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Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) 
remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a 
pivotal role in the progression and development of HCC, underscoring the significance of this metabolic 
pathway in the disease’s etiology. The purpose of this research was to investigate genes associated with MCM 
and develop a model for predicting the prognostic features of patients with HCC.
Methods: MCM-related genes (MCMGs) were identified through The Cancer Genome Atlas (TCGA), 
The Molecular Signatures Database (MsigDB), and the Mitocarta3.0 databases. Differential gene expression 
analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed 
using R software to construct a MCM-related model. This model underwent further analysis for somatic 
mutations, single sample gene set enrichment analysis (ssGSEA), stromal and immune cell estimation, 
immune checkpoint evaluation, and drug susceptibility prediction to assess the tumor microenvironment 
(TME) and therapeutic responses. The mRNA expression levels of the genes associated with the model were 
quantified using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR).
Results: The model, which included six MCMGs (ACADL, ACLY, TXNRD1, DTYMK, ACAT1, and 
FLAD1), divided all patients (age ≤65 vs. >65 years, P<0.001; male vs. female, ns) into a high-risk group and 
a low-risk group. The high-risk group showed a higher mortality rate and lower survival rate with AUC of 
0.785, 0.752, 0.756, 0.774 and 0.759 for the 1-, 2-, 3-, 4-, and 5-year respectively. A nomogram based on risk 
score, stage, T, and M had a better prognostic accuracy, with AUC of 0.808, 0.796, 0.811, 0.824 and 0.795 for 
the 1-, 2-, 3-, 4-, and 5-year respectively. The high-risk group showed enrichment in cell cycle, cell division, 
and chromosome processes, and a significantly higher tumor mutation burden (TMB) value compared to the 
low-risk group. Further immune infiltration analysis indicated a significantly reduction in the abundances of 
some immune cells (activated CD4 T cells, type 2 helper T cells, and neutrophils) and significantly higher 
expression levels of some immune checkpoint (CD80, CTLA4, HAVCR2, and TNFRSF4) in the high-risk 
group. Moreover, the risk score was associated with the response to immune checkpoint inhibitors (ICIs) 
therapy and efficiencies of multiple chemotherapy drugs. 
Conclusions: This study developed a prognostic model based on MCMGs, which can predict the 
prognosis of liver cancer patients and their response to immunotherapy and chemotherapy. The model may 
provide new strategies to enhance the prognosis and treatment of HCC.
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Introduction

In 2024, primary liver cancer accounted for approximately 
41,630 new cases and 29,840 deaths, ranking it as the sixth 
most frequently diagnosed cancer and the third leading 
cause of cancer-related mortality globally (1). By 2040, it 
is projected that 1.3 million deaths will occur annually due 
to liver cancer, representing 56.4% of all cancer deaths (2).  
Among liver cancer cases, hepatocellular carcinoma 
(HCC) predominates comprising 75–85% of all instances, 
characterized by its insidious onset, multifarious etiology, 
and high mortality rate (3). Despite advancements in 
treatment modalities, including sorafenib chemotherapy, 
vascular catheterization, radiofrequency ablation, surgical 
resection, and liver transplantation, the recurrence rate 

remains high, even among patients who undergo early 
treatment (4-6). Traditional prognostic models have been 
inadequate in achieving satisfactory outcomes due to the 
heterogeneity of HCC patients (7). Therefore, there is an 
urgent need to develop innovative and effective prognostic 
models that can accurately identify high-risk patients with 
poor prognosis, thereby enhancing the prognosis of HCC.

Alterations in mitochondrial cholesterol metabolism 
(MCM) significantly influence cancer cell biology by 
affecting mitochondrial function, metabolic reprogramming, 
apoptosis, and chemotherapy resistance (8). For instance, 
in rats with transplanted HCC, mitochondrial cholesterol 
levels were correlated with tumor growth and malignancy 
(9,10). Research indicates that maintaining homeostasis 
and regulating cholesterol metabolism within mitochondria 
are critical in various disease conditions (11). Therefore, 
it is imperative to investigate the molecular mechanisms 
underlying abnormal MCM in order to enhance the 
prognosis of HCC patients. In this study, a new prognostic 
model has been developed carefully, based on six MCMGs 
by utilizing gene expression data and clinical parameters. 
The predictive power of the model is rigorously evaluated 
on a range of key outcomes, including immunotherapy 
response, drug sensitivity, and immunoscape. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-1153/rc).

Methods

Data collection and pretreatment

The Cancer Genome Atlas  Liver  Hepatocel lular 
Carcinoma (TCGA-LIHC) (https://tcga-data.nci.nih.gov/
tcga/) dataset was analyzed to obtain mRNA expression 
levels and clinical data for 365 HCC patients, serving 
as the training set. Data from the Gene Expression 
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 
and the International Cancer Genome Consortium 
(ICGC) (https://icgc.org/) were employed to obtain 
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the GSE14520-GPL3921 and ICGC-LIRI-JP cohorts, 
respectively, which served as validation sets. Genes related 
to cholesterol metabolism and mitochondrial function 
were derived from the MitoCarta3.0 (http://www.
broadinstitute.org/mitocarta) and the Molecular Signature 
Database (MsigDB: https://www.gsea-msigdb.org). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Differentially expressed MCMGs

The analysis of differentially expressed genes (DEGs) 
was conducted utilizing the R package “DESeq2“, with a 
stringent selection criterion of |log2 fold change| >1 and 
adjusted P value <0.05, ensuring a robust identification 
of genes with significant expression variations. MCMGs 
were identified by comparing DEGs in HCC using a Venn 
diagram with genes associated with mitochondria and 
cholesterol metabolism (12).

Construction of a prognostic genes model 

The Univariate Cox regression analysis (P<0.1) identified 
differential ly expressed MCMGs with prognostic 
significance. The least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis was then 
employed to establish a prognostic risk model, including 
the six most significant genes (ACADL, ACLY, TXNRD1, 
DTYMK, ACAT1, and FLAD1) (13). The risk score for the 
model was calculated as follows: 

genei genei

n
Risk score  expression   coefficients

i 1
= ×

=∑ 	 [1]

HCC patients were classified into high-risk and low-
risk groups based on their median risk score. Extensive 
clinical data from the TCGA database were used, and time-
dependent receiver operating characteristic (ROC) analysis 
was performed using the “timeROC” and “survminer” R 
packages. Survival analysis was conducted on the high-risk 
and low-risk groups using the “survival” and “survminer” 
R packages. The effectiveness of the model was validated 
using the GSE14520 and ICGC datasets as external 
validation sets, with survival and time-dependent ROC 
analyses performed on these datasets. 

Determination of independent prognostic parameters

The univariate and multivariate regression analyses were 

performed on risk scores and clinical characteristics 
including age, gender, grade, stage, and TNM to identify 
independent prognostic factors (P<0.05) (14). 

Construction of a nomogram

Logistic regression analysis was utilized to construct a 
Cox risk model, which integrates risk scores and clinical 
variables. A predictive nomogram for HCC patients 
was constructed based on these parameters (15). Time-
dependent ROC curves compared overall survival (OS) 
rates at various time points (P<0.05) (16). The concordance 
index (C-index) was used to assess the model ability to 
differentiate high-risk and low-risk patients. 

Functional enrichment analysis and somatic mutation 
analysis in the high-risk and low-risk group

The “limma” R package was used to identify differentially 
expression genes between high-risk and low-risk groups. 
Pathway and function annotations were conducted using the 
“clusterProfiler” R package (17), with Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment studies. Gene set enrichment analysis (GSEA) 
revealed various biological pathways (18). Somatic mutation 
analysis was visualized using waterfall plots created with 
the “maftools” R package (19), providing insights into gene 
mutations and risk scores.

Immune infiltration analysis

Single-sample gene set enrichment analysis (ssGSEA) 
was conducted on 28 immune cell types in high-risk 
and low-risk groups, incorporating comparisons of 14 
immunological checkpoints. Additionally, the Cell-type 
Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) algorithm employed the model 
relationship with 22 immune cell types to explore their 
interaction within the immune landscape (20).

Immunotherapy efficacy prediction

The immunophenoscore (IPS) for HCC patients was 
acquired through The Cancer Imaging Archive (TCIA: 
https://tcia.at/home) online database, which employed 
machine learning technologies to calculate z-scores 
based on four cell types related to immunogenicity (21). 
The prognostic accuracy of the MCMGs model for 

http://www.broadinstitute.org/mitocarta
http://www.broadinstitute.org/mitocarta
https://www.gsea-msigdb.org


Guo et al. Predictive MCMGs for HCC prognosis and treatment6626

© AME Publishing Company.   Transl Cancer Res 2024;13(12):6623-6644 | https://dx.doi.org/10.21037/tcr-24-1153

immunotherapy was performed using the iMvigor210 
cohort (22).

Chemotherapeutic drug sensitivity analysis

The R packages “pRRophetic” and “ggplot2” predicted 
drug sensitivity in HCC patients by comparing the half-
maximal inhibitory concentration (IC50) values between 
high-risk and low-risk groups (23). 

Cell culture and real-time fluorescence quantitative 
polymerase chain reaction (RT-qPCR)

Huh7 human HCC cells were purchased from the Cell 
Bank of the Chinese Academy of Sciences in Shanghai, 
China. Human normal hepatocytes THLE-2, human HCC 
HCCLM3 cells and human HepG2 cells were procured 
from the Laboratory of Biochemistry and Molecular 
Biology at Guangxi Medical University. The cells were 
cultured in DMEM high glucose complete media with 
10% fetal bovine serum (FBS), 1% penicillin-streptomycin, 
and maintained at 37 ℃ with 5% CO2. RNA extraction 
was carried out using a kit from Tiangen Biochemical 
Technology, and complementary DNA (cDNA) synthesis 
was conducted using the Transcriptor First Strand cDNA 
Synthesis Kit from Roche. RT-qPCR was conducted using 
PowerUp™ SYBR™ Green Master Mix from Thermo 
Fisher, with primer sequences listed in the Table S1. The 
2-ΔΔCt method was used to assess the relative expression 
levels of the target genes in each sample. 

Statistical analysis

Data analysis was conducted using R software (version 
4.1.0). Statistical significance of normally distribution 
variables was assessed using t-tests, whereas non-normally 
distributed variables were assessed using the Wilcoxon 
rank sum test (24). A significance threshold of P<0.05 was 
employed to ascertain statistical significance.

Results

Identification of MCMGs for HCC patients 

The flowchart depicted the development of the MCMGs 
model, the prognostic evaluation, and various synthesized 
analyses (Figure 1). The screening criteria for identifying 
DEGs using the “Deseq2” R software were |log2 

fold change|>1 and P<0.05 (Figure 2A). Through the 
intersection of DEGs with mitochondrial and cholesterol 
metabolism-related genes, 25 differentially expressed 
MCMGs were identified (Figure 2B,2C). Variations in the 
expression levels of these 25 genes between normal and 
tumor samples were illustrated using box plots (Figure 2D).

Construction and evaluation of prognostic model based on 
MCMGs in TCGA-LIHC

Among the MCMG-associated genes examined, twelve 
differentially expressed MCMGs were correlated with 
patient OS (Figure 3A, P<0.05). Using LASSO Cox 
regression analysis ,  s ix  MCMGs (ACADL ,  ACLY , 
TXNRD1, DTYMK, ACAT1, and FLAD1) were further 
narrowed down as candidates (Figure 3B). The prognostic 
r i sk  model  incorporat ing these  s ix  MCMGs was 
developed, with the corresponding risk score calculated 
as follows: expressionACADL × (−0.00225986735977285) + 
expressionACLY × (0.29204276361915) + expressionTXNRD1 
×  ( 0 . 1 7 8 8 3 6 5 3 6 6 1 8 7 2 3 )  +  e x p r e s s i o n D T Y M K 
×  ( 0 . 3 7 4 9 0 8 7 3 4 5 0 7 9 4 9 )  +  e x p r e s s i o n A C AT 1  × 
( − 0 . 2 6 0 2 2 9 1 5 7 6 5 6 7 7 2 )  +  e x p r e s s i o n F L A D 1  × 
(0.0406045953218403). Patients with HCC were divided 
into high-risk and low-risk groups based on their median 
risk score. Analysis showed a higher mortality rate in 
the high-risk group (Figure 3C). The heatmap revealed 
significant down-regulation of ACADL and ACAT1, and 
up-regulation of FLAD1, TXNRD1, DTYMK, and ACLY in 
the high-risk group (Figure 3D). Survival analysis indicated 
a higher survival rate in the low-risk group (Figure 3E). The 
areas under the curve (AUC) for the 1-, 2-, 3-, 4-, and 5-year 
time points were 0.785, 0.752, 0.756, 0.774, and 0.759, 
respectively, as shown in the time-dependent ROC curve 
(Figure 3F). These findings indicated that the MCMGs 
model exhibits a notable predictive capability.

Verification of prognostic model of MCMGs 

The ICGC and GSE14520 external validation datasets were 
categorized into high-risk and low-risk groups according 
to their risk scores that were calculated. Examination of 
risk distribution, survival status maps, and survival curves 
indicated significantly lower survival rates in the high-risk 
group compared to the low-risk group (Figure 4A-4D). 
Through time-dependent ROC curve analysis, the risk score 
model demonstrated high accuracy in predicting survival 
outcomes within the ICGC and GSE14520 validation 

https://cdn.amegroups.cn/static/public/TCR-24-1153-Supplementary.pdf
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Figure 1 Flowchart for the model of MCMGs. TCGA, The Cancer Genome Atlas; FC, fold change; DEG, differentially expressed genes; 
HCC, hepatocellular carcinoma; MsigDB, Molecular Signatures Database; K-M, Kaplan-Meier; ROC, receiver operating characteristic; 
LASSO, least absolute shrinkage and selection operator; ICGC, International Cancer Genome Consortium; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; IPS, immunophenoscore; MCMG, mitochondrial 
cholesterol metabolism-related gene.

sets (Figure 4E,4F). Additionally, the heatmap analysis 
demonstrated a significant down-regulation of ACADL and 
ACAT1 expression in the high-risk group, while FLAD1, 
TXNRD1, DTYMK, and ACLY expression showed a marked 
increase in the same group (Figure 4G,4H). These results 
indicated that the forecasting model exhibits a high level of 
accuracy. 

Validation of expression levels of relevant prognostic genes 
based on MCMGs

The study utilized RT-qPCR to assess mRNA levels of 

prognostic genes in HCC cells, revealing upregulation 
of DTYMK, ACLY, and FLAD1, and downregulation of 
TXNRD1, ACAT1, and ACADL. The results aligned with 
the histological patterns of gene expression (Figure 5A-5F). 

Stratified analysis and establishment of MCMGs 
nomogram

To further validate the prediction power of the various 
clinical features, a stratified analysis was performed  
(Figure 6A). Patients were categorized by age (≤65 vs.  
>65 years), gender (female vs. male), grade (1–2 vs. 3–4), 
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Figure 2 Screening for mitochondrial cholesterol metabolism related DEGs. (A) Screening for DEGs in TCGA. (B) Venn chart of the 
mitochondrial cholesterol metabolism DEGs. (C) Number of mitochondrial cholesterol metabolism DEGs. (D) Expression of prognostically 
relevant MCMGs in normal and tumor samples. ns, not significant; ***, P<0.001. DEG, differentially expressed gene; TCGA, The Cancer 
Genome Atlas; MCMGs, mitochondrial cholesterol metabolism-related genes.
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Figure 3  Construction of prognostic model. (A) Twelve MCMGs were screened based on univariate Cox regression analysis (P<0.1). (B) 
LASSO regression analysis identified six prognostically relevant MCMGs. (C) Risk score distribution, survival status in TCGA-LIHC 
cohort. (D) The six genes expression heatmaps in TCGA-LIHC cohort. (E) Kaplan-Meier survival analysis. (F) Time-dependent ROC 
curves. AUC, area under the curve; MCMGs, mitochondrial cholesterol metabolism-related genes; LASSO, least absolute shrinkage and 
selection operator; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; ROC, receiver operating characteristic.
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Figure 4 Verification of prognostic models. (A,B) Risk score and survival status distribution in GSE14520 and ICGC. (C,D) Kaplan-Meier 
survival analysis. (E,F) Time-dependent ROC curves. (G,H) The six genes expression heatmaps in ICGC and GSE14520 cohort. ICGC, 
International Cancer Genome Consortium; AUC, area under the curve; ROC, receiver operating characteristic.
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Figure 5 Expression levels of prognostic genes. (A-F) Expression levels of prognostic genes associated with MCMGs. ns, not significant; 
*, P<0.05; **, P<0.01; ****, P<0.0001. THLE-2, transformed human liver epithelial-2; HepG2, human liver cancer cell; HCCLM3, human 
highly metastatic liver cancer cell; Huh7, human liver cancer cell; MCMGs, mitochondrial cholesterol metabolism-related genes.
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stage (I–II vs. III–IV), and T (1–2 vs. 3–4) (Figure 6B). 
Excluding gender, G1–2, M and N, the low-risk group 
demonstrated a higher survival rate than the high-risk 
group (Figure 6C). Univariate Cox analysis revealed that 
stage, T, M, and risk score were significantly associated with 
the prognosis of HCC patients. Furthermore, multivariate 
Cox analysis demonstrated that the risk score remains an 

independent predictor of prognosis in HCC patients after 
adjusting for other confounding factors (Figure 7A,7B). As 
shown by the result of multivariate Cox regression analysis, 
the risk score continued to be a reliable predictor of survival 
(Figure 7B). This risk score, along with stage, T, and M, 
contributed to the development of a nomogram predicting 
the survival probabilities at 1-, 2-, 3-, 4-, and 5-year 
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Figure 6 Prognostic modeling and clinicopathologic stratification of hepatocellular carcinoma patients. (A) Heatmap of prognostic modeling 
and clinicopathologic features. (B) Distribution of different clinicopathologic features in the high- and low-risk groups. (C) Survival of 
different clinicopathologic features in the high- and low-risk groups.
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Figure 7 Construction and evaluation of a nomogram. (A) Clinical univariate analysis and (B) multivariate analysis of forest plots. (C) A 
nomogram plot. (D) Time-dependent ROC curves and (E-I) calibration curves for columnar plots predicting 1-, 2-, 3-, 4-, and 5-year 
overall survival rates. ROC, receiver operating characteristic; AUC, area under curve.
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intervals for HCC patients (Figure 7C). The predictive 
accuracy was assessed by the area under the curve (AUC), 
which was found to be 0.808 at 1 year, 0.796 at 2 years, 0.811 
at 3 years, 0.824 at 4 years, and 0.795 at 5 years (Figure 7D). 
The C-index value was 0.744, and the calibration curve 
demonstrated a good prediction accuracy (Figure 7E-7I). 
These findings implied that the nomogram has a higher 
predictive efficacy than a single risk score and provided a 
more precise estimation of patient survival probabilities. 

Functional enrichment analysis and somatic mutation 
analysis

To investigate gene function and enrichment pathways 
among the high-risk and low-risk groups, a total of 1,304 
DEGs (|log2 fold change| >1) were identified. Functional 
enrichment analysis of these DEGs was conducted using 
Gene Ontology (GO), focusing on three main categories: 
biological processes (BPs), cellular components (CCs), and 
molecular functions (MFs). The analysis revealed significant 
enrichment in BPs associated with nuclear division, 
organelle fission, and chromosome segregation (Figure 8A). 
Pathway analysis from the KEGG revealed that processes 
associated with the cell cycle, complement and coagulation 
cascades, and retinol metabolism were significantly enriched 
(Figure 8B). The high-risk group showed enrichment in cell 
cycle, cell division, and chromosome processes (Figure 8C), 
whereas the low-risk group displayed enrichment in blood 
microparticle, cellular lipid metabolic process, and drug 
metabolic process (Figure 8D).

Prior research has demonstrated that tumor mutation 
burden (TMB) serves as a promising biomarker for 
forecasting tumor behavior and evaluating immunotherapy 
efficacy (25). To explore the relationship between risk score 
and mutations, somatic mutation analysis was utilized, 
leading to the identification of the top 20 genes with the 
highest mutation frequencies in both cohorts (Figure 9A). 
It was found that TP53 had the highest mutation rate in 
the high-risk category (Figure 9B), whereas TTN was 
predominant in the low-risk group (Figure 9C). The high-
risk group exhibited a significantly higher TMB value 
compared to the low-risk group (Figure 9D). Additionally, a 
significant correlation between the risk score and TMB was 
identified (Figure 9E).

Immune infiltration analysis

The impact of immune infiltration on high and low-risk 

groups was investigated using ssGSEA to compare the 
infiltration levels of 22 distinct immune cell types in each 
group. The results indicated significantly lower abundances 
of activated CD4 T cells (P<0.001), type 2 helper T cells 
(P<0.01), and neutrophils (P<0.01) in the high-risk group 
compared to the low-risk group (Figure 10A). Immune cell 
abundances corresponding to six prognostic genes were 
evaluated using the CIBERSORT algorithm, revealing a 
strong correlation (Figure 10B). The scatter plot indicated 
a positive correlation between the risk score and M0 
macrophages, activated CD4+ memory T cells, regulatory 
(Tregs) T cells, and follicular helper T cells (Figure 10C), 
as well as a negative correlation with resting mast cells, 
monocytes, and resting CD4 memory T cells (Figure 10D).  
Further analysis of immune checkpoint expression revealed 
significantly higher expression levels of CD80, CTLA4, 
HAVCR2, and TNFRSF4 in the high-risk group compared 
to the low-risk group (P<0.001) (Figure 10E). The 
Estimation of STromal and Immune cells in MAlignant 
Tumours using Expression data (ESTIMATE) algorithm 
was employed to analyze the stromal score, immunological 
score, ESTIMATE score, and tumor purity in both groups 
(Figure 10F). It was observed that the low-risk group 
exhibited higher stromal scores, immunological scores, and 
ESTIMATE scores, whereas the high-risk group showed 
elevated levels of tumor purity. These findings indicated 
that there are discernible differences in the immune 
microenvironment between the low-risk and high-risk 
groups.

Immunotherapy efficacy prediction

To determine the potential utility of the MCMGs model 
as a prognostic tool for immunotherapy in patients 
with HCC, both IPS and iMvigor210 were utilized to 
assess the effectiveness of immunotherapy. Higher IPS 
scores were associated with a more favorable response to 
immune checkpoint inhibitor (ICI) therapy, encompassing 
treatments with programmed death 1 (PD-1) inhibitors 
and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) 
inhibitors, and were categorized into four distinct groups: 
(I) ips_ctla4_neg_pd1_neg; (II) ips_ctla4_neg_pd1_pos; 
(III) ips_ctla4_pos_pd1_neg; (IV) ips_ctla4_pos_pd1_pos. 
Notably, individuals in the low-risk group demonstrated 
significantly elevated IPS compared to those in the high-risk 
group, indicating more favorable ICI treatment outcomes 
(Figure 11A). Further validation using the iMvigor210 data 
substantiates that the model could potentially improve 
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Figure 8 Functional enrichment analysis of differential genes between the high- and low-risk groups. (A) GO analysis. (B) KEGG analysis. 
(C,D) GSEA analysis in the high-risk group and low-risk group. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
GSEA, Gene Set Enrichment Analysis.

Nuclear division 

Organelle fission 

Chromosome segregation 

Mitotic nuclear division 

Mitotic sister chromatid segregation 

Sister chromatid segregation 

Nuclear chromosome segregation 

DNA replication 

Celluiar response to xenobiotic stimulus 

Mitotic cell cycle phase transition

Cell cycle 

Complement and coagulation cascades 

Retinol metabolism 

Bile secretion 

 

Drug metabolism-cytochrome P450 

Drug metabolism-other enzymes 

Chemical carcinogenesis-DNA adducts 

Steroid hormone biosynthesis

Metabolism of xenobiotics by 
cytochrome P450

Alanine, aspartate and glutamate 
metabolism

	0	 25	 50	 75

Count

	0	 10	 20	 30	 40	 50

Count

2.50e–14 
5.00e–14 
7.50e–14 
1.00e–13 
1.25e–13

1e–05 

2e–05 

3e–05 

4e–05

P value P value

	 250	 500	 750
Rank in ordered dataset

	 250	 500	 750	 1000	 1250
Rank in ordered dataset

R
an

ke
d 

lis
t m

et
ric

R
an

ke
d 

lis
t m

et
ric

R
un

ni
ng

 e
nr

ic
hm

en
t s

co
re

R
un

ni
ng

 e
nr

ic
hm

en
t s

co
re

4

2

0

−2

4

2

0

−2

0.6

0.4

0.2

0.0

0.0

−0.2

−0.4

−0.6

−0.8

BA

C D

survival predictions for high-risk patients (Figure 11B) 
with a higher incidence of complete and partial responses  
(Figure 11C,11D). No significant differences were noted 
in the infiltration of immune cells or programmed death-
ligand 1 (PD-L1) expression between the high and low-risk 
groups (Figure 11E); however, a greater percentage of tumor 
cells expressing PD-L1 was observed in the high-risk group 
(Figure 11F). These findings suggested that the model has 
the potential to identify individuals who may benefit from 
immunotherapy. 

Drug sensitivity analysis

To further evaluate the clinical significance of the MCMGs 
model in treating HCC patients, the sensitivity analysis 
of chemotherapeutic drugs based on risk score was 
investigated. The chemotherapeutic medicines for HCC 
patients were identified in the Cancer Genome Project 
(CGP) database, and their effectiveness was evaluated 
in both high-risk and low-risk groups. It was found that 
individuals classified as high-risk exhibit heightened 
sensitivity to chemotherapeutic agents, including sorafenib, 
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Figure 9 Somatic mutation analysis. (A) Somatic mutation in 226 samples. (B) Somatic mutation waterfall plot in the high-risk group. (C) 
Somatic mutation waterfall plot in the low-risk group. (D) Box plot of tumor mutation load in the low and high-risk groups. (E) Scatterplot 
for analysis of correlation between tumor mutation load and risk score. *, P<0.05.
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Figure 10 Immune infiltration analysis. (A) Comparison of infiltration with 28 immune cells in the high- and low-risk groups. (B) Heatmap 
for analysis of correlation of genes in prognostic tags with 22 immune cells. (C,D) Scatterplots for analysis of correlation between risk score and 
immune cells. (E) Comparison of expression levels of 14 immune checkpoints in the high- and low-risk groups. (F) Stromal score, immune score, 
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Figure 11 Immunotherapy sensitivity analysis. (A) Comparison of IPS scores between the high and low risk groups. (B) K-M survival 
analysis between the high and low risk groups in the iMvigor210 cohort. (C) Comparison of risk scores versus CR/PR and SD/PD in both 
groups. (D) Stacked plots of CR/PR and SD/PD in the high and low risk groups. (E,F) High and low risk IC0, IC1, IC2+ and TC0, TC1, 
TC2+ stacked plots in both groups. **, P<0.01; ***, P<0.001; ****, P<0.0001. IPS, immunophenoscore; CR/PR, complete response/partial 
response; SD/PD, stable disease/progressive disease.
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Figure 12 Drug sensitivity analysis. (A) Comparison of high and low risk groups for sensitivity to chemotherapeutic agents. (B) Correlation 
analysis between chemotherapeutic agents and risk score. IC50, half maximal inhibitory concentration.
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vinorelbine, salubrinal, pyrimethamine, paclitaxel, 
midostaurin, imatinib, and gemcitabine (Figure 12A). 
Similarly, the scatter plot illustrating the correlation analysis 
between risk score and drug sensitivity revealed that 
high-risk individuals had a higher susceptibility to these 
chemotherapeutic agents (Figure 12B). These results have 
shown that the model may inform clinical treatment and 

drug resistance prevention in HCC patients.

Discussion

Cholesterol is vital not only for regulating the physical 
properties of cell membranes but also for modulating 
various signaling pathways (26-28). Although cholesterol is 



Guo et al. Predictive MCMGs for HCC prognosis and treatment6640

© AME Publishing Company.   Transl Cancer Res 2024;13(12):6623-6644 | https://dx.doi.org/10.21037/tcr-24-1153

sparse in mitochondria, its limited availability substantially 
influences physiological processes (29). Proteins from the 
STAR family, such as STARD1 and MLN64 (also known 
as StARD3), play crucial roles in managing the movement 
of cholesterol within mitochondrial (11,30). An imbalance 
in cholesterol transport and metabolism can result in its 
accumulation, compromising the physical characteristics 
and fluidity of the mitochondrial membrane (31,32). 
Overexpression of STARD1 may reroute cholesterol 
trafficking towards mitochondria for conversion into steroid 
hormones or bile acids, potentially overwhelming MCM 
and causing cholesterol accumulation in mitochondrial 
membranes (33). Research has shown that mitochondrial 
cholesterol levels in tumors from Buffalo rats with 
transplanted Morris hepatomas were 2- to 5-fold higher 
than those in mitochondria from the host liver, correlating 
with tumor growth rate and aggressiveness (34-37). 
Many solid tumors produce cholesterol-rich lipid rafts 
that facilitate tumor cell survival and proliferation by 
activating signaling pathways such as Akt (38-40). However, 
the specific mechanisms of MCM in HCC are not fully 
understood. This study aimed to establish signatures 
associated with MCM for clinical stratification, prognostic 
prediction, and immunotherapy analysis in HCC patients, 
introducing novel concepts for clinical management of 
HCC patients. 

The study developed a six-gene predictive model 
comprising ACADL, ACLY, TXNRD1, DTYMK, ACAT1, 
and FLAD1. ACADL (long-chain Acyl-CoA dehydrogenase) 
plays a critical in the oxidation of long-chain fatty acyl-
CoAs (41). Zhao et al. demonstrated that ACADL inhibits 
proliferation and growth of malignant tumor cells in human 
HCC by inducing cell cycle arrest, decreasing YAP nuclear 
localization, and inhibiting target gene transcription (42). 
Increased ACADL expression may enhance T-cell-driven 
cell death, suggesting its potential as a target for preventing 
immune evasion by cancer cells (41). ACLY (ATP citrate 
lyase) converts citrate to oxaloacetic acid (OAA) and acetyl-
CoA, essential for membrane biogenesis, lipid synthesis, 
and histone acetylation in proliferating cancer cells (43). 
Inhibiting ACLY has been shown to increase PD-L1 immune 
checkpoint expression and disrupt T-cell activity, indicting 
complex interactions between metabolic pathways and 
immune regulation in cancer (44). TXNRD1 (thioredoxin 
reductase 1) is found to be overexpressed in HCC clinical 
samples and cells, with high TXNRD1 levels associated with 
advanced tumor stage and decreased survival, suggesting its 
potential as an adverse prognostic indicator (45). TXNRD1 

is a limiting enzyme in the thioredoxin antioxidant  
pathway (46). TXNRD1 prevents ferroptosis by alleviating 
lipid peroxidation, targeting its upstream regulators, such as 
miR21-3p, may induce ferroptosis in tumor cells and boost 
immunotherapy efficacy (47). DTYMK (deoxy thymidylate 
kinase) is linked to acid metabolism and cell cycle pathways 
and is associated with poor prognosis in HCC patients (48).  
DTYMK may enhance microsatellite instability (MSI) and 
TMB, potentially improving ICI efficacy (49). ACAT1 
(mitochondrial acetyl-CoA acetyltransferase 1) inhibition by 
arecoline hydrobromide (AH) disrupts tetrameric ACAT1, 
increasing pyruvate dehydrogenase complex (PDC) flow 
and oxidative phosphorylation while reducing cancer cell 
proliferation and tumor growth (50). Inhibition of ACAT1 
also enhances CD8+ T-cell effector function (51). FLAD1, 
encoding flavin adenine dinucleotide synthetase (FADS), is 
widely expressed in human tissues and is associated with the 
prognosis and survival of malignant tumors due to its role 
in the oxidation-reduction chain (52). However, there is no 
evidence indicating a role for FLAD1 in immunotherapy, 
which warrants further investigation. These results imply 
that the above six genes have a substantial role in the 
emergence of tumors. The importance of this characteristic 
was validated by creating a composite nomogram plot of 
this characteristic together with the clinical characteristics 
(T, age, and gender).

The tumor microenvironment (TME), consisting of 
immunological, stromal, and cancer cells, is crucial in tumor 
initiation, progression, metastasis, and therapeutic response 
(53-55). The research demonstrated that individuals in the 
low-risk group exhibited increased counts of eosinophils 
and natural killer cells, known for their antitumorigenic 
properties (56). Additionally, high blood cholesterol and 
cholesterol accumulation in natural killer (NK) cells 
facilitate lipid raft development in liver-tumor-bearing 
mouse models, highlighting the diverse roles of lipid 
metabolism in cancer (57-59). Furthermore, the connection 
between the TME and risk score were explored and 
discovered that they were strongly connected. One of the 
primary causes of carcinogenesis and a factor in the growth 
of neoantigens is the accumulation of somatic mutations. 
TMB serves as a prognostic biomarker for understanding 
tumor biology and immune responses (60,61). Significant 
differences in TMB were observed between high-risk 
and low-risk groups, with a positive correlation between 
risk score and TMB levels. TP53, a key tumor-suppressor 
gene, had the highest prevalence in the high-risk category. 
Mutations in TP53 diminish its anticancer activity and 
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enhance the oncogenic properties of the mutant p53  
protein (62). Malignancies with mutated p53 frequently 
exhibit poor prognosis, rapid tumor progression, and 
suboptimal responses to anticancer therapy (63,64). TTN 
exhibited the highest incidence of mutations within the 
low-risk category. Individuals with TTN mutations typically 
experience a more favorable prognosis, with these mutations 
predominantly occurring in solid tumors. Furthermore, 
TTN mutations are correlated with increased responsiveness 
to high TMB and ICIs (65).

The immune cells within the TME initially target 
and eliminate cancer cells but eventually, cancer cells 
evade immune detection and suppress cytotoxic functions 
through various mechanisms (66,67). The combination 
of ICIs with adoptive cell transfer (ACT) has improved 
outcomes for patients with metastatic or advanced 
cancers (68). Disrupting ICI pathways with monoclonal 
antibodies against CTLA-4 and PD-1 has become popular 
in immunotherapy (69). The study revealed that the 
low-risk group exhibited more resistance to ICIs, with 
complete and partial responses after immunotherapy more 
frequently observed in the high-risk group, suggesting 
the model usefulness as an immunotherapy indicator. 
Previous studies have suggested that cross-tumor data may 
predict immunotherapy effectiveness (70-72). Patients with 
cirrhosis generally exhibit poor tolerance to chemotherapy 
due to resistance and significant side effects (73,74). The 
finding indicated that different risk groups have different 
choices of chemotherapeutic agents, with the high-risk group 
having higher sensitivity to chemotherapeutic agents. This 
may help in selecting chemotherapeutic agents for HCC 
patients, although only a small proportion benefit from 
them (75), despite their long-term therapeutic success.

Conclusions

In conclusion, this study developed and validated a 
MCMGs model with a strong predictive power for survival 
times, immunotherapy response, and drug sensitivity in 
HCC patients. This model has been shown to correlate 
with the prognosis for HCC patients, and may provide 
clues to potential therapeutic targets. The present study 
has shown that this model has a promising application in 
immunotherapy and there was a significant difference in the 
sensitivity to chemotherapeutic agents between the high-
risk and low-risk groups, which may be helpful for clinical 
treatment. Overall, the results provided a new perspectives 
and avenues for the management and treatment of HCC.
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