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Exosomes derived from glial cells such as astrocytes, microglia, and oligodendrocytes
can modulate cell communication in the brain and exert protective or neurotoxic effects
on neurons, depending on the environmental context upon their release. Their isolation,
characterization, and analysis under different conditions in vitro, in animal models
and samples derived from patients has allowed to define the participation of other
molecular mechanisms behind neuroinflammation and neurodegeneration spreading,
and to propose their use as a potential diagnostic tool. Moreover, the discovery of
specific molecular cargos, such as cytokines, membrane-bound and soluble proteins
(neurotrophic factors, growth factors, misfolded proteins), miRNA and long-non-coding
RNA, that are enriched in glial-derived exosomes with neuroprotective or damaging
effects, or their inhibitors can now be tested as therapeutic tools. In this review we
summarize the state of the art on how exosomes secretion by glia can affect neurons
and other glia from the central nervous system in the context of neurodegeneration and
neuroinflammation, but also, on how specific stress stimuli and pathological conditions
can change the levels of exosome secretion and their properties.
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INTRODUCTION

Exosomes have been largely studied for their role in cell-to-cell communication and their potential
to modulate cellular function, through direct transfer of metabolites and proteins, or through gene
regulation by miRNA and long non-coding RNAs transfer (Jin et al., 2021; Rastogi et al., 2021).
They are a subtype of a larger group of extracellular vesicles (EVs) constituted also of apoptotic
bodies and microvesicles (smVs) (Mathieu et al., 2019). Exosomes originate after the fusion of
multivesicular bodies with the plasma membrane and the later release of intraluminal vesicles,
reaching sizes between 30 and 150 nm. Although most studies on exosomes report their isolation
within this size fraction through differential centrifugation, it is important to note that some smVs
that originate by direct budding from plasma membrane might also be present in this fraction,
because of their size ranges from 40 nm to 1 µM (Mathieu et al., 2019; Rastogi et al., 2021). For
this reason, some literature uses the term EV and exosome interchangeably. For a comprehensive
review regarding their formation, isolation, and analysis, readers can refer to Rastogi et al. (2021).
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Exosomes have broad therapeutic advantages, such as low
immunogenicity, convenient storing, and high biosafety (Marote
et al., 2016). They are currently being proposed as excellent
biomarkers for diagnosing several brain diseases, as they can
be recovered and screened from plasma and cerebrospinal fluid
(CSF) from patients (Liu et al., 2019; Shaimardanova et al., 2020;
Rastogi et al., 2021). However, to better understand how illness
progresses and to provide potential therapeutic strategies based
on the information of these exosomes, it is necessary to determine
the cell type from which they originate.

Different strategies have been used for identifying the presence
of glial-derived exosomes in body fluids, such as plasma and CSF.
Some of them have evaluated the presence of GFAP (for astrocyte
origin) or isolectin B4 (IB4) (for microglial origin) in total
purified exosomes by either western blot of flow cytometry (Joshi
et al., 2014; Willis et al., 2017; Kodidela et al., 2020; Mondello
et al., 2020; Wang et al., 2021). Others have done proteomic
analysis, finding GFAP expression as well (Manek et al., 2018),
while some have identified glial exosomes by ELISA sandwich,
combining glutamate aspartate transporter (GLAST) and CD81
in plasma samples (Ohmichi et al., 2019).

However, fewer studies have specifically isolated glial-
derived exosomes to further characterize their content or to
conduct functional assays. In these studies, astrocyte-derived
exosomes are purified by using biotinylated antibodies against
GLAST followed by streptavidin-agarose resin chromatography
(Goetzl et al., 2016) or by magnetic beads conjugated with
GLAST antibodies and further FACS (Winston et al., 2019),
while microglia-derived exosomes are purified by magnetic
beads conjugated with Tmem119 and further FACS (Cohn
et al., 2021; Kumar et al., 2021). So to study glial-derived
exosomes, researchers have mostly rely on the use of
classical cell lines like BV2 and M9 (microglia), OliNeu
(oligodendrocytes), or primary microglia, and astrocytes
cultures (Figure 1).

In this review we summarize evidence on how exosomes
secretion by glia can affect neurons and other glia from the
central nervous system in the context of pathological conditions
associated with neuroinflammation and neurodegeneration. We
also address how different cell stressors can change exosomes
properties. It should be noted that for this review we have only
considered studies that report an increase in exosomes released
by glial cells assessing their beneficial or detrimental effect
(Figure 2).

ASTROCYTE-DERIVED EXOSOMES

Their Detrimental Effects
Several studies show that exosomes from astrocytes can
participate in the pathophysiology of neurodegenerative diseases,
as well as cerebrovascular pathologies (Table 1). Depending
on their cargo they can have neurotoxic effects due to the
presence of high levels of glutamate, viral proteins, misfolded
proteins, metalloproteinases, NO, arachidonic acid, and pro-
inflammatory cytokines. For instance, when astrocytes are treated
with lipopolysaccharide (LPS), their exosomes are enriched in

miR-34A, increasing the vulnerability of dopaminergic neurons
to mitochondrial complex inhibitors drugs (e.g., MPP+ and
6-OHDA) both in vitro and in vivo (Mao et al., 2015).

Most of the data regarding neurotoxic effects of astrocytes-
derived exosomes are associated with chronic inflammation
in models of Alzheimer’s disease (AD), ethanol exposure,
and amyotrophic lateral sclerosis (ALS). In a model of
ethanol-induced neuroinflammation, where glial activation
through Toll-like receptor 4 (TLR4) has been previously
observed (Blanco et al., 2005; Fernandez-Lizarbe et al., 2009),
ethanol stimulated the production of EVs from primary
mice cortical astrocytes in culture, which contained higher
levels of pro inflammatory molecules, such as TLR4, NF-
κB-p65, IL-1R, caspase-1, NOD-like receptor 3 (NLRP3).
Importantly, astrocytes knock-out for TLR4 did not respond
to ethanol. In addition, these exosomes were internalized
by cortical neurons in vitro, which responded by elevating
cyclooxygenase 2 (Cox2) levels, suggesting EVs can amplify the
neuroinflammatory response, in a manner dependent on TLR4
activation (Ibanez et al., 2019).

Both AD murine models and human samples from AD
patients suggests a detrimental role of exosomes derived from
astrocytes. Astrocyte-derived exosomes isolated from the plasma
of AD patients through biotinylated antibodies against GLAST,
exhibit enrichment of β-site amyloid precursor protein-cleaving
enzyme 1 (BACE-1), γ-secretase, soluble Aβ42, soluble amyloid
precursor protein (sAPPα and sAPPβ), all these crucial for the
maintenance of Aβ42 production machinery (Goetzl et al., 2016).
In addition, these exosomes have high levels of interleukin 6 (IL-
6), TNF-α, and IL-1β, as well as several complement proteins,
suggesting that the pathogenic role of astrocytes in AD might be
in part caused by the secretion of exosomes with inflammatory
properties (Goetzl et al., 2018).

In another study, Aβ peptide activates sphingomyelinase-
2 in primary astrocytes culture, which increases the release
of pro-apoptotic exosomes enriched in ceramide and prostate
apoptosis response-4 protein (PAR-4), suggesting these exosomes
might contribute to glial apoptosis and neurodegeneration seen
in AD (Wang et al., 2012). Interestingly, in vivo inhibition
of sphingomyelinase-2 through GW4869, decreases amyloid
plaques, ceramides, and exosomes in brain tissue and serum,
suggesting that pharmacological inhibition of sphingomyelinase-
2 could be a potential treatment for AD, by decreasing brain
exosomes with neurotoxic effect (Dinkins et al., 2014). Moreover,
when neuroglia co-cultures enriched in astrocytes are exposed to
Aβ42, they release exosomes that induce neuronal cell death by
apoptosis (Beretta et al., 2020).

Interestingly, when astrocytes are treated with IL-1β, they
release exosomes enriched in casein kinase 1, which promotes Aβ

synthesis in hippocampal neurons in vitro, through a mechanism
depending on GSK3-β/β-catenin (Li et al., 2020).

In ALS there is also evidence pointing toward astrocyte
derived exosomes as contributors for disseminating the disease.
For instance, it has been observed that exosomes from astrocytes
that overexpress a mutated form of superoxide dismutase 1
(SOD1) transfer this altered protein to spinal neurons in culture,
reducing their viability (Silverman et al., 2019).
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FIGURE 1 | Glial-derived exosomes isolation strategies from blood or plasma. Extracellular vesicles (EVs) are released by glial cells, containing different cargo
molecules such as cytokines, proteins, and non-coding RNA. The ability of EVs to cross the blood–brain barrier (BBB), allows them to enter the peripheral blood and
cerebrospinal fluid (CSF). Isolation of glial cell-derived exosomes from blood or CSF is accomplished by identifying glial-specific proteins surface markers, such as
glutamate aspartate transporter (GLAST) for astrocytes, CD11b and isolectin B4 (IB4) for microglia, and oligodendrocyte-myelin glycoprotein (OMG) for
oligodendrocytes.

FIGURE 2 | Glial cells-derived exosomes coposition and their participation in neuroprotective, neurotoxic, and regulatory functions. Summary of the information
reported about the cargo of exosomes derived from glial cells and their effects observed in different physiological and pathophysiological models in vitro and in vivo.
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TABLE 1 | Summary of neuroprotective and neurotoxic effects of astrocytes-derived exosomes with identified cargo.

Role Stimuli/ disease Cargo Effect observed References

LPS miR-34A Increases susceptibility to mitochondrial damage Mao et al., 2015

Ethanol TLR4, NF-κb-p65, IL1R,
caspasa-1, NLRP3

Amplifies neuroinflammatory response via TLR4 Ibanez et al., 2019

AD BACE-1, secretase, sAB42,
sAPPα y sAPPβ

Contribution to AB spreading? Goetzl et al., 2016

AD IL-6, TNF-α, IL1β, and
some complement proteins

Amplifies neuroinflammatory response Goetzl et al., 2018

Aβ Ceramide and PAR-4 Glial apoptosis and neurodegeneration Wang et al., 2012

Neurotoxic IL-1β Casein kinase 1 Promoters Aβ synthesis in neurons Li et al., 2020

Overexpression of
mutated SOD1

Mutated SOD1 Reduces the viability of spinal neurons Silverman et al., 2019

ALS miR-494-3p Alteration of neurite length in motoneurons Varcianna et al., 2019

Neuroprotective – ApoD Promotes survival and functional integrity under oxidative stress Pascua-Maestro et al.,
2019

OGD miR-92b-3p Reduces neuronal death induced by OGD Xu et al., 2019

OGD PrP Reduces neuronal death due to H2O2 oxidative stress Guitart et al., 2016

– miR-190b Reduces autophagy and neuronal apoptosis induced by OGD Pei et al., 2020

OGD+H2O2 + KCl Synapsin 1 Promotes cell survival and neurite growth under oxidative stress Wang et al., 2011

TBE miR-873a-5p Promotes anti-inflammatory phenotype in microglia Long et al., 2020

PMA GLAST 1 and GLAST 2 Reduces neurotoxicity induced by glutamate? Gosselin et al., 2013

Thermal stress HSP70 Reduces neuroinflammation and misfolded protein aggregation? Taylor et al., 2007

IL-1β and TNF-α miR-1254-5p and
miR-16-5p

Reduces dendritic complexity in hippocampal neurons Chaudhuri et al., 2018

IL-1β Actin-associated
molecules, integrins, MHC

Reduces neuronal branching and firing rate You et al., 2020

– Fibulin-2 Stimulates dendritic spine formation and synapse Patel and Weaver, 2021

Aldolase C
overexpression

miR-26a-5p Reduces dendritic complexity in developing hippocampal neurons Luarte et al., 2020

– Reduces infarct size, neuronal death, neurological damage, and
inflammation

– miR-361 Negatively regulates neuronal apoptosis Bu et al., 2020

– miR-17-5p Du et al., 2021

HSP90AB1, LRP1, ApoE Chun et al., 2021

Regulatory – KCTD12, G6PD, KIF5D,
SPTAN1

Regulates neuronal excitability Chun et al., 2021

Exosomes from induced astrocytes in culture, deriving from
ALS patient’s fibroblast and harboring specific mutation C9orf72,
have neurotoxic effect on motoneuron in vitro, also altering their
neurite length (Varcianna et al., 2019). This could be explained
by the lower levels of miR-494-3p in these exosomes, which is
also diminished in cortico-spinal tracts from postmortem ALS
biopsies (Varcianna et al., 2019).

Their Beneficial Effects
On the other hand, several other studies have shown that
astrocytes-derived exosomes can have neuroprotective properties
against oxidative stress, ischemia and nutrient deprivation,
potentiating cell survival, and neurite growth (Upadhya et al.,
2020) (Table 1). In general terms, exosomes derived from both
human and mice astrocytes are enriched in apolipoprotein
D (ApoD), a molecule described for its beneficial properties
against aging, AD, and multiple sclerosis (Dassati et al.,
2014; Li et al., 2015; Navarro et al., 2018). Also, these
exosomes can transfer ApoD into neurons, promoting their

survival and functional integrity after paraquat-induced oxidative
stress (Pascua-Maestro et al., 2019). Other proteins with
neuroprotective functions have also been described to be
present in exosomes derived from rat astrocytes cultures
under non-inflammatory conditions. Some of them has been
associated with neurogenesis, angiogenesis, neuronal plasticity,
and protection against oxidative stress (Matsuzaki et al.,
2001; Svensson et al., 2002; Lange et al., 2016; Shim and
Madsen, 2018; Froger et al., 2020), such as neuroglobin
(Venturini et al., 2019), fibroblast growth factor-2 (FGF-2),
and vascular endothelial growth factor (VEGF) (Proia et al.,
2008). In human astrocyte-derived exosomes, other proteins
with neuroprotective effects have been identified by proteomic
analysis, such as heat shock protein 90 alpha family class B
member 1 (HSP90AB1), lipoprotein receptor-related protein
1 (LRP1), and apolipoprotein E (APOE), which negatively
regulates neuronal apoptosis. In addition, these exosomes contain
proteins that regulate neuronal excitability such as potassium
channel tetramerization domain containing 12 (KCTD12),
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glucose-6-phosphate dehydrogenase (G6PD), kinesin family
member 5B (KIF5B), and spectrin-alpha non-erythrocytic 1
(SPTAN1) (Chun et al., 2021).

Exosomes from astrocytes cultured under glucose deprivation
and hypoxic conditions (OGD) are enriched in miR-92b-3p (Xu
et al., 2019) and PrP (Guitart et al., 2016) a surface glycoprotein
normally involved in oxidative stress sensing (Onodera et al.,
2014). When exosomes were incorporated by primary neurons
cultures under OGD, they reduced neuronal death (Xu et al.,
2019) and H2O2 oxidative stress (Guitart et al., 2016). Related
to PrP presence in exosomes, another study previously showed
that exosomes from astrocytes also contain stress-inducible
protein 1 (STI1), which has a great affinity for PrP (Hajj et al.,
2013), that could suggest STI1 is relevant for PrP incorporation
into exosomes. However, misfolding of PrP causes infectious
spongiform encephalopathy, so it would be interesting to address
whether astrocyte derived exosomes could also lead to prionic
disease transmission or not.

Another study on primary astrocytes enriched in miR-190b
also shows a protective effect when added to the hippocampal
cell line HT-229 under OGD (Pei et al., 2020), by targeting
autophagy-related gene 7 (Atg7), which reduces autophagy and
neuronal apoptosis.

Other studies have shown that when astrocytes are cultured
under OGD, H2O2, and KCl, they secrete synapsin 1-enriched
exosomes. Synapsin 1 promotes cell survival and neurite growth
in hippocampal neurons cultured under oxidative stress (Wang
et al., 2011), having already been described as a neuroprotective
protein (Upadhya et al., 2020). Although the authors do not
prove direct transfer of synapsin 1 from astrocytes exosomes
to neurons, they suggest that exosome-mediated transfer of
synapsin 1 could be a relevant mechanism for neuroprotection.

In addition to these studies, in rat models of ischemic
injury, administration of astrocyte-derived exosomes before or
after hypoxic damage reduced the infarct size, inflammation,
neuronal death, and associated neurological damage, partly due
to enrichment of miR-17-5p (Du et al., 2021) or miR-361 (Bu
et al., 2020), respectively. Particularly for miR-17-5p, the authors
showed in vitro that one of its targets is BCL2 interacting protein
2 (BNIP2), a pro-apoptotic regulator.

On the other hand, astrocytes cultured with brain extracts
from mice with traumatic brain encephalopathy (TBE) release
more exosomes than non-stimulated astrocytes, and in addition
these exosomes promote more M2 polarization of microglial
cultures. A miRNA expression analysis revealed enrichment
of miR-873a-5p and the authors show that overexpression of
this miRNA directly on microglia, increases IL-4, and arginase-
1, while decreases NF-kB signaling, thus promoting anti-
inflammatory phenotype (Long et al., 2020). Moreover, astrocyte
exosomes can promote recovery of TBI-like injured neurons
when cultured in a transwell system, reducing apoptosis rate,
and increasing mitochondrial function (Chen et al., 2020). When
these astrocyte exosomes are injected into the lateral ventricles
of rats subjected to TBI, brain damage recovery can be observed
after a week (Chen et al., 2020).

Another study showed that when rat astrocytes are treated
with phorbol-12-myristate 13-acetate (PMA), as well as spinal

cord explants from rats suffering spared nerve injury, they
release EV containing GLAST 1 and 2 (Gosselin et al., 2013),
known to reduce neurotoxicity induced by glutamate release
in neurodegenerative diseases such as Parkinson’s disease (PD),
AD, ALS, and Huntington’s disease (Iovino et al., 2020; Todd
and Hardingham, 2020). Also, astrocytes from chick spinal cord
cultures submitted to thermal stress, release exosomes containing
heat shock protein HSP70 (Taylor et al., 2007), which is known to
interfere with apoptosis and inflammatory signaling, in addition
to a reduced oxidative damage, by preventing protein misfolding
and aggregation (Beere and Green, 2001; Vabulas et al., 2002;
Tidwell et al., 2004; Novoselova et al., 2005).

Altogether this evidence shows a protective effect of
astrocytes-derived exosomes against different types of stress,
which could be used in therapies for neurodegenerative diseases.

On the other hand, evidence shows that exosomes from
astrocytes can modulate neurite outgrowth. For instance,
exosomes from astrocytes primed with IL-1β and TNF-α, which
increase their content on miR-125a-5p and miR-16-5p, reduce
dendritic complexity in hippocampal neurons (Chaudhuri et al.,
2018). This effect can be abrogated with antisense oligonucleotide
inhibitors directed against these miR. Another study has shown
that astrocyte priming with IL-1β alone is able to change
the proteinic cargo of exosomes, by increasing the levels of
actin-associated proteins, integrins, and major histocompatibility
complex (MHC). These exosomes from primed astrocytes reduce
neuronal branching and firing rate (You et al., 2020). On the
contrary, when astrocytes are stimulated with exosomes from
mesenchymal stem cells that overexpress miR-133b (considered
a neuroprotective miR), they increase exosome release, which
increases neurite branching and elongation on cortical neurons
(Xin et al., 2017).

Interestingly, a recent report with astrocyte exosomes under
physiological conditions, showed that they stimulate dendritic
spine formation and synapsis in cortical neurons by TGF-β
activation. This effect was mediated by the presence of fibulin-2
in the astrocyte exosomes (Patel and Weaver, 2021).

However, another study using exosomes from astrocytes
obtained after in utero electroporation of GFP, reduces dendritic
complexity in developing hippocampal neurons by a mechanism
that depends on miR-26a-5p (Luarte et al., 2020). This effect can
be also increased if aldolase C, a glycolytic enzyme, is enriched in
astrocytes exosomes. It might be necessary to address whether the
opposed effects on neuronal plasticity from these newer studies
are due to different neuronal types used, to different astrocytes
culture conditions or to methodological interventions.

MICROGLIA-DERIVED EXOSOMES

Their Contribution to the Spreading of
Toxic Proteins
Evidence has shown that microglial exosomes can promote and
propagate neuroinflammation, not only through delivery of pro-
inflammatory cytokines or miRNA that control inflammatory
and neurodegenerative pathways, but also by contributing to
the spreading of toxic proteins (Guo et al., 2020) (Table 2).
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TABLE 2 | Summary of neuroprotective and neurotoxic effects of microglia-derived exosomes with identified cargo.

Role Stimuli/disease Cargo Effect observed References

PD α-Synuclein Increases Iba-1 expression, microglia number, and arborization Xia et al., 2019

Increases the aggregated form of α-synuclein in neurons

PFF and LPS α-Synuclein Increases dopaminergic neuron degeneration Guo et al., 2020

α-Synuclein MHC-II and TNF-α Increases neuronal cell death Chang et al., 2013

Tau and LPS or
ATP

Tau Increases tau dissemination on neurons Asai et al., 2015; Clayton
et al., 2021

LPS and Mn+2 ASC Increases pro-IL-1β and NLRP3 in microglia Sarkar et al., 2019

Th1 cytokines and
LPS

miR-146a-5p Reduces the expression of Syt1 and Nlg1 Prada et al., 2018

Reduces dendritic spine density

Neurotoxic Stretch injury miR-5121 Reduces the expression of synaptophysin, PSD-95, GluR-1 Zhao et al., 2021

Reduces dendritic spine density

Ethanol CD13, MMP2 and C1q Increases neuronal cell death? Mukherjee et al., 2020

Cerebral ischemia TNF-α and COX-2 Increases neuroinflammation Gao et al., 2020

OGD PDE1-B Induces neuronal cell death Zang et al., 2020

Brain extract from
mTBI/

miR-124-3p Reduces inflammation Huang et al., 2018; Li et al.,
2019; Ge et al., 2020

Over-expression of
miR-124-3p

Increases the expression of BDNF and neurogranin

Neuroprotective Increases neurite length and number of branches

Reduces Rela, VILIP-1, Aβ, and APP

IL-4 miR-124 Protects neurons from OGD induced cell death Song et al., 2019

IL-4 miR-137 Protects neurons from OGD induced cell death Zhang et al., 2021

Regulatory – AEA Inhibits presynaptic transmission in GABAergic neurons Gabrielli et al., 2015

For instance, in the context of PD, it has been shown that
exosomes isolated from CSF of PD patients positive for
CD11b, which is an indicative of microglial origin, harbors
higher levels of oligomeric α-synuclein, and can also propagate
α-synuclein aggregation when added to neuronal cultures (Guo
et al., 2020). In addition, microglia cultures treated with
human preformed α-synuclein fibrils (PFF) and LPS secrete
higher amounts of exosomes with higher levels of α-synuclein,
and when these exosomes are injected into the striatum of
mice, they increases α-synuclein phosphorylation in several
brain regions, augmenting dopaminergic neuronal degeneration,
lowering dopamine levels, and altering motor functions after
6 months. On the other hand, when α-synuclein PFF is injected
into mice under pharmacological depletion of microglia, partial
decrease in α-synuclein phosphorylation and aggregation can be
observed in neurons (Guo et al., 2020). Altogether, these results
highlight microglial contribution in the spreading of cytotoxic
proteins through exosomes.

Studies on microglial cell line BV2 also show that α-synuclein
treatment increases exosome secretion, as well as their levels of
MHC-II molecules and TNF-α, inducing cell death of cortical
neuronal cultures, partly due to TNF-α (Chang et al., 2013). It
has been proposed that α-synuclein intracellular accumulation
in microglia, by autophagy disruption, would be “alleviated”
through exosomes release, which is used as a spreading
mechanism for toxic proteins (Guo et al., 2020).

Another example of microglial exosomes involved in
misfolded protein dissemination is given by studies on AD. For
instance, when microglia are incubated with pre-aggregated
Tau, and then activated with LPS or ATP, they release exosomes

carrying ubiquitinated forms of Tau, which can later be
incorporated by cortical neurons. Only when exosomes from
Tau-treated microglia are injected into the dentate gyrus, Tau
is detected in the granule neurons, not when Tau is injected
alone (Asai et al., 2015). Tau propagation into neurons can be
reduced when microglia is pharmacologically depleted in vivo
(Asai et al., 2015; Clayton et al., 2021). These results suggest a
role of microglial exosomes in Tau protein dissemination.

On the other hand, when neuronal cultures are incubated
with a mixture of Aβ 1–42 and microglia-derived exosomes,
an increase in intracellular calcium levels and cell death can
be observed. Interestingly, this neurotoxicity is not observed
with Aβ alone or with microglial exosomes alone (Joshi et al.,
2014). Fractioning analysis of the toxic mixture and the Aβ

soluble/aggregated forms present in it, revealed that only the
soluble fraction was responsible for the neurotoxic effects, and
that exposure to microglial exosomes disassembles Aβ aggregates,
increasing the soluble forms and other cleavage Aβ products with
neurotoxic effects. In addition, micro-vesicles from CSF of AD
patients, positive for microglial marker IB4 (which are the most
abundant from the whole pool) were also shown to be neurotoxic
when combined with Aβ 1–42 and added to neuronal cultures
(Joshi et al., 2014).

Their Modulation by Trophic or
Inflammatory Factors
Exosome release by microglia, and their cargo content can
be modulated by several inflammatory and neuronal-derived
factors, and ultimately this modulation can shape the effect that
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microglial exosomes have on other cell types, such as neurons.
For instance, a study on M9 microglial cell line primed with
LPS shows exosomes from these cultures decreases neuronal
viability of N2A by reducing the expression of syntaxin-1A
(Tang et al., 2016). In addition, microglial cultures primed with
LPS and Mn2+, show increased exosome release, containing
higher levels of the inflammasome adaptor protein ASC
(apoptosis-associated speck-like protein containing a caspase
recruitment domain), which could then be incorporated by
other microglial cultures, causing an increase of pro-IL-1β and
NLRP3 expression levels (Sarkar et al., 2019). On the other hand,
serum exosomes from welders, who are exposed to Mn2+, have
higher levels of ASC and pro-inflammatory IL-17 and TNF-α;
and when are added to microglia cultures, they increase the
levels of NLRP3 and pro-IL-1β, indicating the ability of these
exosomes to transfer ASC and induce inflammasome activation
(Sarkar et al., 2019).

Also, exosomes from microglia and astrocytes activated with
Th1 cytokines and LPS reduce the expression of proteins related
to synapsis, such as synaptotagmin 1 (Syt1) and neuroligin 1
(Nlg1) in neuronal cultures, through the delivery of miR-146a-
5p, which ultimately affects dendritic spine density (Prada et al.,
2018). The authors of this work verified these results in vivo,
by infusing exosomes derived from pro-inflammatory microglia,
through osmotic mini pumps connected into the hippocampus,
showing a decrease by 30% in the spine density (Prada et al.,
2018). In a similar way, exosomes derived from BV2 cell culture
submitted to stretch injury have reduced levels of miR-5121,
which reduces the expression of synaptophysin, postsynaptic
density protein 95 (PSD-95), and glutamate receptor 1 (GluR-1),
decreasing dendritic spine density (Zhao et al., 2021).

BV2 cells incubated with an agonist of metabotropic glutamate
receptor 5 (mGlu5), which exerts an anti-inflammatory effect
on these cells, show increased exosome release, and when SH-
SY5Y neurons are incubated with these exosomes, they become
more susceptible to cell death induced by high doses of rotenone
(Beneventano et al., 2017).

In ethanol stress models, ethanol administered to the diet of
experimental rats increases exosomes release from the medial
hypothalamus, while microglial cultures treated with ethanol
also have higher numbers of exosomes. These exosomes are
taken up by β-endorphin neurons in culture, inducing cell death
(Mukherjee et al., 2020). Exosomes from microglia treated with
ethanol showed augmented levels of aminopeptidase N (CD13),
metalloproteinase-2 (MMP2) and the complement system
protein C1q, the latter also detected in the hypothalamus of rats
fed with ethanol and in neurons cultured with exosomes from
ethanol-treated microglial cultures. Importantly, if microglia are
inhibited in vivo with minocycline, C1q do not increase in the
presence of ethanol, and cannot be detected in hypothalamic
neurons, showing that microglial exosomes contribute to ethanol
neurotoxicity through C1q activation and transference into
neurons (Mukherjee et al., 2020).

In a high fat diet-induced inflammation in vitro model,
exosomes derived from microglial cultures treated with
sodium-palmitate, exhibit a proinflammatory profile that
when added to hippocampal neuronal cultures, a significant

reduction on dendritic spine maturation can be observed
(Vinuesa et al., 2019).

On the other hand, in a rat model of focal cerebral ischemia,
microglial cells increase their release of exosomes with higher
levels of TNF-α and COX-2 in a glutaminase 1 (GLS-1)
expression dependent manner (Gao et al., 2020), an enzyme
previously associated with neuroinflammation. Pharmacological
inhibition of GLS-1 reduced exosome release after focal cerebral
ischemia and besides, it attenuates the infarction volume
(Gao et al., 2020), showing exosome participation in the
neuroinflammation spreading response.

Finally, exosomes from BV2 cultured under OGD exhibit
higher expression of calcium/calmodulin-dependent 3′,5′-cyclic
nucleotide phosphodiesterase 1B (PDE1-B) and induce higher
neuronal cell death in vivo, when stereotaxically injected into
the brain cortex of healthy mice. Pharmacological inhibition
of PDE1-B can abrogate this effect. In addition, when BV2
exosomes under OGD are injected into the brain of mice
with middle cerebral artery occlusion, they increase cell death,
while PDE1-B inhibition protects against stroke-induced damage
(Zang et al., 2020).

Their Beneficial Effects
Protective effects of microglial derived exosomes have also
been observed in neuronal cultures, through anti-inflammatory
responses as well as modulation of synaptic activity and neurite
growth (Table 2).

A study on primary hippocampal neurons cultured with
micro vesicles (MVs) derived from primary microglia or N9
cell line, shows increased frequency and decay of miniature
excitatory postsynaptic currents (mEPSC). Injection of microglial
derived EV into the primary optical cortex of rats, increased
evoked potentials in vivo, indicating enhanced excitatory synaptic
activity (Antonucci et al., 2012). This effect was dependent on
EV binding on neuronal membrane, and interestingly, broken
EV by freeze and thaw cycles, depleted of their inner content,
can recapitulate this effect in neuronal mEPSC, indicating that
surface molecules present in EV are sufficient to stimulate
exocytosis. In addition, the authors observed that EV promoted
ceramide and sphingosine production in neuronal cultures,
which were responsible for changes detected on synaptic activity
(Antonucci et al., 2012).

Another study of how microglial derived exosomes
can regulate synaptic activity shows that the presence
of N-arachidonoylethanolamine (AEA) in the exosomes
surface are able to stimulate type 1 cannabinoid receptor,
inhibiting presynaptic transmission in GABAergic neurons
(Gabrielli et al., 2015).

Exosomes from BV2 treated with brain extracts from
repetitive mild traumatic brain injury (mTBI) are enriched
in miR-124-3p (Huang et al., 2018), a miRNA abundant
in the brain of mice subjected to mTBI (Li et al., 2019; Ge
et al., 2020) that has been associated with anti-inflammatory
M2 polarization of microglia (Yu et al., 2017; Huang et al.,
2018). When mouse cortical neurons (Huang et al., 2018) and
hippocampal neuronal cultures HT22 (Ge et al., 2020) are
submitted to a scratch lesion and incubated with exosomes
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from BV2 over expressing miR-124-3p, they decrease their
pro-inflammatory profile (Huang et al., 2018) and increase the
expression of BDNF and neurogranin, augmenting neurites
length and the number of branching (Huang et al., 2018;
Ge et al., 2020). HT22 cultures after scratch increase the
expression of autophagy and apoptosis related proteins, and
this is attenuated when co-cultured with BV2 overexpressing
miR-124-3p, only when exosome release is allowed (Li et al.,
2019). They also decrease the expression of Rela (a target
of miR-124-3p, strongly associated with neuroinflammation
and neurodegeneration), intracellular calcium sensor VILIP-
1 (also a neurodegenerative marker), Aβ and APP protein
in vitro and, in vivo, when they are intravenously administrated
in mice after 35 days of brain lesion (Ge et al., 2020). In
addition, administration of miR-124-3p enriched microglial
exosomes improve both motor and cognitive performance,
indicating a protective effect in this neuronal injury model
(Huang et al., 2018; Li et al., 2019; Ge et al., 2020). Also,
in a mice model of ischemia, miR-124 enriched exosomes
have shown protective effects. Exosomes from BV2 polarized
into anti-inflammatory M2 phenotype, by IL-4, have higher
levels of miR-124 (Song et al., 2019) and miR-137 (Zhang
et al., 2021) and taken up by primary neuronal cultures,
protecting them against OGD-induced cell death in vitro
and in vivo. Moreover, intravenous administration of these
exosomes increases neuronal survival and reduces the
infarct volume, after 3 days. The authors showed that the
neuroprotective effect was dependent on miR-124, so when its
expression is inhibited, the favorable outcome is eliminated
(Song et al., 2019).

An interesting study on glioblastoma, where the authors
make a distinction between MVs and exosomes, shows that only
MVs secreted by BV2 or mice primary microglia can suppress
migration and invasion capacity of glioblastoma cell line GL261,
when microglia are treated with LPS and interferon (IFN)-γ
(Grimaldi et al., 2019). The same MVs can also decrease tumor
cells viability in the presence of neuronal cultures, and they
reduce tumor size in mice injected with GL261 cells, when
MVs are infused through a brain cannula. Analysis of brain
slices showed incorporation of MVs into microglia present in
the tumor, which had reduced expression of anti-inflammatory,
and thereby anti-tumor genes, such as arg1, CD206 and CD163
(Grimaldi et al., 2019).

OLIGODENDROCYTE AND SCHWAN
CELLS-DERIVED EXOSOMES

It has been observed that exosome secretion from
oligodendrocytes can be stimulated by neuronal signals,
such as glutamate and other AMPA and NMDA agonist, in a
Ca2+ entry dependent manner, as shown by direct incubation
of oligodendrocytes with glutamate, or co-culturing with
primary cortical neurons stimulated with potassium in a
Boyden chamber system (Fruhbeis et al., 2013). Using the same
co-culturing method, the authors also show that exosomes from
oligodendrocytes are mainly internalized by microglia, and in a
lesser extent by neurons (Fruhbeis et al., 2013). Other authors,
however, have shown that exosomes from oligodendrocytes cell
line OliNeu are practically just incorporated by microglia in vitro
and in vivo, mainly by micropinocytosis (Fitzner et al., 2011).
Addition of these exosomes to microglial cultures did not induce
pro-inflammatory cytokine release under basal conditions,
nor affected the release of pro-inflammatory molecules when
stimulated with LPS in vitro, indicating they do not activate
microglia (Fitzner et al., 2011).

In neuronal cultures, exosomes from oligodendrocytes exert
protective effect against H2O2-induced oxidative stress and
nutrient deprivation stress (Fruhbeis et al., 2013) (Table 3). When
neurons are co-cultured with oligodendrocytes in a Boyden
chamber system and subjected to an in vitro stroke model of
OGD they exhibit a higher metabolic rate, and are protected from
oxidative stress, due to exosome transfer of SOD and catalase,
from oligodendrocytes (Frohlich et al., 2014). In addition, using
multi-electrode array measurements of basal neuronal activity
in primary cortical neurons, has shown that exosomes from
oligodendrocyte increase neuronal action potential fire rate
(Frohlich et al., 2014).

Another study has shown that exposure of primary
hippocampal neurons to exosomes from oligodendrocytes
reduces their vesicle pauses during axonal movement, under
normal conditions, and restore vesicle mobility under oxidative
stress and nutrient deprivation, by increasing anterograde and
retrograde movement along the axons (Frühbeis et al., 2020).

Interestingly, exosomes from oligodendrocytes, which are
enriched in myelin tetraspan protein (PLP) and 2′,3′-cyclic
nucleotide 3′-phosphodiesterase (CNP) (Krämer-Albers et al.,
2007), inhibit myelination of primary neurons co-cultured with

TABLE 3 | Summary of neuroprotective and neurotoxic effects of oligodendrocytes and Schwann cells-derived exosomes with identified cargo.

Role Stimuli/disease Cargo Effect observed References

Neurotoxic PLP and CNP
deficiency

Decreased PLP levels Reduces axonal transport under nutrient deprivation Frühbeis et al., 2020

Polarization into
repair phenotype
with forskolin

MiR-21 Increases axonal regeneration López-Leal and
Díaz-Viraqué, 2020

Neuroprotective OGD SOD and catalase Increases metabolic rate and neuroprotection under oxidative stress Frohlich et al., 2014

– Myelin antigen Decreases neuroinflammation, demyelination and axonal damage Casella et al., 2020

Neuroprotective
in a EAE model

IL-4 miR-124 Protects neurons from OGD induced cell death Song et al., 2019

Regulatory – PLP, CNP Inhibits myelination of neurons Krämer-Albers et al., 2007
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oligodendrocytes, due to their enrichment in PLP. However,
if oligodendrocytes are incubated with neuronal conditioned
media, PLP levels on exosomes are reduced, suggesting
oligodendrocytes-exosomes might participate in feedback
mechanism regulating myelin synthesis (Bakhti et al., 2011).

Mice models deficient for PLP or CNP suffer from secondary
axonal degeneration and exhibit intracellular accumulation
of multivesicular bodies, in vivo, with decreased reduction
in exosome release capacity in vitro. Moreover, PLP and
CNP deficiency decreases the level of cargo transfer of
oligodendrocytes exosomes and loses the ability to sustain axonal
transport in neurons under nutrient deprivation conditions, even
when the number of exosomes are normalized with control
counterparts (Frühbeis et al., 2020). Altogether, these data
suggest that although exosomes from oligodendrocytes might
be predominately captured by microglia, they have protective
effects on neurons that are highly dependent on PLP and CNP
expression in oligodendrocytes.

Interestingly, a study shows that IV administration of
exosomes from mature oligodendrocytes, which are enriched in
myelin antigens, improve the clinical score and increases survival
rate in mice models of experimental autoimmune encephalitis
(EAE). These exosomes reduced CD4+ T cell infiltration into
the CNS and decreased demyelination and axonal damage
(Casella et al., 2020).

Lastly, regarding Schwan cell derived-exosomes, studies
have shown that they are internalized by dorsal root ganglia
(DRG) neurons when co-cultured with Schwan cells in Boyden
chambers, and that they stimulate axonal growth in DGR
explants, promoting axonal regeneration and growth cone
extension after mechanical injury in vitro (Lopez-Verrilli et al.,
2013). When Schwann cells exosomes were injected into
crushed sciatic nerves, they were also internalized by neurons,
specifically in their axons, increasing nerve regeneration after
4 days (Lopez-Verrilli et al., 2013). This pro-regenerative
capacity of Schwann cells-derived exosomes was observed
only to occur if the cells were polarized into a repair
phenotype, and it depended on the miR-21 presence in exosomes
(López-Leal and Díaz-Viraqué, 2020).

In addition, exosomes from human Schwann cell line RSC9
cultures increases proliferation and decreases apoptosis in DRG
cultures submitted to mechanical strain (Zhou et al., 2018).

CONCLUSION AND FUTURE
DIRECTIONS

We have summarized the most recent evidence regarding
glial derived-exosome detrimental or beneficial effects upon
neurons and other brain cells, in the context of different
pathological settings. Inflammatory conditions found in most
neurological diseases can alter the cargo content of exosomes,

and therefore their neuroprotective properties. For this reason,
it is necessary to refine or develop better imaging strategies
that allow tracking of cell-specific exosome secretion and
internalization. The latter, in combination with exosome
labeling and capture techniques, coupled with transcriptomics,
metabolomics and proteomics approaches would deeply increase
our understanding on how EVs cargo are modulated when
submitted to cell microenvironment variations in vivo, as this
can also affect experimental interpretations and therapeutic
applications of exosomes.

In this regard, in vitro and ex vivo studies have allowed the
identification of key proteins and miRNAs that are enriched in
glial exosomes can promote neuronal viability, modulate their
synaptic transmission and support axonal growth (Table 1),
however, significant amount of literature does not analyze the
nature of exosome content, and therefore, the root of the effects
described either.

Furthermore, most of the data available on glial-exosomes,
their cargo and their biological effect come from studies where
exosomes are isolated from cell culture supernatants, posing
the need of more studies that use methodological approaches
to specifically isolate glial-derived exosomes from body fluids
of healthy people and patients suffering from neurological and
neuropsychiatric disorders.

Some studies already suggest that finding higher levels of
glial-derived exosomes in blood could be used as a disease
biomarker in TBI (Manek et al., 2018; Mondello et al., 2020;
Wang et al., 2021), EAE (Willis et al., 2017), and alcohol abuse
(Kodidela et al., 2020). Therefore, if new studies arise in the
field, connecting number, glial origin and cargo, their assessment
would be expected to be useful as a real biomarker for disease.

The authors of this review consider that in the near
future, exosome analysis from body fluids will provide a more
comprehensive and accurate assessment of neurological disease
development, but also, that the information about exosomes
cargo will translate into synthetic exosome production that could
provide a safer and robust line of treatment.
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