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Abstract

Background: A site near Tuskegee, Alabama was examined for vector-host activities of eastern equine
encephalomyelitis virus (EEEV). Land cover maps of the study site were created in ArcInfo 9.2® from QuickBird data
encompassing visible and near-infrared (NIR) band information (0.45 to 0.72 μm) acquired July 15, 2008.
Georeferenced mosquito and bird sampling sites, and their associated land cover attributes from the study site,
were overlaid onto the satellite data. SAS 9.1.4® was used to explore univariate statistics and to generate regression
models using the field and remote-sampled mosquito and bird data. Regression models indicated that Culex
erracticus and Northern Cardinals were the most abundant mosquito and bird species, respectively. Spatial linear
prediction models were then generated in Geostatistical Analyst Extension of ArcGIS 9.2®. Additionally, a model of
the study site was generated, based on a Digital Elevation Model (DEM), using ArcScene extension of ArcGIS 9.2®.
Results: For total mosquito count data, a first-order trend ordinary kriging process was fitted to the semivariogram
at a partial sill of 5.041 km, nugget of 6.325 km, lag size of 7.076 km, and range of 31.43 km, using 12 lags. For
total adult Cx. erracticus count, a first-order trend ordinary kriging process was fitted to the semivariogram at a
partial sill of 5.764 km, nugget of 6.114 km, lag size of 7.472 km, and range of 32.62 km, using 12 lags. For the total
bird count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 4.998
km, nugget of 5.413 km, lag size of 7.549 km and range of 35.27 km, using 12 lags. For the Northern Cardinal
count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 6.387 km,
nugget of 5.935 km, lag size of 8.549 km and a range of 41.38 km, using 12 lags. Results of the DEM analyses
indicated a statistically significant inverse linear relationship between total sampled mosquito data and elevation
(R2 = -.4262; p < .0001), with a standard deviation (SD) of 10.46, and total sampled bird data and elevation
(R2 = -.5111; p < .0001), with a SD of 22.97. DEM statistics also indicated a significant inverse linear relationship
between total sampled Cx. erracticus data and elevation (R2 = -.4711; p < .0001), with a SD of 11.16, and the total
sampled Northern Cardinal data and elevation (R2 = -.5831; p < .0001), SD of 11.42.

Conclusion: These data demonstrate that GIS/remote sensing models and spatial statistics can capture
space-varying functional relationships between field-sampled mosquito and bird parameters for determining risk
for EEEV transmission.

Introduction
Eastern equine encephalitis virus (EEEV) is the most
dangerous endemic arbovirus in the United States. Up
to 70% of symptomatic cases in humans are fatal [1],

and most survivors are permanently debilitated by neu-
rologic sequelae [2]. Besides the endemic and economic
burdens to humans, frequent equine cases and sporadic
mass game bird die-offs are costly consequences of
EEEV transmission [3-5]. Epornitics in wild birds are
also dramatic consequences of EEEV [6], such as die-
offs of the endangered whooping crane, Grus americana
[7]. Except in Florida [8,9], the ecology of EEEV is less
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understood in the southeastern United States than in
other endemic locations in the region. This disease is
endemic in Alabama with viral activity varying between
years. The summer of 2001 was a particularly active
year for EEEV, with one human and over 30 veterinary
cases in the central and southern regions of the state
[10].
The mosquito species Culiseta melanura is generally

believed to initiate EEEV transmission to wild birds
[11,12]. Passerine birds are the major enzootic reser-
voirs, and early transmission among the local avifauna is
believed to be initiated by ornithophilic species, such as
Cs. melanura [11-13]. However, peaks in abundance of
Cs. melanura species do not correlate directly with
peaks in EEEV transmission [14]. Differences in sampled
abundance count data suggest that multiple mosquito
species are necessary as vectors to account for large epi-
zootics [11]. In addition to Cs. melanura, several other
mosquito species are likely involved as bridge vectors
for EEEV transmission. These species include: Aedes
vexans, Coquillettidia perturbans, Culex erraticus, while
Culex peccator, Culex territans and Uranotaenia sap-
phirina are suspected of circulating EEEV among rep-
tiles and amphibians [15,16]. Of these previously listed
species, it is suspected that Cx. erraticus is the most
important EEEV bridge vector between birds and mam-
mals in the mid-south, because of frequent virus isola-
tions and its abundance in bottomland swamps, flood
plains, permanent standing water, recreation areas near
rivers or ponds, and water impoundments in Alabama
and throughout the Tennessee Valley [10,17,18]. Under-
standing the spatial distribution of this habitat-restricted
species is valuable for predicting risk of EEEV infection
for nearby human populations.
Despite the misnomer “equine,” EEEV transmission

initiates in the avian cycle. Antibody prevalence in wild
birds associated with freshwater swamps in Alabama
range from 6-85% [19], which suggests that different
bird species vary in attractiveness to mosquitoes and
defensive behaviors against mosquito bites [20]. In
Macon County, Alabama, avian species overrepresented
in mosquito bloodmeals included: Yellow-Crowned
Night-Heron, Carolina Chickadee, Great Blue Heron,
Northern Mockingbird, and Wild Turkey [21]. There-
fore, determining the spatial distribution of common
bloodmeal hosts of mosquito vectors is a critical step to
predicting early cycles of EEEV transmission.
Predicting foci of EEEV positive mosquitoes has been

difficult, perhaps as a result of movement of human and
horse populations and fluctuations in bird populations
over the years [9]. Spatio-temporal distribution of arbo-
viral vectors and hosts vary over short distances, based
on differences in land cover and meteorological shifts.
For example, human cases of West Nile Virus (WNV)

and St. Louis Encephalitis (SLE) clustered in urban/sub-
urban areas in Georgia and Alabama [22,23]; whereas,
EEEV transmission was restricted to freshwater swamps
in Florida [9]. Compared to other arboviral diseases,
EEEV transmission tends to be more spatially isolated
[8,9], with the notable exception of the 1989 Atlantic
and Gulf coast outbreaks, which caused 196 equine
cases and 9 human cases [3]. Evidence for spatial isola-
tion of EEEV foci include the lack of early warning of
transmission with sentinel flocks and very low serocon-
versions of both sentinel flocks (2%) and human popula-
tions within EEEV foci (1.7%) [3,8,9,24], suggesting few
asymptomatic cases. Therefore, untargeted or random
interventions would be excessive and wasteful [25], as
EEEV vectors and hosts are not randomly distributed.
Quantification of vector-host interactions, by incor-

porating high resolution remotely sensed data in GIS,
can help predict arbovirus transmission cycles by identi-
fying site specific environmental predictors [25-32]. For
example, in earlier research, Jacob et al. [31] found that
land use land cover (LULC) change sites can aid in spa-
tial prediction of human exposure to Culex mosquitoes
using GIS-generated models. A LULC classification,
based on Landsat-7 ETM+ data acquired in July 2003
and Landsat-5 TM data acquired in July 1991, was com-
pared to the abundance of Culex restuans and Culex
pipiens egg rafts in Urbana-Champaign, Illinois. Total
LULC change, from 1991 to 2003 in the Urbana-Cham-
paign study site, was relatively low (12.1%). The most
frequent LULC category was maintained urban. The
urban land cover was further subdivided by degree of
tree canopy coverage using QuickBird visible and near
infra-red (NIR) data, which revealed 73.3% of the urban
area was in the category classified as high canopy cover-
age, with 20% of the remotely stratified data categorized
as moderate canopy coverage, and 6.7% as low coverage.
The remote stratification of the urban land cover
revealed that 83.3% egg raft distribution was in the high
coverage areas [31].
Characteristics of drainage networks and basin physio-

graphic parameters have also been used in hydrologic cal-
culations and land cover modeling of flood and swamp
water mosquito abundance, using satellite data [32-36].
The automated generation of drainage networks has
become increasingly popular with the use of GIS and
availability of digital elevation models (DEMs). These
models account for topographic variability and their con-
trol over soil moisture heterogeneity and runoff within a
watershed by using a flow distance to stream grid-based
analyses. The advantage of using a flow distance-to-
stream algorithm generated in a DEM is that landscape
profiles can be evaluated and terrain covariates can be
generated, which can estimate relationships between a
response variable and other environmental-sampled
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variables [35]. Topographic derivatives generated from a
DEM can also be calculated at different scales, using the
linear interpolation technique built in GIS, which can
accurately yield several catchment hydrological variables,
including percent surface saturation and total surface
runoff for identification of potential mosquito and avian
sampling sites [33].
Vector-borne disease risk can also be modeled with

high predictive accuracy by using geostatistical kriging
algorithms in GIS. Kriging is equated with spatial opti-
mal linear prediction, where the unknown random-pro-
cess mean is estimated with the best linear unbiased
estimator. Kriging field and remote-sampled mosquito
and avian predictor variables require the use of various
geostatistical techniques to interpolate the parameters of
a random field (e.g., the elevation, z, of the landscape as
a function of the geographic location, at an unsampled
location from data at nearby sampled locations) [34].
Stochastic kriging can also be used to generate predic-
tion of abundance and distribution data, which can
allow for numerical quantification of uncertainty esti-
mates in arboviral explanatory covariates [31]. Addition-
ally, predicting landscape classes in urban environments
can reveal local spatial patterns of the physical and
socio-economic factors hypothesized to be associated
with arboviral transmission. For example, in northern
California, kriging interpolation revealed that Culex tar-
salis was the most abundant species in ovitraps near
agricultural sites; whereas, Cx. pipiens was clustered
within residential areas [33].
The dynamics of transmission of any arthropod-borne

infection is a complex function of many factors, which
may include the intensity of infection in the vertebrate
reservoir, the competence of the vector, and the degree
of contact of the vector with the infected vertebrate host
reservoir [37]. Thus, generating models of EEEV, using
field and remote-sampled mosquito and avian data, is
essential to understanding the ecology of EEEV and for
developing effective means to control outbreaks. GIS/
remote sensing and spatial statistics can map interac-
tions between arthropod mosquito vectors and avian
amplification host populations, which can aid in spatially
targeting high density foci of mosquito and avian sam-
pling sites [31]. Treatments or habitat perturbations
should be based on the surveillance of the most produc-
tive areas of an ecosystem [25]. Therefore, the objectives
of this research were: a) to generate multiple regression
models to determine predictors associated with the
sampled mosquito and avian data; (b) to develop spatial
linear prediction models of potential avian and mosquito
sampled sites; and, c) to construct a DEM to identify
terrain covariates associated with sampled mosquito and
bird data in Tuskegee, Alabama.

Materials and methods
Study Site
The study site is located in the Tuskegee National Forest
in Macon County, Alabama. Since the site was abandoned
in the 1900s, it has undergone extensive re-encroachment
of forest over depleted farmland and is characterized by
forested bottomland wetlands [10]. The center of Tuske-
gee, AL is located approximately 3 km from the edge of
the study site, an urban center with a human population
density of 3,700 persons/km2 http://factfinder.census.gov.
The western edge of the sampling grid abutted the City
Lake, east of the center of Tuskegee, an area with a human
population density of 1,100-1,600 persons/km2. The north-
west portion of the sampling grid also overlapped with
populated areas northeast of Tuskegee and north of high-
ways US-29/AL-81, with a human population density of
also 1,100-1,600 persons/km2. The geographic coordinates
of the centroid of the sampling grid were 85.644444 by
32.432494 decimal degrees. The central and southern por-
tions of the sampling grid had a human population density
of 80 persons/km2, and the eastern edge had a human
population density of 0-50 persons/km2.

Collections
Mosquitoes were collected biweekly from May to Sep-
tember 2007, from natural and artificial resting sites, by
vacuum collection with a portable backpack aspirator as
previously described [38]. Briefly, light traps ran from
dusk to dawn and were positioned approximately 2 m
above ground. Vacuum collections were made twice a
week from resting boxes and natural resting sites during
this same time period. These collections complemented
those from light traps and allowed sampling of mosqui-
toes in different physiological/behavioral conditions, i.e.,
nulliparous/parous host-seeking mosquitoes in light
traps versus blood-engorged or gravid ones in resting
boxes, or allowed the collection of species not attracted
to light. Live material was returned to the laboratory,
sorted, identified using a chill table and binocular
microscope, and frozen at -70°C [39,40]. Point counts
were used to estimate bird densities at the study site as
previously described [21]. Point counts lasted three min-
utes, and all birds seen or heard within 100 m of the
observed sites during the three-minute counts were
recorded. Bird counts were conducted using trained,
competent observers. Birds were surveyed in a grid of
110 points, separated by 250 m within a 1.7 km radius
from the center of the study site. The grid points were
selected, systematically based on sampled strategies gen-
erated from previous research [21]. Counts lasted three
minutes and were conducted from June 30 through July
29, from 0500 until 1100 local time, with all birds seen
or heard within 100 m from the observer recorded.
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Remote sensing data
QuickBird data http://www.digitalglobe.com encompass-
ing the visible and near infra-red (NIR) bands was
acquired on July 15, 2008 for the study site. QuickBird
multispectral products provided four discrete non-over-
lapping spectral bands covering a range from 0.45 to
0.72 μm, with an 11-bit collected information depth.
The spatial resolution of the data was 0.61m. The clear-
est, cloud-free imagery available of the contiguous sub-
areas of the study site was used to identify mosquito
and wild bird sampling sites.

Base mapping
Base maps of major roads and hydrological networks
were created using ArcInfo 9.2® (Environmental Systems
Research Institute, Redlands, California) from differen-
tially corrected global positioning system (DGPS) ground
coordinates. In this research, fixed surveillance sites were
geocoded using a CSI-Wireless (DGPS) Max receiver
with a real-time Omni Star L-Band satellite signal, which
has a positional accuracy of 0.179 m (+/0.392 m) [31]. A
10m × 10 m grid-based matrix was overlaid on the base
maps of the study site, in ArcInfo 9.2® to generate effi-
cient spatial sampling units. A unique identifier was
placed in each grid cell. For remote identification of arbo-
viral mosquito and avian habitats, the first step is often to
construct a discrete tessellation of the region [41-48].

Regression analyses
A linear regression, with statistical significance, was
determined by a 95% confidence level and used to ascer-
tain whether the proportions of sampled mosquito data
differed by grid cell. The linear regression model assumed
a random sample between Yi, (sampled mosquito habitat
count data), the regress and regressors Xi1, ... Xip. A dis-
turbance term εi, which was a random variable, was
added to this assumed relationship to capture the influ-
ence of all habitat parameters sampled on Yi other than
Xi1, ... Xip. The random error term, ε, in a regression ana-
lysis of field and remote-sampled Culex aquatic model, is
typically assumed to be normally distributed with mean
zero and variance s2 [31]. Statistical characteristics of the
sampled data were examined in PROC UNIVARIATE.
The PLOT option in the PROC UNIVARAITE statement
generated histograms and boxplots. The NORMAL
option was used to test whether the field and remote-
sampled parameters had a normal distribution. The
regression analyses was performed using PROC REG.
The multiple linear regression model was:

Y X X X i ni i i p ip i= + + + + + =    0 1 1 2 2 1 , , , . 

It was important to distinguish the model in terms of
random variables and the observed values of the random

variables. Thus, we determined p + 1 parameters b0, ...,
bp. In order to estimate the sampled mosquito aquatic
habitat parameters, it was useful to use the matrix nota-
tion Y = Xb + ε, where Y was a column vector that
included the mosquito count values of Y1, ..., Yn, which
included the unobserved stochastic components ε1, ..., εn
and the matrix X. This matrix was the observed mos-
quito aquatic habitat parameter values of the regressors
expressed as:
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In this research, X included a column that did not
vary across the sampled mosquito data, which was used
to represent the intercept term b0.
The ecological-sampled data was log-transformed before

analyses to normalize the distribution and minimize stan-
dard error. Multicollinearity diagnostics from the COLLIN
option in SAS® were estimated. Residual-based diagnostics
for univariate and multivariate conditional heteroscedastic
models, previously constructed from clustering field and
remote-sampled mosquito habitat parameter estimates
have revealed that errors in variance uncertainty estima-
tion can substantially alter numerical predictions models
due to multicollinearity [31]. The SAS COLLIN option
produced eigenvalues and condition index, as well as pro-
portions of variances with respect to individual-sampled
predictor variables in the model. The conditional index
scores indicated no significant multicollinearity with the
model. It was hypothesized, however, that serial correla-
tion could be a major source of time-varying heterogene-
ity. In this research, the Durbin-Watson statistic was used
to detect the presence of autocorrelation in the residuals
from the regression analysis. The Durbin-Watson can test
for first-order serial correlation [49]. Usually, the Durbin-
Watson statistic is used to test the null hypothesis H0:�1 =
0 against H1:�1 > 0 [49]. The generalized Durbin-Watson
statistic is written as:
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where û is a vector of OLS residuals and Aj is a (T - j)
× T matrix. In this research, the generalized Durbin-Wat-
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DW
Y MA A MY

Y MY

Q A A Q
j

j j j j=
′ ′

′
=

′ ′ ′
′

 

 

( )1 1

where Q’1Q1 = IT - k, Q’1X = 0, and h = Q’1u.
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The marginal probability for the Durbin-Watson sta-
tistic was:

Pr( ) Pr( )DW j c h< = < 0

where h = h’(Q’1A’jAjQ1 - cI)h.
The p-value, or the marginal probability, for the gen-

eralized Durbin-Watson statistic, was computed by
numerical inversion of the characteristic function j(u)
of the quadratic form h = h’(Q’1A’jAjQ1 - cI)h. The tra-
pezoidal rule approximation to the marginal probability
Pr(h < 0) was:
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where IM[j(·)] was part of the characteristic function
and EI(Δ) and ET(K) were integration and truncation
errors, respectively. The trapezoidal rule is a way to cal-
culate the definite integral [49]. A numerically efficient
algorithm was used to quantify the autocorrelated com-
ponents in the regression model, which required O(N)
operations for evaluation of the characteristic function j
(u). The characteristic function was denoted as:

( ) | ( ) | /u iu cj j N kI Q A A Q I− ′ ′ − −
−2 1 1

1 2

| | | | | |/ / /V X V X X X− − −′ ′1 2 1 1 2 1 2
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V I A A  and = + − ′ = −( ) .1 2 2 1iuc iu ij j

By applying the Cholesky decomposition to the com-
plex matrix V, we obtained the lower triangular matrix
G that satisfied V = GG’. Cholesky decomposition is a
decomposition of a symmetric, positive-definite matrix
into the product of a lower triangular matrix and its
conjugate transpose [49]. The characteristic function
was evaluated in O(N) operations by using the following
formula:

( ) | | | * *| | |/ /u = ′ ′− −G X X X X1 1 2 1 2

where X* = G-1X.
We tested for serial correlation with lagged dependent

variables in the model (Appendix a). When regressors
contain lagged dependent variables, the Durbin-Watson
statistic (d1) for the first-order autocorrelation is biased
toward 2 and has reduced power [50]. If the Durbin-
Watson statistic is substantially less than 2, there is evi-
dence of positive serial correlation [49]. In AUTOREG,

two alternative statistics (Durbin h and t) can be used to
test for time varying residuals that are asymptotically
equivalent [50]. In this research, we used the h statistic,
which was written as:

h N NV= −ˆ / ( ˆ ) 1

where
ˆ ˆ ˆ / ˆ = − == ∑∑ V V Vt t tt

N

t

N
1

2
12

, and V̂ was the least
squares variance estimate for the coefficient of the
lagged dependent variable.
In PROC AUTOREG, an estimation method was used to

generate an autoregressive error model using the Yule-
Walker (YW) method. The YW method can be considered
as generalized least squares using the OLS residuals to
estimate the covariances across observation [49]. In this
research, we let � represent the vector of autoregressive
parameters, � = (�1, �2,..., �m)’, and we let the variance
matrix of the error vector be ν = (ν1, ..., νN)’ be Σ, E(νν’ =
Σ = s2V. If the vector of autoregressive parameters � is
known, the matrix V can be computed from the autore-
gressive parameters; Σ is then s2V [49]. Given Σ, the effi-
cient estimates of regression parameters b were computed
using generalized least squares (GLS). The GLS estimates
then yielded the unbiased estimate of the variance s2.
The YW method alternated estimation of b using gen-

eralized least squares with estimation of �, which the
YW equations applied to the sample autocorrelation
function. The YW method started by forming the OLS
estimate of b. Next, � was estimated from the sample
autocorrelation function of the OLS residuals by using
the YW equations. Then V was estimated from �, and
Σ was generated from V and the OLS parameters of s2.
The autocorrelation corrected estimates of the regres-
sion parameters, b, were then computed using GLS and
the estimated matrix. The YW equations, solved to
obtain ̂ and a preliminary estimate of s2, were Rj =
-r. In this research, we used the equation r = (r1 ..., rm)’,
when ri was the lag i sample autocorrelation. The matrix
R was the Toeplitz matrix, whose i, jth element was
r|i-j|. Toeplitz matrix is a matrix in which each descend-
ing diagonal from left to right is constant [49]. We spe-
cified a subset model. Only the rows and columns of R
and r corresponding to the subset of lags specified were
used. The BACKSTEP option was specified for purposes
of significance testing. The matrix [Rr] was treated as a
sum-of-squares-and-cross products matrix arising from
a simple regression with N - k observations, where k
was the number of estimated Cx. erraticus habitat para-
meters in the model.

Digital elevation model
A three-dimensional model of the study area was con-
structed based on DEM statistics generated using
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ArcScene extension of ArcGIS®. The DEM used in this
research was a raster representation of a continuous sur-
face, originating from the Shuttle Radar Topography
Mission (SRTM) which had a spatial resolution of 92 m.
The probability distribution of the soil moisture deficit,
i.e., statistics of topography, was generated from the
DEM data by using a multidirectional flow routing algo-
rithm. The purpose of DEM construction was to extract
topographic parameters that may have been associated
with the field and remote-sampled EEEV mosquito and
bird covariates. A flow apportioning algorithm can
delineate a realistic channel network for quantifying
hydrogeomorphic properties of simulated drainage pat-
terns using DEMs for identifying floodwater mosquitoes
[35].

Spatial analyses
Kriging models were generated using all sampled abun-
dance count data in Geostatistical Analyst Extension of
ArcGIS 9.2®. However, based on the evidence that Cx.
erraticus is likely the primary bridge vector of EEEV in
Tuskegee [10] and was the most abundant species
sampled in the study site, it was selected for the inde-
pendent kriging analyses (Table 1). Also, kriging ana-
lyses were run for total abundance counts of the
sampled bird data in Tuskegee, in 2007. From

preliminary data analyses, it was determined that North-
ern Cardinals were the most abundant avian species in
the study site (Table 2). Therefore, a kriged model was
generated using the Northern Cardinal data sample
points. All the models were created in the ArcGIS 9.3®
Geostatistical Analyst Extension.
Spatial linear prediction was performed using ordinary

kriging. Geostatistical techniques were used to interpo-
late the values Z(x0), at a sampled mosquito or bird
habitat Z(x), for unobserved sampling sites x0 and zi = Z
(xi), i = 1... n, using data sampled at nearby sampled
habitat locations (x1,...xn). The kriged-based algorithm
computed the best linear unbiased estimator, Ž(xo) of Z
(x0), for the sampled habitat data, based on a stochastic
model of the spatial dependence quantified by the vario-
gram g(x, y), by expectation μ(x) = E[Z(x)], and by the
covariance function c(x, y) of the random field. In this
research, the kriging estimator was given by a linear
combination:

ˆ( ) ( ) ( )Z x w x Z xo i o i

i

n

=
=
∑

1

(2:1)

for analyzing the sampled data; where, zi = Z(xi) was
the weights while wi (xo) and i = 1... n was the variance
used to minimize any biased condition [35]. The depen-
dent variables were the sampled adult count of mosqui-
toes or bird data, which were transformed to fulfill the
diagnostic normality test prior to performing the kri-
ging. The kriging weights were then used to fulfill the
unbiasedness condition in the spatial interpolation of
the ecological-dependent variables using:

i

i

n

=
∑ =

1

1 (2:2)

Table 1 Adult mosquito counts for the Tuskegee study
site

Mosquito species Adult counts

Cx. erraticus 1,848

An. crucians 808

Cx. territans 632

An. quadrimacluatus 444

Cx. peccator 199

Ae. vexans 193

Cq. perturbans 134

An. punctipennis 126

Ur. sapphirina 124

Cx. quinquefasciatas 82

Cx. restuans 51

Cx. salinarius 45

Cs. melanura 33

Oc. canadensis 26

Oc. spp 14

Cx. nigripalpus 3

Oc. sollicitans 1

Oc. sticticus 1

Oc. triseriatus 1

Or. signifera 1

Ps. columbiae 1

Ps. ferox 1

An. barberi 1

Table 2 Bird counts for the Tuskegee study site

Species Abundance (% of count)

Northern cardinal 119 (37.6)

Carolina wren 77 (20.5)

Red-eyed vireo 51 (8.2)

Indigo bunting 50 (8.0)

Tufted titmouse 36 (5.8)

White-eyed vireo 35 (5.6)

Acadian flycatcher 31 (5.0)

Red-bellied woodpecker 14 (2.3)

American crow 14 (2.3)

Blue jay 13 (2.1)

Carolina chickadee 10 (1.6)

Northern parula 9 (1.4)
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which was given by the ordinary kriging equation sys-
tem:
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The additional parameter μ was a Lagrange multiplier
used in the minimization of the kriging error  k x2( ) to
honor the unbiased condition in the ecological dataset
[51]. The ordinary kriging was given by:
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The semivariogram generated described the spatial
dependence, between the sampled mosquito and bird
parameters, as a function of the distance between the
sampling sites. The semivariogram allowed for mosquito
or bird abundance estimations at any point in the study
site. The value of prevalence, Z, at the coordinate (x0,
y0) was estimated from the n nearest sampling values:
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by the linear formula:
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The ai were found by the Lagrange multiplier l and
solving the system:
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where hi, j denoted the distance between any two mos-
quito or bird sampled locations, located at (xi, yi), and
(xj, yj), and hj,0 was the distance between the two mos-
quito or bird sampled sites (x0, y0). The semivariance
was defined as g (h) [50-53]. The magnitude of the
semivariance in this research was dependent on the dis-
tance between sampled mosquito or bird sites. Semivar-
iance of the deviance residuals of the mosquito and bird
count data was calculated, and a variogram was con-
structed to determine if there was evidence of latent
spatial autocorrelation in the sampled data. The plot of
the semivariances as a function of distance from a point
is referred to as a semivariogram [53]. The empirical
semivariogram and covariance can provide information
on autocorrelation components in ecological-sampled
datasets [49].
In this research, parameters of a fitted mathematical

function (i.e., the variogram model) included generating
a range, a nugget and a sill. The range is the distance at
which curve levels of a constant value of semivariance
which can indicate the spatial scale of a pattern in an
image [49]. The range, or active lag distance, is also the
approximate distance at which spatial autocorrelation
between sampled data point pairs ceases, or becomes
much more variable [54,55]. The value at which the
model attains the range, (i.e., the value on the y-axis) is
called the sill, while the nugget is usually assumed to be
non-spatial variation due to measurement error and var-
iations in the data that relate to shorter ranges than the
minimum sampled data spacing [49]. In this research,
the sill indicated that the semivariance values had been
reached (i.e., the value of maximum variance was
equivalent to the variance of the image pixel value),
while a non-zero intercept value (i.e., nugget variance)
of the varigram model was indicative of the variability of
the field and remote-sampled Cx. erraticus and North-
ern Cardinal data quantified at a resolution smaller than
the image resolution. A simple quantitative measure of
the interpolation performed was determined by generat-
ing root-mean square error (RMSE) values for the mod-
els. Optimizing the RMSE by minimizing the spatial
structure in a Culex aquatic habitat model, can generate
a pure nugget variogram, of which the level of nugget
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variance can represent noise characteristics in field and
remote-sampled explanatory variables [31]. Additionally,
a neighborhood distance search radius provided the
mean standard errors of the interpolated values. Inter-
polation accuracy can be measured by the natural loga-
rithm of the mean squared interpolation error, which
can reveal all main effects of parameter estimates, in an
autoregressive model, while quantifying several covariate
interaction terms [56-59].

Results
The regression models were able to classify sampled
high and low abundance count habitats. Temperature
had a significant association with Cx. erraticus adult
abundance (p < 0.0002). The predictor variable precipi-
tation also presented a significant relationship (p <
0.05). In this research, Durbin-Watson statistics were
generated using the AUTOREG procedure in SAS® to

estimate whether the OLS regression estimates indicated
significant serial correlation with an estimated order of
a lagged covariance of 1. The AUTOREG procedure
corrected for serial correlation using the YW method.
The Durbin-Watson statistic indicated that serial corre-
lation was not significant in the YW corrected model.
The YW estimates for the model indicated a R2 = 0.632,
F statistics of 39.177, and Durbin-Watson score of 1.935.
For total mosquito count data, a first-order trend

ordinary kriging process was fitted to the semivario-
gram at a partial sill of 5.041 km, nugget of 6.325 km,
lag size of 7.076 km, and range of 31.43 km, using 12
lags. For total adult Cx. erracticus count, a first-order
trend ordinary kriging process was fitted to the semi-
variogram at a partial sill of 5.764 km, nugget of 6.114
km, lag size of 7.472 km, and range of 32.62 km, using
12 lags (Figure 1). For the total bird count data, a
first-order trend ordinary kriging process was fitted to

Figure 1 Predicted Culex erracticus abundance data using ordinary kriged model overlaid on a QuickBird visible and near infra-red
(NIR) data of the Tuskegee study site.
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the semivariogram at a partial sill of 4.998 km, nugget
of 5.413 km, lag size of 7.549 km, and range of 35.27
km, using 12 lags. For the Northern Cardinal count
data, a first-order trend ordinary kriging process was
fitted to the semivariogram at a partial sill of 6.387
km, nugget of 5.935 km, lag size of 8.549 km, and a
range of 41.38 km, using 12 lags (Figure 2). To evalu-
ate the accuracy of the models, predictive mean stan-
dard error distributions were generated, which revealed
that all models were within normal statistical limita-
tions (Table 3).

A DEM of the study site was generated in ArcGIS®
(Figure 3). The minimum and maximum range of the
elevation in the DEM models were calculated. Pearson’s
correlation was used to evaluate the linear relationship
between mosquito and bird count data and the sampled
predictor variable elevation using the SRTM DEM.
Results of the DEM analyses indicated a statistically sig-
nificant inverse linear relationship between total
sampled mosquito data and elevation in meters (m) (R2

= -.426; p < .0001), with a standard deviation (SD) of
104.6. The range of the elevation in the DEM had a

Figure 2 Predicted Northern Cardinal abundance count data in the Tuskegee study site using an Ordinary kriging algorithm.

Table 3 Residual model outputs from ordinary kriged models using mean error and root mean square error for the
sampled mosquito and bird and count data in the Tuskegee study site.

Data Ordinary kriging mean error Ordinary kriging root mean square error

Total bird counts 0.055 1.821

Northern cardinal 0.163 1,642

Total mosquito counts -0.132 4.664

Cx. erraticus count -4.814 8.535
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minimum value of 0 m, with a maximum value of 431
m. The results of the total sampled bird data and eleva-
tion were (R2 = -.511; p < .0001), with a SD of 22.97.
The range of the elevation in the DEM had a minimum
value of 0 m, with a maximum value of 439 m. DEM
statistics also indicated a significant inverse linear rela-
tionship between total sampled Cx. erracticus data and
elevation (R2 = -.471; p < .0001), with a SD = 111.6. The
range of the elevation in the DEM had a minimum
value of 0 m, with a maximum value of 487 m. The
results of the total sampled Northern Cardinal data and
elevation was (R2 = -.583; p < .0001), with a SD = 114.2.
The range of the elevation in the DEM had a minimum
value of 0 m, with a maximum value of 501 m (Table 4).

Discussion
Culex erraticus was the most abundant mosquito species
collected during this study in central Alabama bottom-
land freshwater wetlands, which was ~6 km from the
center of Tuskegee and ~1.5 km east of a populated
area north of highways US-29/AL-81. This species pre-
viously yielded the highest number of EEEV-infected
pools in Tuskegee [21]. Habitat requirements of Cx.
erraticus are shallow water [60-66], especially overgrown
with surface plants or grassy margins, such as streams,
lakes or impoundments [18]. This species may be col-
lected in high numbers during hot weather, and even
during drought, periods in July and August [10]. Blood-
feeding hosts of Cx. erraticus include: birds (27-70%),

mammals (23-67%), and reptiles (2-20%), suggesting
great host flexibility based on relative availability of
hosts [16].
The bird communities present in the Tuskegee study

site are typical of reforested areas of bottomland hard-
wood [10]. The level of vector contact with different
bird species in a given area is essential in identifying

Figure 3 Digital Elevation Model (DEM) of the Tuskegee study site.

Table 4 Pearson correlation for mosquito and bird
sampled data and the sampled predictor variable
elevation in the Tuskegee study site.

Predictor variables Statistical tests Significance
level

Elevation
(m)

Total mosquito count
data

Pearson
Correlation

1 -.426

Sig. (2-tailed) <.0001 <.0001

N 141 118

Total bird count data Pearson
Correlation

1 -.511

Sig. (2-tailed) <.0001 <.0001

N 141 118

Cx. erraticus data Pearson
Correlation

1 -.471

Sig. (2-tailed) <.0001 <.0001

N 141 118

Northern cardinal data Pearson
Correlation

1 -.583

Sig. (2-tailed) <.0001 <.0001

N 141 118
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those avian species that are most likely to serve as
important amplifiers for arboviral enzootics [15]. Birds
that frequent edge habitats are assumed most likely to
transmit EEEV between localized pest mosquitoes and
humans or horses [21]. Woodland and swamp birds spe-
cies captured within an EEEV focus in Michigan had
high antibody prevalence, but seroconversion of EEEV
to other urban bird species in open areas increased dur-
ing peak transmission to horses [65].
Previous research of EEEV in Alabama also has sug-

gested the importance of hatch-year birds as catalysts
for epidemic transmission. For example, wild birds
involved in EEEV transmission in Alabama forested
areas included: Yellow-Crowned Night-Heron, Carolina
Chickadee, Northern Mockingbird and Great Blue
Heron [21]; in Florida, the species were: Bluejay, North-
ern Mockingbird, Rufus-Sided Towhee, Loggerhead
Shike, Northern Cardinal, Cattle Egret and the game-
birds Pheasant and Chukar Partridge [8]; and, in Louisi-
ana, the species were: White-Throated Sparrow,
Northern Cardinal, House Sparrow, Rufus-Sided
Towhee, Carolina Chickadee and Yellow-Rumped War-
bler [19]. Similarly, the House Sparrow is a primary vec-
tor for WNV, EEEV and SLE in Louisiana [17]. Most of
these listed birds are included on the Audubon Society
checklist as very common species to Alabama for spring,
summer and fall. Notably, birds involved in EEEV tend
to be less urban than WNV/SLE avian hosts, though
considerable host species overlap is apparent between
diseases and between geographic regions [16]. Chicka-
dees, Northern Cardinals, Tufted Titmice, Blue Jays,
American Crows, Brown-Headed Cowbirds and Red-
Billed Woodpeckers inhabit both wooded and human-
populated areas [62]. American Crows may forage in
wooded locations but roost at night in urban and subur-
ban areas [8,46].
Culex erraticus was the most common mosquito col-

lected at the study site. Because of its density, it is likely
that Cx. erraticus plays a major role in perpetuating
EEEV transmission. Cx. erraticus is a member of the
subgenus Melanoconion, a largely tropical group of mos-
quitoes. Cx. erraticus is the most common member of
that subgenous in the United States and is distributed
throughout the eastern and the upper midwest and
westward to California [16]. Since Cx. erraticus is a neo-
tropical species which plays a major role in the trans-
mission of EEEV in Tuskegee, the geographical
distribution of EEEV in Alabama might resemble that
seen in EEEV foci in tropical areas (e.g., South America).
The probability that a mosquito will feed on a reservoir
host is one of the most influential variables affecting the
geographical distribution of an arthropod mosquito vec-
tor [8]; therefore, determining spatial patterns of Cx.
erraticus host preferences can play a significant role in

controlling the development of avian enzootics of EEEV
in the Tuskegee study site.
Temperature and precipitation were important predic-

tor variables in the regression model. Environmental
conditions such as temperature, and precipitation, have
an important effect on the distribution of the mosqui-
toes that harbor arboviruses, thereby, influencing seaso-
nal virus activity [3,10,11]. Previous regression analysis
estimates derived from multiple field and remote-
sampled predictor variables, collected from nine sites
within Cook County, Illinois, revealed that adult Culex
population was positively associated with temperature
[57]. The model output indicated that precipitation was
negatively associated to mosquito abundance in 2002,
2003 and 2005 (P <0.05), but positively associated in
2004 (P <0.05). Naturally occurring outbreaks of EEEV
are usually observed during periods of hot, rainy
weather [3]. These weather conditions are ideal for
expansion of Cs. melanura and other mosquito popula-
tions [63]. Outbreaks of EEEV in horses and humans
are expected to occur from midsummer to late summer,
with August being the peak month of incident cases in
much of the United States [11]. An evaluation of EEEV
in horses in Michigan, during five outbreaks between
years 1972 and 1991, revealed an increase in Cs. mela-
nura, Cq. perturbans, and Ae. vexans as vectors, wild
and domestic birds as reservoir hosts, humans and com-
mercial poultry flocks as incidental hosts, with an
increase in the state-wide annual precipitation and an
increase in region-specific precipitation [19]. Tempera-
ture and precipitation is likely involved in early season
enzootic transmission and late season epizootic amplifi-
cation of the EEEV in wild bird populations at the Tus-
kegee study site. It is possible that Cx. erraticus may
become important as a bridge vector of EEEV in the
southeastern United States, as human populations con-
tinue to move closer to sylvatic sites, where populations
of this mosquito have access to avian reservoirs and
during specific time frames throughout the year, when
there is fluctuation in meteorological variables. An
important variable in the amplification from the enzoo-
tic cycle of arboviral encephalitides is the degree of con-
tact between avian hosts and mosquito vectors [21].
Culex erraticus has a minimally infection rate of 3.2,
from mid-June to mid-September [16].
In this research, there was reasonable overlap between

the kriged predictive maps. Much of this overlap was
related to the location of the Tuskegee National Forest
ponds, which were near the center of the sampling grid
and composed of forested land cover. High mosquito
abundance have been found in land cover sites classified
as having a low-to-moderate range of built environment
and high forest composition [57]. This data suggests
that birds and mosquitoes frequently forage several

Jacob et al. International Journal of Health Geographics 2010, 9:12
http://www.ij-healthgeographics.com/content/9/1/12

Page 11 of 16



kilometers beyond their preferred habitats. Mosquito
species differ in their overall preference for different
classes of host (e.g., mammals versus birds versus rep-
tiles), in the times of day that they are most active in
seeking bloodmeals, and the heights at which they for-
age [21]. Many of the mosquito hosts sampled were
edge species, birds that are most common at the inter-
face between forested and disturbed landscapes, such as
cardinals, corvids, and parids. For example, Northern
Cardinals were previously found six times more abun-
dant in habitats surrounded by open space [11].
The semivariograms, generated in ArcGIS Spatial

Analyst, modeled the structure of spatial variability in
the field and remote-sampled Cx. erracticus and North-
ern Cardinal habitat data. The semiovariograms were
used to fit models of the spatio-temporal correlation of
the sampled mosquito and bird parameters. The semi-
variogram and covariance functions quantified the
nearby habitats as a measure of the strength of statistical
correlation and as a function of distance between
sampled habitats. Linear predictors were generated by
incorporating models of the covariance of the random
function using a weighted moving average interpolation.
The semivariogram of residuals from the regression
models generated from the sampled covariates, with sta-
tionary errors, were used to estimate the covariance
structure of the underlying spatial structural processes
in the data.
For prediction kriging, the bias of the semivariogram

estimates induced, by using residuals instead of errors,
has only a minor effect, as the bias is small for small lags
[49]. However, in this research, error in the spatial covar-
iance patterns generated from the estimated regression
coefficients may have been quite substantial due to the
excess land cover heterogeneity between the sampled
habitats. To spatially analyze a mosquito vector, one
must understand that insect populations are typically het-
erogeneous in their spatial densities, responding to multi-
variate habitat characteristics and environmental controls
[25]. Additionally, kriging may not be widely used for
predicting EEEV distribution at a local scale, because of
the common finding of non-stationarity in ecological-
sampled data. The violation of the stationarity assump-
tion may affect the validity of kriged surfaces, since a
common metric derived from the semivariogram is not
enough to capture spatial variations in EEEV parameters
observed at a local scale. The process of using kriged-
based algorithms for mosquito and bird parameters may
require estimation of the best model parameters, and an
assessment of the resulting model accuracy, before it can
be used as a predictive tool for evaluating EEEV mos-
quito and bird habitat data. Diagnostic checking error
residuals in an EEEV model may enable intervention
efforts spatially targeting productive mosquito and bird

habitats based on field and remote-sampled data, by
using the asymptotic distribution of parameter estimates
from a residual autocovariance matrix.
The distribution of Northern Cardinals was interest-

ing, as this species was by far the most abundant, preva-
lent, and evenly distributed bird species detected in the
Tuskegee study site. This species has also expanded
range over the last century due to mild winter patterns
and increased use of bird feeders for winter survival
[11]. Despite the very high abundance of Northern Car-
dinals, this species appeared only moderately attractive
to host-seeking mosquitoes [10]. Northern Cardinals are
common in both forest and urban habitats [19] Radio
tracking data suggests that individual cardinals are
highly territorial of small plots of land and do not typi-
cally migrate more than 50 m from their roosts [14]. It
is possible that the high abundance and prevalence of
Northern Cardinals prevented smaller passerine EEEV
hosts from reaching higher densities. The spatial pat-
terns of total bird counts, Northern Cardinal counts, did
not significantly differ; whereas, the spatial pattern of
Cx. erraticus significantly differed from the overall mos-
quito counts.
Broad-scale quantification of topography, using the

spatial hydrological model of the study site, visually dis-
criminated specific land cover features associated with
the mosquito and bird-sampled data with good accu-
racy. The DEM captured all hydrologic characteristics,
determining the flow paths of streams, e.g., watershed
boundaries in the study site. Elevation was found to be
significantly associated with the sampled mosquito and
bird data in the study site. Elevation is directly related
to temperature, which effects mosquito survivorship
[35]. Because many birds rest in trees, it can be argued
that mosquitoes will search for bloodmeals in trees,
where their avian hosts would be found. Therefore,
mosquito preference for bird hosts influences their
attraction to higher elevation. Frequent blood feeding
can occur by Culex mosquitoes on abundant urban pas-
serine birds [35]. Feeding, primarily on EEEV-competent
avian hosts during the amplification period of the epide-
miological cycle, maximizes the intensity of the epi-
demic in mosquitoes [64].
Modeling field and remote-sampled explanatory vari-

ables of EEEV in newer GIS offer an attractive and bet-
ter alternative to traditional disease mapping approach.
Such an approach lends itself to the development of
powerful predictor models for estimating multiple envir-
onmental-sampled variables of EEEV mosquito and
avian sampling sites. Newer GIS software packages pro-
vide a wide range of tools for data analysis, using carto-
graphic modeling for identifying mosquito and bird data
and estimating spatial dependency in the sampled ecolo-
gical datasets. For example, a GIS-based model can

Jacob et al. International Journal of Health Geographics 2010, 9:12
http://www.ij-healthgeographics.com/content/9/1/12

Page 12 of 16



generate sampling prediction error distributions that are
well defined for identifying explanatory variables asso-
ciated with prolific mosquito and avian habitats based
on sampled count data. Therefore, GIS/remote sensing
maps of mosquito and bird data associated with EEEV
have a direct use in public health programs and targeted
interventions. Monthly risk maps, showing the relative
danger of regional EEEV transmission, based on mos-
quito and bird abundance data, can be constructed. Risk
maps can then be updated weekly as epidemic triggers
are identified and quantified, enabling GIS/remote sen-
sing-based spatial predictions of favorable future condi-
tions for EEEV transmission [25].
Additionally, a graduated, systematic GIS sampling

methodology can adjust for sampled ecological covari-
ates, a technique that can identify more georeferenced
Cx. erraticus and wild birds habitat clustering sites
within urban environments than random sampling stra-
tegies. A major advantage of using GIS-based models is
that the sampling prediction error distributions are well
defined for identifying explanatory variables associated
with prolific mosquito and avian habitats based on
sampled count data. Therefore, designing and develop-
ing control strategies, based on GIS/remote sensing
data, and models can provide effective entomological
tools to reduce mosquito arboviral vectors in conjunc-
tion with high density foci by identifying critical features
of landscape for locating productive areas in a study
site. Since it is more feasible to expand surveys to tar-
geted habitats, based on spatially selected potential foci
[31], a systematic GIS surveillance sampling frame,
using QuickBird data and geostatistical predictive algo-
rithms, can focus on specific habitats, which can allow
for intensified entomological surveillance at specific
habitats, while not increasing overall sampling efforts.
Random interventions are excessive and wasteful, as
arboviral vectors are not themselves randomly distribu-
ted [25] and spatio-temporal sampled abundance counts
of mosquito and bird habitats fluctuate constantly [37].
Substantive variations in mosquito and bird abun-

dance, in relation to arboviral infections, pose a chal-
lenge for surveillance programs; yet, spatial statistics and
GIS surveillance sampling strategies have not been
applied in correspondence to these changes in Alabama.
For example, in 2007, 24 human cases of WNV were
reported to CDC ArboNET, 13 of which were in Mon-
tgomery County; however, mosquito sampling has been
limited to only the north quadrant of Alabama in recent
years [67]. Bird data also were collected for every county
in Alabama in 2002-2003 [68]; however, reporting has
since stopped in most counties. Although an epidemic
of SLE cases in humans occurred in 1975 in Birming-
ham, Alabama (32 cases) [23], which led to formation of
a SLE mosquito surveillance program, this program

no longer exists and should be replaced. The wide geo-
graphical range of the 1975 epidemic [69] highlights cri-
tical need for interdisciplinary surveillance in Alabama
and other southeastern states. Similar epidemics in
Arkansas (1991) and Louisiana (2002) revealed Culex
quinquefasciatus as the primary vector of SLE and/or
WNV [70]. The high seroprevalence (36%) of primates
exposed outdoors during the 2002 WNV epidemic in
Louisiana suggested that human exposure risks are also
likely high[17]. Therefore, endemic pathogens for EEEV,
WNV and SLE can be target systems used to develop
surveillance models that incorporate predictive algo-
rithms; as well as field-sampled and remotely sensed
data.
The surveillance system described in this paper could

also be incorporated to develop strategies for the detec-
tion of avian influenza. The early warning signs (i.e.
interaction of vector-host-virus) suggest a valid concern
that Alabama is unprepared in the event of an avian flu
pandemic. Low pathogenicity H5N1 strains have been
detected in wild bird migratory populations in the Uni-
ted States [67]. Potential routes for introduction of the
H5N1 virus into Alabama include migration of infected
wild birds. Recent trends suggest that H1N1 can now
remain virulent in ducks for longer durations, which
may allow water fowl to shed the virus as they migrate
through areas of outbreaks [71]. Reports of 87 positives
for H1N1 from carcasses of 19 avian species in Sweden
and Denmark suggest that avian influenza is on the
move [72].
Furthermore, replication of the GIS sampling techni-

ques, and the statistical algorithms used in this research,
can provide detailed distributions for targeting highly
productive mosquito habitats in other geographic areas
outside of the United States. For example, the models
generated in this research can be used to control other
encephalitis-type, enzootic arboviral diseases, such as
Venezuelan equine encephalomyelitis virus (VEE), which
is transmitted by mosquitoes endemic in Central Ameri-
can and South American countries [73]. VEE is caused
by encephalitic alphaviruses in the family Togaviridae
similar to EEEV. Encephalitic alphaviruses have caused
repeated epidemics and equine epizootics since the
1920s. For example, a major outbreak of VEE in Vene-
zuela and Colombia, during 1995, involved an estimated
100,000 people [73]. Therefore, quantifying enzootic foci
of VEE surveyed in unknown sites in a particular geo-
graphic region (e.g., Mexico), using multi-temporal
sampled QuickBird data in GIS, coupled with ground
surveillance data, can be essential for designing patho-
genesis studies, simulating natural infection of verte-
brates. Characterization of various statistical techniques
can then be applied to the sampled data to identify high
density habitats in determined areas, where
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environmental-sampled predictors may not be the only
factor influencing productivity. Post-classification can
include validating VEE mosquito parameters using
extensive ground truthing to identify regions of highly
prolific habitats.
In conclusion, regression models revealed that tem-

perature and precipitation had significant association
with sampled Cx. erraticus adult abundance count data.
Kriging techniques developed a spatial linear prediction
model of potential mosquito and bird habitats for the
Tuskegee study site. The application of kriging reduced
constraint on the interpolated value of the sampled
mosquito and bird abundance data, to take advantage of
distance and direction in the interpolation process and
to minimize the variance of unexpected error. Topo-
graphic descriptors, derived from the DEM, supported a
quantitative analysis of the spatial distribution and con-
figuration of the georeferenced mosquito and bird
sampled data in the study site. Mosquito indicators
combined with other environmental information such as
temperature and precipitation, wild bird population, and
EEEV strains, may offer more precise evaluation of
human EEEV disease risks. Continued development of
spatio-temporal models, using GIS, remote sensing data
and spatial statistics, can estimate vector and infected
host distribution, which can further predict the distribu-
tion of EEEV based on ecological-sampled covariates.

Appendix A
Using the AUTOREG procedure for generating the
Generalized Durbin-Watson Tests from the ecological
sampled EEEV parameters
Initially we used the regression model: Y = Xb + ν
where X was an N × k data matrix, b was a k × I coeffi-
cient vector, and ν was a N × I disturbance vector. The
error term ν was assumed to be generated by the jth-
order autoregressive process νI = εI - �jνI - j where |�j| <
I, εI was a sequence of independent normal error terms,
generated from the analyses of the EEEV data with
mean 0 and variance s2. We used the Durbin-Watson
statistic to test the null hypothesis H0 : �1 = 0 against
H1 : -�1 > 0. The generalized Durbin-Watson statistic
was:
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where V̂ were OLS residuals. We used the matrix
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and there were j - I zeros between -I and 1 in each
row of matrix Aj. The QR factorization of the design
matrix yielded a N × N orthogonal matrix Q: X = QR
where R was an N × k upper triangular matrix. There
existed an N × (N - k) sub-matrix of Q such that Q1Q’1 =
M and Q’1Q1 = IN - k. Consequently, the generalized Dur-
bin-Watson statistic was stated as a ratio of two quadratic

forms: d j
jl ll

n

ll
n

= =∑
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where lj1... ljn were the upper n

eigenvalues of MA’jAjM and ξI was a standard normal
variate, and n = min(N - k, N - j). These eigenvalues were
obtained by a singular value decomposition of Q’1A’j. The
marginal probability (or p-value) for dj given co was
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When the null hypothesis Ho : �j = 0 held, the quad-
ratic form qj had the characteristic function
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n
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The distribution function was uniquely
determined by this characteristic function:

F x
eitx

j t e itx
j t

it
dt( )

( ) ( )
= +

− − −∞

∫1
2

2
2 0

 

We tested Ho : �4 = 0 given �1 = �2 = �3 = 0 against
H1 : -�4 > 0, using the marginal probability (p-value)

and : F dtt t
it( ) ( ( ) ( ))0 1

2
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where  4 4 4
1 2
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=
∏ and d̂4 was

the calculated value of the fourth-order Durbin-Watson
statistic from the ecological sampled EEEV data.
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