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Abstract: In vitro study of the deposition of drug particles is commonly used during development 

of formulations for pulmonary delivery. The assay is demanding, complex, and depends on: 

properties of the drug and carrier particles, including size, surface characteristics, and shape; 

interactions between the drug and carrier particles and assay conditions, including flow rate, 

type of inhaler, and impactor. The aerodynamic properties of an aerosol are measured in vitro 

using impactors and in most cases are presented as the fine particle fraction, which is a mass 

percentage of drug particles with an aerodynamic diameter below 5 μm. In the present study, a 

model in the form of a mathematical equation was developed for prediction of the fine particle 

fraction. The feature selection was performed using the R-environment package “fscaret”. The 

input vector was reduced from a total of 135 independent variables to 28. During the modeling 

stage, techniques like artificial neural networks, genetic programming, rule-based systems, and 

fuzzy logic systems were used. The 10-fold cross-validation technique was used to assess the 

generalization ability of the models created. The model obtained had good predictive ability, 

which was confirmed by a root-mean-square error and normalized root-mean-square error of 

4.9 and 11%, respectively. Moreover, validation of the model using external experimental data 

was performed, and resulted in a root-mean-square error and normalized root-mean-square 

error of 3.8 and 8.6%, respectively.

Keywords: fine particle fraction, pulmonary delivery, deposition modeling, genetic program-

ming, feature selection, empirical modeling

Introduction
Dry powder inhalers are frequently used in the treatment of a number of respiratory 

diseases, such as asthma and chronic obstructive pulmonary disease. The therapeutic 

efficiency of these drug formulations depends on the deposition of drug particles at 

different levels of the respiratory system. Aerodynamic diameter is usually applied 

for the description of particle behavior in the air stream and is determined by particle 

size, shape, and density. Small particles with an aerodynamic diameter of less than 

5 μm are deposited deep in the lungs, but in most cases, they have poor flow proper-

ties as well as a highly cohesive nature, leading to low stability and poor quality of 

formulations.1,2 The addition of a carrier can solve those problems. The fine particle 

fraction (FPF) represents the mass percentage of drug particles with an aerodynamic 

diameter below 5 μm, and is used for in vitro assessment of the aerodynamic properties 

of aerosols. Aerosol generation and in vitro deposition of particles is a complex process 

that depends on: the properties of the drug and carrier particles, assay conditions, and 

inhaler characteristics.1,2 Carrier surface characteristics strongly influence adhesion 

and severance of the particles in a drug. For effective drug delivery, interactions 

between the drug and carrier have to be powerful enough to produce a homogeneous 
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on selection of important variables and advanced modeling 

tools like artificial neural networks, genetic programming, 

rule-based systems, and fuzzy logic. The prepared models 

are validated on a new experimental data set. 

Materials and methods
Data set
The database was acquired from the literature. Scientific 

articles were scanned and included in the analysis based on 

the following criteria: detailed information about drug and 

carrier (name and particle size); availability of an SEM image 

of the carrier; and description of assay conditions (flow rate, 

impactor and inhalator type).

After review of approximately 800 papers from the Scopus 

and PubMed databases, eleven met the inclusion criteria. The 

created database contained information about FPF for three 

various impactors, ie, the ACI, the next-generation impactor, 

and the multi-stage liquid impinger. A detailed list of the 

source publications is included in Table S1. Formulations were 

composed of five different types of substances as carriers, ie, 

trehalose, mannitol, lactose, erythritol, and hydroxyapatite. 

Based on the SEM pictures of carriers, 13 variables describing 

surface properties were calculated, including the arithmetical 

mean deviation, root mean square deviation, skewness of the 

assessed profile (Rsk), kurtosis of the assessed profile, lowest 

valley, highest peak, total height of the profile, average height 

of an unleveled surface, mean polar facet orientation, variation 

of the polar facet orientation, direction of azimuthal facets, 

mean resultant vector, and surface area.14 The carrier shape 

analysis was performed based on SEM pictures using ImageJ,15 

as described in the section on surface and shape analysis. The 

procedure resulted in six parameters describing the shape of 

carriers: the circularity, longest distance between two points 

(Feret), angle between the Feret’s diameter and a line paral-

lel to the x axis of the image (FeretAngle), minimum caliper 

diameter (MinFeret), ratio between particle height and particle 

width, and roundness.16 The database contained information 

about formulations composed of nine active pharmaceutical 

ingredients (API), ie, salbutamol, budesonide, ciprofloxa-

cin, cyclosporine A, disodium cromoglycate, fluticasone 

propionate, formoterol fumarate, ipratropium bromide, and 

salmeterol. The chemical structure and properties of the drug 

molecules were encoded by chemical descriptors computed 

using Marvin cxcalc plugin, UK (version 6.1; ChemAxon, 

Budapest, Hungary)17 based on three-dimensional optimized 

structures. Moreover, the mass percentage of API in the 

formulation, the carrier, and the API particle size distribution, 

inhaler device type (Novolizer®, Aerolizer®, Rotahaler®, 

formulation and at the same time not too potent to liberate 

drug particles during inhalation. Carrier particles with a rough 

surface have more binding sites to attach drug particles and 

less pronounced interactions between particles.3,4 Surface 

attributes can be quantified and applied in model develop-

ment with use of tools created by Chinga et al and images 

from a scanning electron microscope (SEM).5

During recent years, there have been several publications 

about model development for prediction of particle deposi-

tion. Vinchurkar et al6 used a computational fluid dynamics 

method to model a Mark II Andersen cascade impactor (ACI) 

and applied it to evaluate the effects of charge on deposition 

of particles. A commercial computational fluid dynamics 

code was used for the flow field simulation. The model 

was validated based on predictions for cut-off d
50

 diameters 

for each of eight ACI stages. Kaialy et al7 analyzed factors 

that influence the FPF in a formulation composed of vari-

ous types of commercial lactose and salbutamol particles. 

They found that the elongated, more irregular shape, and 

rougher surface of the carrier resulted in higher FPF values. 

The authors used only simple shape and surface factors 

calculated based on the length and breadth of the carriers. 

Chen et al8 combined computational fluid dynamics and 

the discrete element method for simulation of the transport 

and deposition of spherical particles in the computer model 

of a three-generation pulmonary airway. These authors 

used only two physical parameters of particles, like size 

and density for predictions of FPF. Sturm and Hofmann9 

presented a system for predicting extrathoracic, bronchial, 

and alveolar fiber deposition in the human respiratory tract 

based on breathing conditions, fiber properties, and the mor-

phometric lung model. In most cases, the models available 

can predict in vitro deposition for a system composed of one 

type of particle (drug or carrier), and use only one or two 

formulation-related factors, like the charge, dimensions, or 

density of the particles. There is a lack of a general model 

that could support the formulation development process for 

carrier-based pulmonary delivery systems.

Artificial neural networks and genetic programming 

methods have been successfully employed for modeling pur-

poses in pharmaceutical technology, eg, prediction of dissolu-

tion profiles,10 in vitro-in vivo correlation,11 and prediction of 

pellet properties.12 The modeling approach was presented as 

a useful method during construction of expert systems to sup-

port formulation development process.13 The present study 

introduces the concept of using empirical modeling based 

on data in the literature to obtain a predictive model for in 

vitro deposition of drug particles. The methodology is based 
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powder dispatchment tube, SetA, SetD), flow rate (L/min) 

during the experiment, were included according to data found 

in the articles. The complete structure of the database is shown 

in Table 1 and the full database is available in Table S2. 

Overall, there were 91 data records with 136 variables. The 

FPF was the only dependent variable and the other 135 input 

variables contained information about the carrier, drug, and 

assay conditions. The data set was processed to reduce the size 

of the input vector and to split data according to the 10-fold 

cross-validation method to check the generalization ability 

of the models created and simulate their real application to 

predict in vitro deposition for new formulations and unknown 

conditions.

Surface and shape analysis
The surface analysis was performed based on the SEM pho-

tographs using the SurfCharJ14 plugin for ImageJ (version 

1.47n), which allows calculation of parameters quantifying 

surface roughness. All parameters are described in the “data 

set” section of this article. Prior to analysis, each picture was 

standardized in terms of scale and grayscale depth (32-bit). 

Ten randomly chosen square sections of the particle surface 

with a size of 10 μm ×10 μm were analyzed. Surface rough-

ness was calculated with standard settings of the SurfCharJ 

plugin with an additional “level surface” option, which 

allows alignment of the surface by subtracting a regression 

plane from the surface. The final results for each particle 

were the average of ten samples. The carrier shape study was 

performed using ImageJ standard tools for a particle analysis 

with manual marking of each particle.

Selection of features
The aim of the feature selection was to reduce the number of 

inputs in the database before the modeling process in order 

to simplify the models created, to find the most important 

variables, and to save time and computational resources. 

The feature selection was performed by “fscaret”18 for 

R environment (The R Foundation for Statistical Computing, 

Vienna, Austria).19 The main parameters of the method used 

are listed in Table 2. The results are presented as a ranking 

of variables with a calculated importance value for each 

variable. Cut-off points for creation of new databases were 

set at a 5% gradient decrease.

Model assessment
Model goodness of fit was expressed as root-mean-squared 

error (RMSE, equation 1) and normalized root-mean-squared 

error (NRMSE, equation 2).

	
RMSE

pred obs

n

i i
i

n

=
−

=
( )∑ 2

1 	 (1)

where obs
i
 and pred

i 
are the observed and predicted values, 

respectively, i is the data record number, and n is total number 

of records.

	 NRMSE
RMSE

X X
max min

= ×
−

100% � (2)

where RMSE is the error calculated for model, X
max

 is the 

maximum value of the observed results, and X
min

 is the 

minimum value of the observed results.

Artificial neural networks 
Multilayer perceptron neural networks were created using a 

“monmlp”20 package for R environment. All of the prepared 

models had two hidden layers, each one numbering from 

4 to 50 nodes. The transfer function for the hidden layer was 

set as a hyperbolic tangent (tansig), and the linear function 

was applied for the output layer. Ensemble systems were 

employed and contained ten or 20 neural networks. Variables 

were scaled from 0.1 to 0.9, and iteration numbers were set to 

10, 50, 80, 100, 200, 400, 500, 800, and 1,000. The multistart 

Table 1 General description of created database

Input number Information description

1 Impactor type
2–6 Type of carrier
7–19 Surface characteristic of carrier
20–25 Shape description of carrier
26–28 Size of carrier particles
29–31 Size of drug particles
32 Drug content in formulation
33 Flow rate
34 Type of inhaler device
35–135 Molecular descriptors of drug
136 Fine particle fraction

Table 2 Settings for selection of variables performed by fscaret

Settings
Variable selection based on whole data set
Error measure: MSE and RMSE
“PreprocessData”: on and off
Time-limiting function for single model was set to 12 hours
New inputs vectors created based on features ranking

Abbreviations: MSE, mean-squared error; RMSE, root-mean-squared error.
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technique was used in order to avoid local minima: the “tri-

als” parameter was set to 5.

Rule-based systems
For modeling purposes, two rule-based systems were used, 

ie, “randomForest”21 and “Cubist”.22 The first one creates 

models based on a forest of decision trees using random 

inputs. The following parameters were used during the 

modeling process: automatic selection number of variables, 

maximum number of nodes set as 1,000, and number of trees 

set from 1 to 100. Cubist also creates regression models in a 

manner of decision trees, but it introduces linear equations 

at their terminate branches. During the modeling process, the 

maximum number of rules was fixed at 100, and the number 

of committees was set from one to 100. The extrapolation 

parameter, which controls the estimation ability of created 

models beyond the original observation range, was set to 100. 

The sample parameter, which is a percentage of the randomly 

selected data set for model building, was established at zero, 

which means that no data subsampling was employed and 

all the models were built on the complete data sets available 

for each run.

Fuzzy systems
Package for R environment “fugeR”23 was used to create 

models based on fuzzy logic rules. This tool uses a genetic 

algorithm to build a fuzzy system based on a given training 

data set. At the beginning, the system generates a random 

population and tests it on the available data. Afterwards, the 

best models are used to generate a new population based on 

genetic operators like crossover and mutation. The maximum 

number of rules was set to 3, 40, 50, or 100 (“maxRules”). 

The maximum number of input variables per rule was set 

from two to five. The population size was varied from 100 

to 5,000.

Genetic programming 
Mathematical models were produced with the genetic 

programming system available from the “rgp”24 package 

of the R environment. The package implements symbolic 

regression, a method that allows automatic construction of 

a mathematical formula by evolutionary algorithms based 

on experimental data. The model obtained is of a white-box 

type, so the results are easier to interpret in comparison with 

artificial neural network models. The size of the chromosome, 

which is a representation of the maximum length of the 

equation, was varied from 5 to 100. The more complex the 

equation, the higher the probability of its overfitting and weak 

generalization ability, thus the final choice of the optimal 

model is always a trade-off between its complexity and best 

achievable goodness of fit criterion. The population size was 

set to 1,000 and the modeling process was set to 500 million 

evolution steps divided into 100 stages. After each stage, the 

models were tested according to the 10-fold cross-validation 

method. Apart from maximum evolution steps, minimum 

training error (RMSE) was set as an additional algorithm 

stop condition. According to the previous results (monmlp, 

randomForest, and Cubist), its value was established as 5. 

The genetic programming method was applied to the origi-

nal database to find the mathematical relationship between 

FPF, formulation properties, and assay conditions. After 

selecting the best model, its parameters were optimized to 

assess the generalization ability. For optimization purposes, 

the “optimx” package for R environment was used.25 The 

general scheme of work and the models are presented in 

Figures 1 and 2.

Hardware environment
All calculations were performed using 27 workstations with 

a total of 304 threads working under the openSUSE 13.1 

operating system.

Results and discussion
Selection of important variables
The results of the fscaret package were used for selection of 

the most important variables. Based on this method, 51 new 

data sets were prepared, containing from 4 to 46 input 

variables.26 These data sets were used in a further modeling 

process using artificial neural networks, Cubist and random-

Forest tools in the 10-fold cross-validation mode. The best 

model in terms of generalization ability was found for the 

input vector of 28 variables (Table 3). The most numerous 

group of selected variables described drug properties, espe-

cially electronic characteristics, such as water accessible 

surface area (ASA), logP, and hydrogen donor bond count 

at pH 12. According to the definition of logP, hydrophilic 

substances have a low partition coefficient value and they 

are more soluble in water than in n-octanol. Hydrophobic 

substances have a high logP value and their solubility in 

water is lower than in n-octanol. Chuman et al27 created a 

model for calculation of logP based on solvation energy and 

ASA. It could be observed that molecules with a low ASA 

value are more hydrophilic than chemical compounds with 

a high ASA. 
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In conclusion, ASA and logP values are associated with 

hydrophilic properties of substances related to their dipole 

moment, thus accounting for the electrostatic behavior 

of particles. According to Pilcer et al2 the latter could be 

important for drug-carrier interactions in the same way 

that van der Waals forces are important. It could also be 

hypothesized that the drug’s hydrogen donor bond count 

at pH 12 is probably related to the pKa value of carriers, 

which in most cases in the collected database is between 12 

and 13. This may strengthen our earlier conclusion about the 

importance of electrostatic interactions between carrier and 

drug particles. Since no data about the actual charge on the 

particle surface were available, our reasoning is indirect and 

based on the assumption that the properties of a chemical 

compound influence and/or determine the properties of par-

ticles containing chemical substance as a main component. 

The other group of descriptors depicts the surface and shape 

of the carrier. Both factors are important for deposition of 

particles and influence adhesion forces between particles. 

There is still no clear explanation of how surface roughness 

can influence aerosol performance. Several authors have 

reported contradictory observations, ie, that both smooth 

and rough surface of the carrier was beneficial for particle 

deposition.2,28 Based on those results, it may be hypothesized 

that the performance of an aerosol is not only related to the 

roughness of the particles, but is also linked to the shape 
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Surface analysis with SurfCharJ
Shape analysis with ImageJ

Experimental conditions
Formulation characteristics

Database
91 records

135 variables

Selection of important
variables

fscaret

New databases

10-fold cross-validation
method

Fuzzy systems
(fugeR)

Genetic algorithms
(rgp)

Rule based systems
(Cubist, randomForest)

Artificial neural networks
(monmlp)

Molecular descriptors for API
Calculated by Marvin ChemAxon

Literature surveySEM pictures
of carriers 3D models of API

Figure 1 Scheme of work. 
Abbreviations: 3D, three-dimensional; SEM, scanning electron microscope; API, active pharmaceutical ingredient.
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pairs. A total of 51 different input vectors were used at 

the first stage of modeling by Cubist, randomForest, and 

monmlp packages for R environment. The best results 

were obtained for 28 input vectors for artificial neural 

network-based models with RMSE and NRMSE equal 

to 5.76 and 13%, respectively. A comparison of the best 

models created for all modeling methods is shown in Table 

4. Thus, a further modeling process with a genetic program-

ming method and fuzzy systems was performed using 28 

input vectors. The structure of the data set is presented 

in Table 3. Models created using rule-based systems like 

Cubist and randomForest showed an NRMSE error that 

was slightly higher than artificial neural networks (by 3% 

and 2%, respectively). The best fuzzy logic model had an 

RMSE and an NRMSE of 5.5 and 12%, respectively. The 

mathematical model was characterized by an RMSE of 4.9. 

Moreover, the genetic algorithm performed further auto-

matic input vector reduction, ending up with only eleven 

input variables selected from the database (Equation 3). 

The observed versus predicted plot for the model is pre-

sented in Figure 3.
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where In
1
–In

28
 corresponds to the labels in Table 3 and C

1
–C

2
 

are constants. The equation parameters are C
1
 =23.84648 

and C
2
 =3.456648. 

As a summary of the modeling step, the architecture and 

settings of the created models are shown in Table 5. A more 

complex mathematical equation derived as an additional 

Table 4 Results for the best models created based on the database 
contained 28 input vectors

Modeling tool RMSE NRMSE R2

monmlp 5.8 13% 0.68
Cubist 7.2 16% 0.52
randomForest 6.8 15% 0.54
fugeR 5.5 12% 0.69
rgp 4.9 11% 0.76

Abbreviations: RMSE, root-mean-squared error; NRMSE, normalized root-mean-
squared error; R2, coefficient of determination.

Table 3 Structure of the database contained 28 input variables 
prepared based on fscaret results

Variable name Variable group

In1 Impactor type Assay conditions
In2 Mannitol content Qualitative and quantitative
In3 Lactose content Composition of formulation
In4 Hydroxyapatite content
In5 Rsk Carrier surface properties
In6 Rku
In7 Rv
In8 Rp
In9 FPO
In10 FAD
In11 Feret Carrier shape 

characteristics
In12 FeretAngle
In13 MinFeret
In14 Carrier size D10 Carrier size
In15 Carrier size D90
In16 Drug content (%) Quantitative composition of 

formulation
In17 Flow rate (L/min) Assay conditions
In18 Type of inhaler
In19 Smallest ring size Drug properties
In20 Mass
In21 Water accessible surface area
In22 Water accessible surface area 

hydrophobic
In23 Asymmetric atom count
In24 Balaban index
In25 Minimal projection radius
In26 Resonance form count
In27 logP
In28 Hydrogen bond donor at pH 12
Output FPF

Abbreviations: Rsk, skewness of the assessed profile; Rku, kurtosis of the assessed 
profile; Rv, lowest valley; D10, cumulative 10% point of diameter; D90, cumulative 
90% point of diameter; logP, logarithm of n-octanol/water partition coefficient; FPF, 
fine particle fraction. 

Carrier shape

Carrier surface

Quantitative composition

Drug properties

Experimental conditions

Model Fine particle 
fraction (%)

Figure 2 General structure of created models.

of spikes and valleys observed on the carrier surface, as 

these variables were also included in our best model. These 

findings need further investigation. It was also found that 

assay conditions like flow rate, type of inhaler device, and 

impactor type can affect particle deposition.29,30 

Modeling
Based on 10-fold cross validation scheme, new data sets 

with reduced number of inputs were divided into learn-test 
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Figure 3 Observed versus predicted plot for model created with the genetic 
programming method. 
Abbreviation: FPF, fine particle fraction.

model is presented in Table S3. Additionally, GUI-based 

software implementing the presented models was written in 

Java and published for free download from the Internet (the 

details are presented in Table S4).

The features selected for FPF prediction utilize informa-

tion on drug properties (three variables), assay conditions 

(two variables), drug content in the formulation, and the 

properties of the carrier, including surface, type, and particle 

size. Further analysis of Equation 3 revealed that in vitro 

deposition as predicted by the model increases together with 

flow rate and decreasing drug content in the formulation 

(Figure 4B). Steckel and Müller31 showed that, in most cases, 

the FPF decreases when the drug content in the formulation 

increases. Experimental results show that an increased flow 

rate results in a higher FPF.32–34 The Rsk variable was found 

to be important for prediction of the FPF. It is asymmetry 

measure of the probability distribution of surface profile and 

is a more complex parameter than other surface descriptors, 

eg, the arithmetical mean deviation, root mean square 

deviation, lowest valley, highest peak, and total height of the 

profile.5 A positive value of Rsk indicates preference of low 

areas on the surface whereas a negative value of Rsk indicates 

domination of highly elevated surfaces. An Rsk value close 

to zero means that the distribution of height values is similar 

to a normal distribution. Moreover, according to the plot of 

Rsk versus FPF (Figure 4A), it can be observed that a surface 

with a low Rsk value (Figure 5C and D) has narrow valleys 

and rough spikes. This could impede interaction between 

carrier and drug particles. In the case of a higher Rsk, val-

leys on the particle surface are wider (Figure 5A and B), so 

Table 5 Architecture and settings of created models for various 
modeling methods

Modeling method R package settings
monmlp hidden1: 23

hidden2: 9
iter.max: 80
n.ensemble: 10
n.trials: 5

Cubist committees: 29
rules: 100
extrapolation: 100
sample: 0

randomForest ntree: 50
maxnodes: 50
mtry: 5

fugeR maxRules: 20
maxVarPerRule: 3
population: 500
elitism: 100
generation: 500

rgp individual size limit: 100
population: 1,000
evaluation limit: 77,500,000
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Figure 4 Response surfaces for predicted FPF and variables. 
Notes: (A) Drug lipophilicity (logP) and carrier surface properties (Rsk). (B) Drug 
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Abbreviations: FPF, fine particle fraction; Rsk, skewness of the assessed profile.

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://sourceforge.net/projects/fpfpredict/files/Supplemantary%20material/Table%20S3.doc/download
http://sourceforge.net/projects/fpfpredict/


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

808

Pacławski et al

Nanyang Technological University, Singapore. A new 

formulation composed of a hydroxyapatite carrier 

(Figure  6) and budesonide as a model drug was tested 

in an ACI impactor. Before validation, the parameters 

of Equation 3 were optimized based on the complete 

data set gathered from the literature, so no further cross-

validation (10-cv) was employed. The validation data set 

was prepared according to the described methodology and 

all inputs used for calculation are shown in Table 6. The 

results are summarized in Table 7. FPF values predicted 

for a flow rate of 30 L/min and 60 L/min were 14.50% and 

23.16%, respectively. The RMSE and NRMSE calculated 

for the external validation data set were 3.8 and 8.6%, 

could provide a better chance for interactions between drug 

and carrier particles. There is a need for further experiments 

to explain the influence of the surface topology of the carrier 

on drug-carrier interaction. Further, according to Equation 

3, the more hydrophilic the API, the lower the FPF that can 

be achieved. This finding is probably related to the dipole 

moment, which is crucial for the strength of van der Waals 

forces between particles. It is known that a more hydrophilic 

substance has a larger dipole moment. 

Validation
The final mathematical model (Equation 3) was tested on 

new experimental data from the College of Engineering, 
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Figure 5 Plots and Rsk values for various surfaces.
Notes: (A) Rsk =1.4, (B) Rsk =1.5, (C) Rsk = -0.18, (D) Rsk =0.08. 
Abbreviations: Rsk, the skewness of the assessed profile; Z-depth(pixel), distance.
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Table 7 Results of model validation on new experimental data

Additional formulation

Flow rate (L/min) Observed FPF Predicted FPF

30 17.70% 14.50%
60 18.90% 23.16%

Abbreviation: FPF, fine particle fraction.

respectively. The obtained results indicate that the created 

model is reliable. 

Conclusion
In this study, an approach to empirical modeling based on data 

in the literature was developed. All stages of the experiment, 

eg, shape and surface analysis, feature selection, and model-

ing, were performed using open source software available 

to everyone for free.19 As a result, the model described by 

the classical mathematical equation for prediction of in vitro 

deposition based on characteristics of formulation and assay 

conditions was obtained. A modeling technique like genetic 

programming can be useful for modeling of complex pro-

cesses such as in vitro deposition. The feature selection led to 

reduction of the input variables from 135 to 28. During devel-

opment of the model, three key elements were applied:

•	 SurfCharJ plugin and the ImageJ program, which allowed 

calculation of the carrier’s surface and shape descriptors 

based on SEM images

•	 Marvin, a tool for computation of molecular descriptors

•	 Tools for feature selection and modeling.

The validation of the model confirmed its applicability 

for development of new inhalation formulations and decision 

support systems.
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