and constrain every aspect of the data collection due to 
the current laboratory practices and available resources. Hence, 
there might still be real‑life reasons for dataset shift.[28] While 
other works have considered ground‑truth quality assessment 
using various annotation scoring functions  (e.g.,[29] where 
authors used the number of control points in the bounding 
polygon of a manual annotation), we believe these are not 
very relevant for practical pattern recognition applications 
in digital pathology. As[6,10] we rather think, it is important to 
assess dataset quality with respect to outcomes used by the 
final users. We, therefore, recommend to implement two simple 
quality control tests for assessing novel datasets and detecting 
biases before intensively working on them.

The f i rs t  s t ra tegy s imply evaluates  recogni t ion 
performances  (e.g.,  classification accuracy) with global color 
histogram methods or related approaches. While color information 
can be helpful for some classification tasks, too good results 
using such a simple scheme might reveal that individual pixel 
intensities are (strongly) related to image classes. In particular, 
in histology and cytology, color statistics may be of additional 
value, for example, to indirectly recognize a cell with a larger dark 
nucleus, but experts usually discriminate objects based on subtle 
morphological or textural criteria. For example, we have observed 
that staining variability can be exploited by such an approach on 
a dataset of 850 images of H and E stained liver tissue sections 
from an aging study involving female mice on ad libitum or 
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caloric restriction diets.[30] We use the Extremely Randomized 
Trees for Feature Learning (ET‑FL) open‑source classification 
algorithm of[31] that yields <5% error rate to discriminate mouse 
liver tissues at different development stages using only individual 
pixels encoded in the Hue‑Saturation‑Value  (HSV) color 
space (using 10‑fold cross‑validation evaluation protocol, and 
method parameter values[31] were: T = 10, nmin = 5000, and k = 3, 
with NLs = 1 million pixels extracted from training images). 
We observed that a similar approach yields also <5% error rate 
for the classification of 1057 patches of four immunostaining 
patterns (background, connective tissue, cytoplasmic staining, 
and nuclear staining) from breast tissue microarrays[32]  (using 
the same evaluation protocol and method parameter values).

Second, similarly to[6] that observed background artifacts in 
face datasets, one can easily evaluate recognition rates of 
classification methods on regions not centered on the objects of 
interest. We performed such an experiment using all 260 images 
of acute lymphoblastic leukemia lymphoblasts.[33] Using the 
ET‑FL classifier,[31] we obtained 9% error rate using only pixel 

data from a square patch of 50 × 50 pixels extracted at the 
top‑left corner of each image corresponding to background 
regions  (using 10‑fold cross‑validation evaluation protocol, 
and method parameter values[31] were: T = 10, nmin = 5000, 
and k = 28, with NLs = 1 million 16 × 16 subwindows extracted 
from training images and described by HSV pixel values). That 
is significantly better than majority/random voting although 
these patches do not include any information about the cells to 
be recognized. This problem is illustrated in Figure 1.

In these two datasets, some acquisition factors are correlated 
to individual classes. Overall, these overly simple experiments 
stress the need for carefully designed datasets and evaluation 
protocols in digital pathology.

Conclusions

Pattern recognition could significantly shape digital pathology 
in the next few years as it has a large number of potential 
applications, but it requires the availability of representative 

Table 1: Guidelines for less biased data collection and algorithm evaluation

Guideline category Guideline description
Technical variabilities Collect examples for each object category from different slide id/sample/day/technician/staining equipment/

scanner and keep track of provenance to control hidden relationships. If the production environment is well 
controlled, include only those variations that will be encountered in the final application
Collect examples such that these variations are equally represented for each class. It includes acquiring 
images using the different slide scanners that will be used in the final application on different days of the 
week and/or from different laboratories;

Biological variabilities Cover variabilities (shape, texture, size, color,…) of objects within each category so that each category 
includes a wide range of biological variations and not only examples corresponding to theoretical object’s 
appearances. Also include an “others” category, as many noncellular objects are often present in real‑world 
samples (e.g., dust particles, bubbles, and various contaminants) and might be found by automated object 
detection step. Classifiers not trained with negative examples might generate too many false positives

Training set: Class definition and 
sampling, object delineation

Match the object classes to the final application rather than to pathologist’s textbooks. If the goal is to detect 
a specific type of rare cells, it might not be necessary to work on a multiclass definition of the task
Balance class distributions as much as possible and follow the experts’ annotation process as they might 
annotate more “normal” objects (e.g., benign cells in cytology screening) due to their abundance. When class 
balancing is difficult (e.g., for rare cell detection tasks), consider data augmentation techniques afterward
Instead of delineating objects of interest manually, consider the final whole‑slide image analysis pipeline 
that will first apply preprocessing steps (e.g., object detection using thresholding). Objects detected by this 
automated procedure should then be classified manually by experts to build the ground truth so that training 
and testing sets are using the same kind of delineation procedure (rather than manual for training and 
automated in the final application)

Evaluation protocols and quality 
control

When reporting recognition performances, do not use cross‑validation protocols that mix samples without 
taking into account their provenance. For example, cells from a single slide should not be both in training 
and test sets, otherwise robustness to new slides would not be properly assessed. Indeed, consider matching 
the final practical use of the system where experts analyze unseen slides. Objects coming from independent 
slides should therefore be kept out for validation
To evaluate methods, evaluation criteria adopted by the pattern recognition community[24] can be 
used (classification accuracy, true positives, false negatives, F1‑score). However, accuracy evaluations might 
also be made on outcomes used by pathologists to better meet real‑world expectations. Therefore, more 
task‑specific statistical assessment might be adopted to tune hyperparameters during learning and to test and 
compare recognition techniques
During the dataset creation, regularly control its quality

Reproducibility, traceability, and 
software tools

Provide fine details of the acquisition protocol when publishing a new dataset to allow reviewers to scrutinize 
it and identify potential sources of bias
Leverage existing open‑source, collaborative, software, and database to keep track of annotations performed 
by several experts and make clear accounts of the data collection methodology. To the best of our knowledge, 
cytomine is the only open‑source software that enable web‑based and independent annotations of whole slide 
images to collect and distribute large, semantic, ground‑truth datasets[25]
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ground‑truth datasets. In this note, we summarized data 
collection challenges in this field and suggest guidelines and 
tools to improve the quality of ground‑truth datasets. Overall, 
we hope these comments will complement other recent studies 
that provide guidelines for the design and application of pattern 
recognition methodologies,[31,34,35] hence contribute to the 
successful application of pattern recognition in digital pathology.
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Figure 1: Illustration of illumination/saturation bias in unprocessed images 
from a dataset describing normal and lymphoblast cells.[28] The large images 
(left) are two images from each class. Small images (right) are cropped 
subimages (top left 50 × 50 corner) from 16 images for each class


