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ABSTRACT 
 

Epigenetic clocks based on DNA methylation (DNAm) can accurately predict chronological age and are thought 
to capture biological aging. A variety of epigenetic clocks have been developed for different tissue types and 
age ranges, but none have focused on postnatal age prediction for preterm infants. Epigenetic estimators of 
biological age might be especially informative in epidemiologic studies of neonates since DNAm is highly 
dynamic during the neonatal period and this is a key developmental window. Additionally, markers of 
biological aging could be particularly important for those born preterm since they are at heightened risk of 
developmental impairments. We aimed to fill this gap by developing epigenetic clocks for neonatal aging in 
preterm infants. 
As part of the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study, buccal cells were 
collected at NICU discharge to profile DNAm levels in 542 very preterm infants. We applied elastic net 
regression to identify four epigenetic clocks (NEOage Clocks) predictive of post-menstrual and postnatal age, 
compatible with the Illumina EPIC and 450K arrays. We observed high correlations between predicted and 
reported ages (0.93 – 0.94) with root mean squared errors (1.28 - 1.63 weeks). 
Epigenetic estimators of neonatal aging in preterm infants can be useful tools to evaluate biological maturity 
and associations with neonatal and long-term morbidities. 

mailto:Todd.M.Everson@Emory.edu
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 23528 AGING 

INTRODUCTION 
 

DNA methylation (DNAm) is one of the most studied 

epigenetic mechanisms and acts at the interface between 

the environment and human health. Changes in DNAm 

are also strongly correlated with aging [1] and are  

most dynamic during pediatric age [2]. Aging-related 

fluctuations in DNAm levels have been capitalized on 

by researchers to develop “epigenetic clocks”, sets of 

CpG sites whose methylation extents have been shown 

to accurately predict chronological age and are thought 

to capture biological aging [2, 3]. These predicted ages 

are often referred to as epigenetic age or DNAm age. 

Greater DNAm age relative to chronological age, also 

known as age acceleration (AA), has been shown to be 

associated with age-related phenotypes in adults, such 

as frailty, chronic diseases and mortality [4]. 

 

A variety of epigenetic clocks have been developed to 

predict numerous age metrics in different tissue types 

and age ranges [5]. One of the most widely used pan-

tissue clocks to estimate chronological age was created 

by Horvath and is based on over 8,000 samples from 51 

healthy tissues (age range: 0-101 years) [6]. However, 

DNAm age estimates from Horvath’s epigenetic clock 

become more precise as chronological age increases and 

are most variable in pediatric samples [7]. Hannum et 

al. developed a clock based on blood with an age range 

of 19-101 years [8] while other clocks are designed  

to capture physiological measures of biological age 

rather than chronological age. These include DNAm 

PhenoAge [9] and DNAm GrimAge [10] and are both 

blood-based. Many studies have successfully generated 

epigenetic clocks for various tissues, age ranges, and 

morbidities, leading to very promising predictors of 

chronological age in adults, and to potentially useful 

biomarkers for the diseases of aging. While some 

epigenetic clocks include children, most clocks are 

primarily focused on adults and extrapolating them to 

children results in inaccurate predictions [2, 11]. 

Additionally, AA metrics that are derived from these 

clocks may not be as relevant to the health conditions 

that are most important to children and adolescents. To 

address this issue McEwen et al. developed PedBE,  

an epigenetic clock that focuses on estimating 

chronological age of children ranging from 0 (birth) to 

20 years old and is based on buccal epithelial cells [2]. 

However, the definition of chronological age becomes 

less meaningful proximal to birth and is especially 

skewed among infants born preterm. Infants born 

preterm might differ biologically from infants of the 

same chronologic or postnatal age that are born full-

term. Epigenetic clocks, such as those developed by 

Knight et al. [12] or Bohlin et al. [13], have been 

created to capture gestational age (GA), i.e. the time 

from conception to birth. Both clocks are based on cord 

blood and therefore can only estimate GA, not postnatal 

age. To our knowledge, there exists no epigenetic clock 

that properly handles or is specialized for age prediction 

in preterm infants. 

 

The WHO estimated 15 million infants, approximately 

10% of live births, are born prematurely early every 

year (before completing 37 weeks of gestation) [14]. 

Preterm birth is not only associated with acute and long-

term morbidities including chronic illnesses, brain 

injuries, and adverse neuromotor, cognitive, and 

behavioral outcomes [15], but it is also the leading 

cause of death worldwide among children under 5 years 

[14]. This leads to an immense emotional and financial 

burden for families and society. The Institute of 

Medicine reported in 2007 that the average medical 

 

 
 

Figure 1. Illustration of different perinatal age metrics, measured in weeks and days, which we highlight for infants born 
preterm. Gestational age (GA) is defined as the time from conception to birth (expected delivery around 37-42 weeks typically refers to full-

term birth, and <37 weeks refers to preterm birth). Post-menstrual age (PMA) refers to the time from conception onward, and postnatal age 
(PNA) is equivalent to chronological age and is the time elapsed after birth. In this study, buccal cell tissue was collected from infants at NICU 
discharge to profile DNA methylation. 
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costs of the first year were almost 10 times greater for 

preterm infants in the U.S., and results in a societal 

economic cost of $26.2 billion each year [16, 17]. 

 

Here, we present four NEOage (Neonatal Epigenetic 

Estimator of age) clocks, epigenetic clocks that are 

focused on age estimation of preterm infants based on 

their DNAm profile measured in an easily accessible 

tissue, buccal epithelial cells. Specifically, we 

investigated post-menstrual age (PMA), the time from 

conception to tissue collection at neonatal intensive care 

unit (NICU) discharge, and post-natal age (PNA, or 

chronological age), the time from birth to tissue 

collection (Figure 1). These epigenetic estimators of 

aging could be particularly important for preterm 

neonates because they may provide insight into early 

life aging, reflect health and development, and provide a 

measure of early life risk for neonatal morbidities or 

long-term neurodevelopmental impairments. 

 

RESULTS 
 

We applied elastic net regression to identify the sets of 

CpGs that are predictive of PMA and PNA in a unique 

population of 542 preterm neonates (see Table 1 for 

characteristics of the study sample). We compared the 

prediction performances of our NEOage clocks to two 

existing epigenetic clocks (Horvath’s skin-blood clock 

and PedBE) by evaluating their performances in our 

Neonatal Neurobehavior and Outcomes in Very Preterm 

Infants (NOVI) data set (buccal cells) and an external 

saliva data set. 

 

NEOage clocks 

 

We identified four epigenetic clocks predictive of either 

PMA or PNA that are compatible with the Infinium 

MethylationEPIC BeadChip (EPIC) array or Infinium 

HumanMethylation450 BeadChip (450k) array. The 

number of CpGs within each clock range from 303-522 

CpGs with varying degrees of overlap between the 

clocks (see Figure 2). CpGs for each NEOage clock  

with the corresponding coefficients to calculate DNAm  

age are provided in the Supplementary Material 

(Supplementary Tables 1–4 and Supplementary Code 1). 

 

To assess the prediction performances without reusing 

information we performed leave-one-out (LOO) cross-

validation (additional information in 5.3 Development 

of the epigenetic clock) and evaluated prediction 

performances using correlations and root mean squared 

error (
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the observed and estimated age, respectively). We 

observed very strong positive correlations between 

predicted and measured age metrics (r > 0.9 and  

p-values < 10−16) with very similar correlation 

coefficients among our four NEOage clocks (Figure 3). 

The predictions for PMA achieved RMSEs of 1.28 for 

 

Table 1. Characteristics of the study population (N=542). 

Sample characteristics N (%) / Median (IQR) 

Infant sex  

Male 301 (55.5) 

Female 241 (44.5) 

Race and Ethnicity  

White 280 (52.2) 

Black 123 (22.9) 

Asian 41 (7.6) 

Hawaiian / Pacific Islander 38 (7.1) 

Other 54 (10.1) 

Ethnicity  

Non-Hispanic 419 (78.2) 

Hispanic 117 (21.8) 

PMA (weeks) 38.57 (4.43) 

PNA (weeks) 11.43 (6.39) 

Gestational age (weeks) 27.29 (3.14) 

Birthweight (grams) 919 (430) 

Maternal age (years) 28.50 (9.25) 

Serious infection 103 (19.11) 

Bronchopulmonary dysplasia 277 (51.39) 

Severe brain injury 69 (12.80) 

Retinopathy 34 (6.31) 

PMA, postmenstrual age; PNA, postnatal age. 
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Figure 2. Upset plot of CpGs included in our four NEOage clocks. Highlighted in red are the number of CpGs that are unique to each 

individual clock. Highlighted in orange are the number of overlapping CpGs of clocks that are predictive of either PMA or PNA. Highlighted in 
blue are the number of CpGs that overlapped in all four clocks (additional information for the 20 common CpGs provided in Supplementary 
Table 13). Highlighted in black are the number of overlapping CpGs of clocks where at least one clock is predictive of PMA and at least one 
clock is predictive of PNA. 

 

the 450k and EPIC clocks, while predictions of PNA 

resulted in a RMSEs of 1.63 and 1.55, for the 450k and 

EPIC clocks respectively. The scatterplots in Figure 3 in 

combination with the strong correlations and low 

RMSE indicate high accuracy of our NEOage clocks. 

 

Next, we evaluated the prediction performance of our 

450k clocks in an external independent data set that 

measured DNAm in saliva tissue using the 450k array. 

This external saliva data (GSE72120 [18]) includes 

preterm (n=34) and full-term infants (n=14) for which 

PMA (median = 40.15; IQR = 2.61 weeks) and PNA 

(median = 9.79; IQR = 7.64) were available. While 

Figure 4 visualizes both preterm and full-term infants, 
we first focused on only preterm infants in the 

prediction performance assessment of our NEOage 

clocks. Focusing on preterm infants of the saliva data 

allows for a more appropriate comparison of the two 

data sets. The prediction performances in the external 

saliva data set resulted in diminished but still strong 

correlations (PMA: r=0.61 and PNA: r=0.76), and lower 

RMSE for PMA (RMSE = 1.09) and similar RMSE for 

PNA (RMSE = 1.55), compared to the NOVI data set. 

However, it is important to note that the ranges of PMA 

and PNA in preterm infants of the saliva data are 38-

42.6 and 6.9-17.6 weeks, respectively. These ranges are 

noticeably smaller than the ranges of PMA and PNA in 

the NOVI data set (PMA: 32.1-51.4 weeks; PNA: 2.7-

25.3 weeks) and is likely one reason for lower 

correlation coefficients between predicted and reported 

ages in this dataset. 

 
While we observed strong predictive performance for 

our newly developed NEOage clocks, the existing 

Horvath skin-blood clock and PedBE clock did not 

predict PNA as accurately in preterm infants. As shown 
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Figure 3. Scatterplots of estimated and measured age. Prediction performances are evaluated by RMSE and correlations 
between estimated and measured age metrics. (A) Scatterplots of estimated and measured PMA using our 450k NEOage clocks within 
NOVI. (B) Scatterplots of estimated and measured PNA using our 450k NEOage clocks within NOVI. (C) Scatterplots of estimated and 
measured PMA using our EPIC NEOage clocks within NOVI. (D) Scatterplots of estimated and measured PNA using our EPIC NEOage 
clocks within NOVI. 

 

 
 

Figure 4. Scatterplots of estimated and measured age using our 450k NEOage clocks in an external saliva data set (GSE72120 
[18]) that included full-term (red) and preterm (blue) infants. This saliva data set was measured by the 450k array. The reported 

prediction performances, RMSE and correlation coefficients between estimated and measured age metrics are based on preterm infants 
only, since our NOVI training data did not include any full-term infants. (A) Scatterplots of estimated and measured PMA. (B) Scatterplots of 
estimated and measured PNA. 
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in Figure 5, the correlations between estimated and 

measured PNA are moderate in the NOVI data set 

(Horvath: r = 0.44 and PedBE: r = 0.59). The RMSE are 

greater for both clocks, with a noticeably greater RMSE 

for Horvath’s skin-blood clock (Horvath: RMSE = 49.68 

and PedBE: RMSE = 8.68). Additionally, our NEOage 

clocks outperformed the existing clocks in the 

independent saliva data set. Analogously, Figure 6 

displays both preterm and full-term infants. For preterm 

infants (highlighted in blue), Horvath skin-blood clock 

and PedBE exhibit weak correlations (Horvath: r = 0.31 

and PedBE: r = 0.19) with RMSE of 38.49 and 12.93 

 

 
 

Figure 5. Scatterplots of PNA estimated by (A) Horvath’s skin-blood clock and (B) PedBE and measured PNA within NOVI. Prediction 
performances are evaluated by RMSE and correlations between estimated and measured PNA. 

 

 
 

Figure 6. Scatterplots of measured PNA and PNA estimates by (A) Horvath’s skin-blood clock and (B) PedBE in an external saliva data set 

(GSE72120 [18]). This saliva data set was measured by the 450k array and included full-term (red) and preterm (blue) infants. The reported 
prediction performances, RMSE and correlation coefficients, between estimated and measured age metrics are based on preterm infants 
only. 
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weeks, respectively. For full-term infants (highlighted 

in red), the Horvath skin-blood clock correlation is r = 

0.60 and PedBE correlation is r = 0.20 with RMSE of 

46.31 and 5.54 weeks, respectively. Interestingly, 

Horvath’s clock yields a substantially better correlation 

between reported and predicted age for full-term infants 

compared to preterm infants, while the PedBE clock 

yielded weak correlations for both groups. Yet, while 

the correlations are stronger for Horvath’s clock, the 

actual predicted ages were closer to the reported ages for 

the PedBE clocks. In contrast, PNA prediction of full-

term infants using our NEOage 450k PNA clock has a 

stronger correlation (r = 0.76) than both existing clocks 

and a similar RMSE of 7.42 weeks compared to PedBE. 

The best prediction performance for the full-term infants 

resulted from our NEOage 450k PMA clock with a 

correlation of 0.90 and RMSE of 2.14 weeks. 

 

Enrichment analysis 

 

We performed enrichment analyses for the CpGs 

included in the four NEOage clocks that we 

characterized to evaluate potential pathway enrichments 

of genes associated with CpGs that we identified. No 

pathways or gene ontology (GO) terms were 

significantly enriched after False Discovery Rate 

(FDR) correction (FDR < 0.1), but the KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways  

and GO terms that tended to have the smallest  

raw p-values included immune and inflammatory 

responses, endocrine activities, steroidogenesis, cellular 

proliferation, cellular differentiation and organization, 

and organ morphogenesis. Tables containing the  

20 most significantly enriched pathways are provided  

in the Supplementary Material (Supplementary Tables 

5–12). 

 

DISCUSSION 
 

While there has been some progress in addressing  

the lack of epigenetic clocks focusing on pediatric 

populations in recent years [2], to our knowledge, there 

currently exists no epigenetic clock that is specialized 

for preterm infants, nor for age prediction specific to the 

neonatal period. Preterm infants present a unique 

population due to the shift of their biological and 

chronological age progress relative to full-term infants. 

To fill this gap, we developed four NEOage clocks that 

are based on preterm infants from the NOVI study to 

estimate PMA and PNA (EPIC- and 450k-compatible) 

and include 303-522 CpGs. We demonstrate that our 

newly developed NEOage clocks outperform two 

established epigenetic clocks, Horvath’s skin-blood 

clock and PedBE, both in our NOVI buccal data set and 

in an external saliva data set of infants that were born 

preterm. 

A systematic deviation of full-term infants can be 

observed in Figures 4, 6. This shift appears to be  

more dominant in PNA predictions and might indicate 

that our PMA and PNA clocks capture a similar  

aging signature, but that our PNA clocks are more 

sensitive to the GA at birth. Pre- and full-term infants, 

as shown in Figure 4B, appear to have moderately 

similar regression slopes, but different intercepts, 

which is most likely a result of their different GA at 

birth. While extrapolation of our NEOage clocks 

outside of their training range is not recommended, it 

can be expected that prediction accuracy decreases 

with greater age differences (similar to extrapolating 

adult clocks to children, or pediatric clocks to the 

neonatal period). However, if extrapolation of age 

outside of our training age range but proximal to birth 

is necessary, our PMA clocks might be more 

appropriate. 

 

We observed noticeable differences in RMSE when 

comparing reported ages to predicted ages from 

existing clocks [2, 6], predominantly in estimates 

from Horvath’s skin-blood clock, but also PedBE. 

One possible explanation is that both clocks were not 

specifically developed for this age range. For these 

existing clocks, age is estimated in years, which was 

then transformed to weeks by multiplying by 52. 

Hence, any prediction errors might be amplified. In 

addition, PNA is greatly overestimated for all infants 

by Horvath’s skin-blood clock, meaning that 

estimated PNA is greater than measured PNA for 

every infant. 

 

While PMA seems to provide a more generalizable 

estimate of age, it comes with the limitation that the day 

of conception (reference point to calculate PMA) is not 

as precise of a measurement as day of birth (reference 

point to calculate PNA) and therefore is associated with 

a certain degree of uncertainty. Another limitation is the 

extension of these clocks to other tissue types, because 

our NEOage clocks are based on buccal cells collected 

via cheek swabs from preterm infants. Generalizing our 

NEOage clock to different tissue types will most likely 

compromise the prediction performance. Nevertheless, 

buccal swab is minimally invasive and thus is 

specifically important in pediatric and neonatal 

populations where more invasive sampling may deter 

study participation [19]. While blood samples provide 

large amounts of DNA with good quality, it requires an 

invasive and expensive procedure with technical 

difficulties, can be difficult or impossible to collect 

from preterm neonates, and causes discomfort and 

increased risk of infection [19]. In addition, buccal 
epithelial cells have been shown to be better proxy for 

the brain than peripheral blood [20]. The collection of 

buccal cells and saliva is less complicated, inexpensive 
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and non-invasive [19], with the added benefit of buccal 

cells being less heterogeneous [2, 20]. A possible 

contamination of prenatal fetal sample with maternal 

cells can be avoided by performing a short terminal 

repeats analysis [19]. 

 

With our newly developed NEOage clocks we aim to 

fill the gap of methylation clocks trained on pediatric 

samples [21] and based on buccal cells, an easily 

accessible tissue that requires no invasive procedures. 

 

Our epigenetic estimators of neonatal aging in preterm 

infants might be particularly valuable in this population 

of neonates because it could allow us to gain insight 

into early life aging and reflect influences on 

subsequent health and development. Further, 

establishing precise estimators of PMA might help us to 

develop tools to more accurately determine the day of 

conception and measurements associated with it (e.g., 

PMA and GA). 

 

CONCLUSIONS 
 

We have introduced our four NEOage clocks that are 

specific to the assessment of epigenetic age in very 

preterm neonates. Our NEOage clocks are based on 

buccal cells, a tissue that is easily accessible and requires 

no invasive intervention. Postmenstrual age (PMA) and 

post-natal age (PNA) can be accurately estimated 

utilizing DNAm measured by either the Illumina 450k or 

EPIC array. We demonstrated that our NEOage clocks 

outperform two existing clocks by assessing their 

prediction performances in two preterm infant data sets. 

With our NEOage clocks, we have provided tools to 

examine neonatal aging, age acceleration and their 

association with neonatal health and development in a 

unique population of very preterm infants. 

 

MATERIALS AND METHODS 
 

Study participants 

 

The Neonatal Neurobehavior and Outcomes in Very 

Preterm Infants (NOVI) Study was conducted at 9 

university-affiliated NICUs in Providence, RI, Grand 

Rapids, MI, Kansas City, MO, Honolulu, HI, Winston-

Salem, NC, and Torrance and Long Beach CA from 

April 2014 through June 2016. These NICUs were also 

Vermont Oxford Network (VON) participants. 

Eligibility was determined based on the following 

inclusion criteria: 1) birth at <30 weeks post menstrual 

age; 2) parental ability to read and speak English or 

Spanish and 3) residence within 3 hours of the NICU 
and follow-up clinic. Exclusion criteria included 

maternal age <18 years, maternal cognitive impairment, 

maternal death, infants with major congenital anomalies, 

including central nervous system, cardiovascular, 

gastrointestinal, genitourinary, chromosomal, and 

nonspecific anomalies, and NICU death. Parents of 

eligible infants were invited to participate in the study 

when survival to discharge was determined to be likely 

by the attending neonatologist. Overall, 704 eligible 

infants were enrolled. Researchers explained study 

procedures and obtained informed consent in accordance 

with each institution’s review board. 542 children for 

which DNAm data was measured and passed QC were 

included in this analysis (characteristics presented in 

Table 1). The sample included 19% of infants with 

serious infection (sepsis or necrotizing enterocolitis), 

51% with bronchopulmonary dysplasia, 13% with severe 

brain injury (parenchymal echodensity, periventricular 

leukomalacia, or ventricular dilatation), and 6% with 

severe retinopathy of prematurity. PMA in NOVI was 

calculated by adding PNA at buccal collection to the 

estimated GA at birth which was obtained via an 

established process [22, 23] and is described in detail by 

Everson et al. [15]. 

 

DNAm collection and pre-processing 

 

Buccal cell tissue was collected from infants that were 

born very preterm (<30 weeks gestation), at NICU 

discharge (Figure 1), and DNAm levels were profiled 

using the EPIC array. 

 

Genomic DNA was extracted from buccal swab 

samples, collected near term-equivalent age, using the 

Isohelix Buccal Swab system (Boca Scientific), 

quantified using the Quibit Fluorometer (Thermo 

Fisher, Waltham, MA, USA) and aliquoted into a 

standardized concentration for subsequent analyses. 

DNA samples were plated randomly across 96-well 

plates and provided to the Emory University Integrated 

Genomics Core for bisulfite modification using the EZ 

DNA Methylation Kit (Zymo Research, Irvine, CA, 

USA), and subsequent assessment of genome-wide 

DNAm using the Illumina MethylationEPIC Beadarray 

(Illumina, San Diego, CA, USA) following standardized 

methods based on the manufacturer’s protocol. The pre-

processing of the data followed a modified workflow 

described by Everson et al. [15]. Array data were 

normalized via Noob normalization [24, 25] and 

samples with more than 5% of probes yielding detection 

p-values > 1.0E-5 or mismatch between reported and 

predicted sex were excluded. In addition, one of two 

duplicated samples was omitted (we retained the 

duplicate sample with smallest detection p-values). 

Probes with median detection p-values < 0.05, probes 

measured on the X or Y chromosome, probes that had 
single nucleotide polymorphisms (SNP) within the 

binding region or that could cross-hybridize to other 

regions of the genome were excluded [26]. Then, array 
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data were standardized across Type-I and Type-II probe 

designs with beta-mixture quantile normalization [27, 

28]. After exclusions, 706,323 probes were available 

from 542 samples for this study. These data are 

accessible through NCBI Gene Expression Omnibus 

(GEO) via accession series GSE128821. 

 

Development of the epigenetic clocks 

 

Since data from the EPIC and 450k arrays are widely 

used in ongoing research projects, we considered two 

sets of data for all analyses: (1) a complete data set 

(706,323 probes) with logit transformed beta-values (m-

values) that is compatible with EPIC arrays (hereafter 

referred to as the EPIC data set) and (2) a subset of the 

logit-transformed data (364,410 probes) that is 

compatible with both EPIC and 450k arrays (hereafter 

referred to as the 450k data set). Penalized regression 

models (“glmnet” function in glmnet R package [29]) 

were fit to both data sets to identify sets of CpGs 

(NEOage clocks) predictive of PMA and PNA (4 total 

clocks: PMA-EPIC, PNA- EPIC, PMA-450k and PNA-

450k). The alpha parameter of glmnet was set to 0.5 

(elastic net regression) and lambda (PMA-EPIC: 0.049, 

PNA- EPIC: 0.0677, PMA-450k: 0.097 and PNA-450k: 

0.2038) was chosen such that the mean cross-validated 

error is minimized with 10-fold cross validation 

(“lambda.min” result from “cv.glmnet” function in 

glmnet R package [29]). 

 

We fit a series of penalized regression models to both 

data sets (EPIC and 450k) applying LOO cross-

validation. This procedure allowed us to assess 

prediction performances but also limit overfitting and 

selection bias. In LOO cross-validation, a model is 

trained on all but one sample to make a prediction for 

that held-out sample. This step is repeated until each 

sample is held out and predicted once and results in N 

potentially unique sets of CpGs for a given outcome, 

where N is the sample size. Because our sample 

contained multiple births (e.g., twins), we additionally 

removed all siblings from the training set of all non-

singleton children. The performance of predicted age 

outcomes was evaluated by examining their correlation 

with the measured outcome and RMSE. 

 

In addition, prediction performances of models trained 

using the complete (not LOO approach) 450k data set 

(450k NEOage clocks) were evaluated in an 

independent publicly available data set (GSE72120 

[18]) that contained DNAm from the 450k array for 34 

preterm and 14 full-term infants with information on 

PMA and PNA. This data set was chosen because to our 
knowledge it is the closest comparable data, but it is 

important to point out the difference between both data 

sets, as one measured DNAm of buccal swabs via the 

EPIC array and the other profiled DNAm in saliva using 

the 450k array. We evaluated the performance of our 

PMA-450k and PNA-450k NEOage clocks in the test 

sample by examining the correlation between predicted 

and measured outcomes. We also report the RMSE. 

 

Application of existing epigenetic clocks 

 

To compare our newly-developed NEOage clocks to 

existing clocks, we applied Horvath’s skin-blood clock 

[30] and the PedBE clock [2] to estimate PNA in our 

data and in the independent external data set. Both 

existing clocks were trained on pediatric epithelial 

samples, and thus could be applicable to our data. 

However, the skin-blood clock was also trained on 

blood samples and thus can estimate age from DNA 

derived from multiple tissue types, while PedBE is 

specific to buccal epithelium. Additionally, while the 

skin-blood clock is a life-course clock that was trained 

on samples from infants, children, and adults, the 

PedBE clock is a pediatric-specific clock. The 

coefficients and codes for estimating age via these 

existing clocks are available in the original publications 

via the Supplementary Materials [30] and the author’s 

webpage [2]. Horvath’s skin-blood clock includes 391 

CpGs and was developed with DNA from human 

fibroblasts, keratinocytes, buccal cells, endothelial cells, 

blood, and saliva (age range: 0-92 years). Out of the 391 

CpGs, 345 CpGs were available in the NOVI and saliva 

data set. For the NOVI data set, 42 out of the 46 missing 

CpGs were substituted with closest CpGs within 

5,000bp. The remaining 4 missing CpGs were omitted; 

3 CpGs did not have CpGs available in our data that 

were within 5,000bp and 1 CpG was located on 

chromosome X (excluded during data preprocessing). 

Analogously for the saliva data set, 40 of the 46 missing 

CpGs were substituted with closest CpGs within 

5,000bp. The remaining 6 missing CpGs were omitted; 

5 CpGs did not have CpGs available in the saliva data 

set that were within 5,000bp and 1 CpG was located on 

chromosome X. The PedBE clock (age range: 0-20 

years), developed with pediatric buccal epithelial cells, 

consists of 94 CpGs. There were 5 CpGs not available 

in the NOVI and saliva data set, which were substituted 

by the closest CpGs within 5,000bp. No CpGs were 

omitted. Performance of predicted PNA was evaluated 

by their correlation with the measured PNA and RMSE. 

 

Enrichment analysis 

 

To gain insights into the biological functions of the 

genes associated with the identified CpGs included in 

the four NEOage clocks, we performed an enrichment 
analysis. We utilized the “gometh” function in 

missMethyl Bioconductor package [31], that performs a 

hypergeometric test, while taking the number of CpG 
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sites per gene into account. For the enrichment analysis 

involving the CpGs of our 450k NEOage clocks, we 

specified the array type to be “450k” and provided a list 

of CpGs that were considered (364,410 probes) for the 

“all.cpg” argument of “gometh”. Analogously, we 

specified the array type to be “EPIC” for the enrichment 

analysis involving the CpGs of our EPIC NEOage 

clocks and provided a list of CpGs that were considered 

(706,323 probes). We evaluated both options for 

databases provided by “gometh”: GO and KEGG. 

 

Data availability statement 

 

The DNA methylation data generated in the current 

study are available in the NCBI GEO via accession 

series GSE128821. R codes used for the analyses 

presented in the paper are available upon request to the 

corresponding author. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. CpGs and corresponding coefficients of the 450k-PMA NEOage clock. 

 

Supplementary Table 2. CpGs and corresponding coefficients of the 450k-PNA NEOage clock. 

 

Supplementary Table 3. CpGs and corresponding coefficients of the EPIC-PMA NEOage clock. 

 

Supplementary Table 4. CpGs and corresponding coefficients of the EPIC-PNA NEOage clock. 

 

Supplementary Table 5. Top 20 pathways from GO pathway analysis for CpGs included in the 450k-PMA 
NEOage clock. 

 ONTOLOGY TERM N DE P.DE FDR 

GO:0051240 BP positive regulation of multicellular organismal process 1717 55.5 0.000101530604212178 1 

GO:0007343 BP egg activation 5 2 0.000488637355841379 1 

GO:0071230 BP cellular response to amino acid stimulus 63 7 0.000539308264807122 1 

GO:0120162 BP positive regulation of cold-induced thermogenesis 96 8 0.000645109263846585 1 

GO:0005086 MF ARF guanyl-nucleotide exchange factor activity 18 4 0.000719253481406075 1 

GO:0032011 BP ARF protein signal transduction 18 4 0.00124599435874616 1 

GO:0032012 BP regulation of ARF protein signal transduction 18 4 0.00124599435874616 1 

GO:0043200 BP response to amino acid 106 8 0.00126159591846291 1 

GO:0031669 BP cellular response to nutrient levels 223 11 0.00174701422017418 1 

GO:0098772 MF molecular function regulator 1668 45 0.00185581614546516 1 

GO:0051239 BP regulation of multicellular organismal process 3091 80 0.00185939492722176 1 

GO:0002687 BP positive regulation of leukocyte migration 120 7 0.00199912401286309 1 

GO:0031668 BP cellular response to extracellular stimulus 254 12 0.00200618606306946 1 

GO:0071496 BP cellular response to external stimulus 322 14 0.00209524302848006 1 

GO:0051954 BP positive regulation of amine transport 34 4 0.00234424561108088 1 

GO:0045623 BP negative regulation of T-helper cell differentiation 15 3 0.00247101470290018 1 

GO:0106106 BP cold-induced thermogenesis 140 9 0.00249643374976729 1 

GO:0120161 BP regulation of cold-induced thermogenesis 140 9 0.00249643374976729 1 

GO:0042636 BP negative regulation of hair cycle 5 2 0.00301157639678554 1 

GO:0009966 BP regulation of signal transduction 2976 75.33333333 0.00329481415897157 1 
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Supplementary Table 6. Top 20 pathways from KEGG pathway analysis for CpGs included in the 450k-PMA 
NEOage clock. 

 Description N DE P.DE FDR 

path:hsa04974 Protein digestion and absorption 92 7 0.0025432527716253 0.826463250084872 

path:hsa04144 Endocytosis 242 12.5 0.00483311842154896 0.826463250084872 

path:hsa04512 ECM-receptor interaction 86 6 0.0131031855183759 1 

path:hsa04151 PI3K-Akt signaling pathway 331 13.5 0.0218884783349282 1 

path:hsa00450 Selenocompound metabolism 17 2 0.0265841978233973 1 

path:hsa04972 Pancreatic secretion 93 5 0.0269679372038782 1 

path:hsa04971 Gastric acid secretion 75 5 0.0273248262064296 1 

path:hsa04150 mTOR signaling pathway 151 7 0.0374334371410264 1 

path:hsa04640 Hematopoietic cell lineage 89 4 0.0462122030513505 1 

path:hsa04727 GABAergic synapse 84 5 0.0469447204065581 1 

path:hsa03410 Base excision repair 32 2.5 0.0642826135929407 1 

path:hsa04064 NF-kappa B signaling pathway 95 4 0.0737709112366848 1 

path:hsa00500 Starch and sucrose metabolism 30 2 0.0746391342946885 1 

path:hsa04510 Focal adhesion 193 8 0.0828799780172142 1 

path:hsa04261 Adrenergic signaling in cardiomyocytes 144 6 0.0930959869894971 1 

path:hsa05412 Arrhythmogenic right ventricular cardiomyopathy 74 4 0.106935318655637 1 

path:hsa05200 Pathways in cancer 506 15 0.109313257881781 1 

path:hsa00920 Sulfur metabolism 10 1 0.111928784033015 1 

path:hsa04657 IL-17 signaling pathway 88 3 0.120766341082755 1 

path:hsa03022 Basal transcription factors 41 2 0.122128583254498 1 

 

Supplementary Table 7. Top 20 pathways from GO pathway analysis for CpGs included in the 450k-PNA NEOage 
clock. 

 ONTOLOGY TERM N DE P.DE FDR 

GO:0042127 BP regulation of cell population proliferation 1591 40 0.0000534190886299528 1 

GO:0008283 BP cell population proliferation 1897 44 0.000139796711649994 1 

GO:0008285 BP negative regulation of cell population proliferation 715 23 0.000144783294410145 1 

GO:0090191 BP 
negative regulation of branching involved in ureteric bud 

morphogenesis 
2 2 0.000224072825185314 1 

GO:2001252 BP positive regulation of chromosome organization 164 9.5 0.000246284844795411 1 

GO:0031616 CC spindle pole centrosome 14 3 0.000330509425042432 1 

GO:0033044 BP regulation of chromosome organization 323 12.5 0.000664900082049856 1 

GO:0045843 BP negative regulation of striated muscle tissue development 55 5 0.000970314025106637 1 

GO:1901187 BP regulation of ephrin receptor signaling pathway 2 2 0.000971984410108729 1 

GO:0048635 BP negative regulation of muscle organ development 56 5 0.00108076577962778 1 

GO:0097028 BP dendritic cell differentiation 38 4 0.00125990537999378 1 

GO:0060021 BP roof of mouth development 88 7 0.00141641819931624 1 

GO:1901862 BP negative regulation of muscle tissue development 58 5 0.00153736679951646 1 

GO:0030513 BP positive regulation of BMP signaling pathway 32 4 0.00161955302866369 1 

GO:0016202 BP regulation of striated muscle tissue development 143 8 0.00163674469616389 1 

GO:0048385 BP regulation of retinoic acid receptor signaling pathway 16 3 0.00165543877096897 1 

GO:0045082 BP positive regulation of interleukin-10 biosynthetic process 4 2 0.00168336883391311 1 

GO:0070534 BP protein K63-linked ubiquitination 49 4 0.00175553877998935 1 

GO:0048634 BP regulation of muscle organ development 147 8 0.0019218112555276 1 

GO:1901861 BP regulation of muscle tissue development 146 8 0.00194065212296168 1 
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Supplementary Table 8. Top 20 pathways from KEGG pathway analysis for CpGs included in the 450k-PNA 
NEOage clock. 

 Description N DE P.DE FDR 

path:hsa04913 Ovarian steroidogenesis 50 3 0.0305045691205889 1 

path:hsa04911 Insulin secretion 83 4 0.0580354487974986 1 

path:hsa00920 Sulfur metabolism 10 1 0.0635494328977979 1 

path:hsa00330 Arginine and proline metabolism 46 2 0.0660623210263602 1 

path:hsa04664 Fc epsilon RI signaling pathway 66 3 0.0689829305658202 1 

path:hsa00250 Alanine, aspartate and glutamate metabolism 36 2 0.0691860293452126 1 

path:hsa04120 Ubiquitin mediated proteolysis 132 4 0.0765639489819126 1 

path:hsa04261 Adrenergic signaling in cardiomyocytes 144 5 0.0797431390863962 1 

path:hsa04020 Calcium signaling pathway 228 7 0.0802610307505027 1 

path:hsa01100 Metabolic pathways 1400 21.5 0.0827951900967627 1 

path:hsa00520 Amino sugar and nucleotide sugar metabolism 47 2 0.0837183667094073 1 

path:hsa05221 Acute myeloid leukemia 64 3 0.0853382746769124 1 

path:hsa04925 Aldosterone synthesis and secretion 95 4 0.0941511750167515 1 

path:hsa04962 Vasopressin-regulated water reabsorption 43 2 0.0958227630574678 1 

path:hsa00590 Arachidonic acid metabolism 61 2 0.0990080964986279 1 

path:hsa04927 Cortisol synthesis and secretion 63 3 0.103475903215217 1 

path:hsa05110 Vibrio cholerae infection 49 2 0.139903479319178 1 

path:hsa04610 Complement and coagulation cascades 81 2 0.144076070674707 1 

path:hsa00910 Nitrogen metabolism 15 1 0.144600617616157 1 

path:hsa04725 Cholinergic synapse 111 4 0.144777378086761 1 

 

Supplementary Table 9. Top 20 pathways from GO pathway analysis for CpGs included in the EPIC-PMA NEOage 
clock. 

 ONTOLOGY TERM N DE P.DE FDR 

GO:0060090 MF molecular adaptor activity 244 19.5 0.0000261984905881029 0.299312820997077 

GO:0030674 MF 
protein-macromolecule adaptor 

activity 
204 17.5 0.0000264948943079647 0.299312820997077 

GO:0009653 BP anatomical structure morphogenesis 2628 93.3333333333333 0.00036075400639525 1 

GO:0061061 BP muscle structure development 649 30 0.000817243519837221 1 

GO:0071149 CC TEAD-2-YAP complex 2 2 0.000829613936436568 1 

GO:0060187 CC cell pole 2 2 0.00124016610690871 1 

GO:0043005 CC neuron projection 1245 51 0.00135112812526085 1 

GO:0001725 CC stress fiber 66 8 0.00149094428870597 1 

GO:0097517 CC contractile actin filament bundle 66 8 0.00149094428870597 1 

GO:2000096 BP 
positive regulation of Wnt signaling 

pathway, planar cell polarity pathway 
8 3 0.00164092892480337 1 

GO:0034330 BP cell junction organization 629 32 0.00190548862751066 1 

GO:0019215 MF intermediate filament binding 14 3 0.00192713729059663 1 

GO:0032432 CC actin filament bundle 72 8 0.00213251244179354 1 

GO:0032289 BP 
central nervous system myelin 

formation 
3 2 0.00247281453328891 1 

GO:0090258 BP 
negative regulation of mitochondrial 

fission 
3 2 0.0026011582719471 1 

GO:0003012 BP muscle system process 457 21.8333333333333 0.00276093280594124 1 

GO:0044297 CC cell body 537 25.5 0.0030219067814788 1 

GO:1904636 BP response to ionomycin 4 2 0.00306956109657764 1 

GO:1904637 BP cellular response to ionomycin 4 2 0.00306956109657764 1 

GO:0071936 MF 
coreceptor activity involved in Wnt 

signaling pathway 
8 3 0.00306994667197237 1 
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Supplementary Table 10. Top 20 pathways from KEGG pathway analysis for CpGs included in the EPIC-PMA 
NEOage clock. 

 Description N DE P.DE FDR 

path:hsa04310 Wnt signaling pathway 160 11 0.00563804820140634 1 

path:hsa03022 Basal transcription factors 41 3 0.0382585766688834 1 

path:hsa04150 mTOR signaling pathway 151 8 0.0409548512453372 1 

path:hsa04514 Cell adhesion molecules 133 7 0.055839619373039 1 

path:hsa04916 Melanogenesis 101 6 0.0575374173755753 1 

path:hsa04750 Inflammatory mediator regulation of TRP channels 97 6.5 0.0678487404242832 1 

path:hsa04971 Gastric acid secretion 75 5 0.0701572968381165 1 

path:hsa00780 Biotin metabolism 3 1 0.0745147803124464 1 

path:hsa04744 Phototransduction 27 2 0.080805733488801 1 

path:hsa00630 Glyoxylate and dicarboxylate metabolism 30 2 0.0970358200187176 1 

path:hsa04625 C-type lectin receptor signaling pathway 103 5 0.0984908711417847 1 

path:hsa05146 Amoebiasis 98 5 0.0985952263276953 1 

path:hsa05205 Proteoglycans in cancer 199 9 0.0989759531598264 1 

path:hsa00515 Mannose type O-glycan biosynthesis 23 2 0.0996538362015267 1 

path:hsa03410 Base excision repair 32 2.5 0.101507997479545 1 

path:hsa04144 Endocytosis 244 10 0.102761294195724 1 

path:hsa05031 Amphetamine addiction 66 4 0.107648802928742 1 

path:hsa04152 AMPK signaling pathway 117 6 0.109755427511973 1 

path:hsa04080 Neuroactive ligand-receptor interaction 320 9.16666666666667 0.125111384608538 1 

path:hsa04070 Phosphatidylinositol signaling system 92 5 0.12605022083487 1 

 

Supplementary Table 11. Top 20 pathways from GO pathway analysis for CpGs included in the EPIC-PNA 
NEOage clock. 

 ONTOLOGY TERM N DE P.DE FDR 

GO:0110111 BP negative regulation of animal organ morphogenesis 33 7 0.0000150081855686758 0.339094944738661 

GO:1905331 BP 
negative regulation of morphogenesis of an 

epithelium 
16 5 0.0000864716932197235 0.951641205696613 

GO:0060686 BP negative regulation of prostatic bud formation 4 3 0.000172823666721358 0.951641205696613 

GO:0030510 BP regulation of BMP signaling pathway 88 9 0.000218810440561404 0.951641205696613 

GO:0090191 BP 
negative regulation of branching involved in ureteric 

bud morphogenesis 
2 2 0.000250881472848229 0.951641205696613 

GO:0048645 BP animal organ formation 63 8.5 0.000320898779391021 0.951641205696613 

GO:0060685 BP regulation of prostatic bud formation 5 3 0.000364936681518837 0.951641205696613 

GO:0060688 BP regulation of morphogenesis of a branching structure 53 7 0.000371355157976279 0.951641205696613 

GO:0090192 BP regulation of glomerulus development 14 4 0.000382316795422211 0.951641205696613 

GO:0072283 BP metanephric renal vesicle morphogenesis 14 4 0.000504258477605173 0.951641205696613 

GO:0030509 BP BMP signaling pathway 146 11 0.000555551138375544 0.951641205696613 

GO:0032675 BP regulation of interleukin-6 production 143 9 0.000582041777636664 0.951641205696613 

GO:0005402 MF carbohydrate:cation symporter activity 19 4 0.000606490301815559 0.951641205696613 

GO:0090185 BP negative regulation of kidney development 16 4 0.000644477997689534 0.951641205696613 

GO:0047045 MF 
testosterone 17-beta-dehydrogenase (NADP+) 

activity 
4 2 0.000704248067798324 0.951641205696613 

GO:2000343 BP 
positive regulation of chemokine (C-X-C motif) 

ligand 2 production 
9 3 0.000725385020377788 0.951641205696613 

GO:0032755 BP positive regulation of interleukin-6 production 91 7 0.000751360618487751 0.951641205696613 

GO:0030432 BP peristalsis 10 3 0.000839410257077136 0.951641205696613 

GO:0072006 BP nephron development 137 11 0.000849343536609647 0.951641205696613 

GO:0030513 BP positive regulation of BMP signaling pathway 32 5 0.000906591713866725 0.951641205696613 
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Supplementary Table 12. Top 20 pathways from KEGG pathway analysis for CpGs included in the EPIC-PNA 
NEOage clock. 

 Description N DE P.DE FDR 

path:hsa05110 Vibrio cholerae infection 49 5 0.0044303057296943 1 

path:hsa04961 Endocrine and other factor-regulated calcium reabsorption 51 5 0.0130902253578704 1 

path:hsa04925 Aldosterone synthesis and secretion 95 7 0.0177978978310381 1 

path:hsa04920 Adipocytokine signaling pathway 66 5 0.022338795028672 1 

path:hsa04650 Natural killer cell mediated cytotoxicity 118 6.5 0.0315357173452436 1 

path:hsa04217 Necroptosis 147 6 0.0396709182209861 1 

path:hsa04261 Adrenergic signaling in cardiomyocytes 144 8 0.0399713503271485 1 

path:hsa00980 Metabolism of xenobiotics by cytochrome P450 74 3 0.0439232520019814 1 

path:hsa04970 Salivary secretion 86 5 0.0473923210414602 1 

path:hsa00511 Other glycan degradation 18 2 0.0566603395732447 1 

path:hsa05217 Basal cell carcinoma 63 4 0.062286340491488 1 

path:hsa05412 Arrhythmogenic right ventricular cardiomyopathy 74 5 0.0666165663705422 1 

path:hsa04020 Calcium signaling pathway 228 10.5 0.0733984670436083 1 

path:hsa04060 Cytokine-cytokine receptor interaction 278 7 0.0823487304128945 1 

path:hsa04978 Mineral absorption 54 3 0.0861725768552945 1 

path:hsa04727 GABAergic synapse 84 5 0.0868375944591549 1 

path:hsa04061 Viral protein interaction with cytokine and cytokine receptor 97 3.5 0.0971045985176263 1 

path:hsa04935 Growth hormone synthesis, secretion and action 116 6 0.103216705086696 1 

path:hsa05414 Dilated cardiomyopathy 92 5 0.10503579562344 1 

path:hsa04066 HIF-1 signaling pathway 105 5 0.111209287977195 1 

 

Supplementary Table 13. Annotation of the 20 common CpGs of the NEOage clocks. 

Name chr pos UCSC_RefGene_Name 

cg05394010 chr16 2546596 TBC1D24 

cg04777726 chr19 49340489 PLEKHA4;PLEKHA4;HSD17B14 

cg24541835 chr1 12651540 DHRS3 

cg05265234 chr22 38884016 DDX17;DDX17;DDX17;DDX17;DDX17;DDX17 

cg21219851 chr17 78898189 RPTOR;RPTOR 

cg00049440 chr9 73026643 KLF9 

cg01454951 chr3 71730677 EIF4E3;EIF4E3;EIF4E3;EIF4E3 

cg21664351 chr11 19841423 NAV2;NAV2;NAV2 

cg12266861 chr1 35449720  

cg07318287 chr1 154377429 IL6R;IL6R 

cg04862002 chr17 9074365 NTN1 

cg00465247 chr13 50703477  

cg01138164 chr7 96648447  

cg13942103 chr1 111177829  

cg21135560 chr8 144946659 EPPK1 

cg01916724 chr3 51975220 PARP3;PARP3;RRP9 

cg05624226 chr5 180325954 BTNL8;BTNL8;BTNL8;BTNL8;BTNL8 

cg13624964 chr14 86088696 FLRT2 

cg17995197 chr2 26408167 FAM59B 

cg06002476 chr3 8617065  
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Supplementary Code 
 

Please browse Full Text version to see the data of Supplementary Code 1. 

 

Supplementary Code 1. R code example to calculate DNAm age using NEOage clocks. 


