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1.  INTRODUCTION

1.1.  COVID-19
The COVID-191 pandemic, caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2),2 has lasted for 
almost 3 years, and at present, this pandemic still continues. 
The virus that causes COVID-19, SARS-CoV-2, is a betacoro-
navirus with a single-strand RNA genome containing roughly 
29903 base pairs (NC_045512.2). It is related to SARS-CoV 
(the virus that caused the 2003 pandemic) and the Middle East 
respiratory syndrome coronavirus.3 They share a common spike 

protein (S) as a bridge to attach to the surface of human host 
cells through membrane receptor binding to angiotensin-con-
verting enzyme 2.4 Because the S variant protein mutates fre-
quently,5,6 the virus is able to escape the host immune system 
and thus cause new waves of transmission. Since the outbreak 
in 2019, the virus has mutated many times and produced many 
variants of concern (VOC). Recently, the Delta7 and Omicron 
strains (from BA.2 to BA.5)8,9 have dominated the viral species 
sequentially, with Omicron, in particular, having a relatively 
low death rate.10 Fever and coughing are no longer sufficient to 
identify all COVID-19 cases.11 The loss of taste and olfactory 
function (ageusia and anosmia)12 and a sharp sore throat have 
been identified as two new symptoms of SARS-CoV-2 infection. 
High numbers of asymptomatic COVID-19 cases have been 
reported.13 Confirmation of infection is increasingly difficult.

To deter the spread of COVID-19, pandemic monitoring 
(including rapid viral detection and surveillance of COVID-19 
diagnoses),14,15 effective treatment (antiviral drugs and adequate 
healthcare provision),16 and large-scale vaccination (with con-
tinual boosters from next-generation vaccines)17 are all essen-
tial (Fig.  1). VOC whole genome sequencing18 is crucial for 
monitoring the evolution of SARS-CoV-2 variants; however, 
the economic burden of medical examination is high. Although 
quarantine measures and contact tracing are effective methods 
to reduce transmission, space is a limited resource. Moreover, 
the widespread adoption of public health measures for an 
extended time period has had a global economic impact. For 
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Abstract: COVID-19 has greatly affected human life for over 3 years. In this review, we focus on smart healthcare solutions 
that address major requirements for coping with the COVID-19 pandemic, including (1) the continuous monitoring of severe acute 
respiratory syndrome coronavirus 2, (2) patient stratification with distinct short-term outcomes (eg, mild or severe diseases) and 
long-term outcomes (eg, long COVID), and (3) adherence to medication and treatments for patients with COVID-19. Smart health-
care often utilizes medical artificial intelligence (AI) and cloud computing and integrates cutting-edge biological and optoelectronic 
techniques. These are valuable technologies for addressing the unmet needs in the management of COVID. By leveraging deep 
learning/machine learning capabilities and big data, medical AI can perform precise prognosis predictions and provide reliable sug-
gestions for physicians’ decision-making. Through the assistance of the Internet of Medical Things, which encompasses wearable 
devices, smartphone apps, internet-based drug delivery systems, and telemedicine technologies, the status of mild cases can be 
continuously monitored and medications provided at home without the need for hospital care. In cases that develop into severe 
cases, emergency feedback can be provided through the hospital for rapid treatment. Smart healthcare can possibly prevent the 
development of severe COVID-19 cases and therefore lower the burden on intensive care units.
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citizens, the avoidance of unnecessary contact with the hands, 
nose, and eyes remains an effective method to prevent SARS-
CoV-2 infection. As mask use decreases in numerous Western 
countries, new methods to contain the impacts of COVID-19 are 
being developed, such as consumer technology combined with 
cloud computing and big data.19

1.2.  Medical artificial intelligence
Ever since the emergence of artificial intelligence (AI), research-
ers have continued to investigate the numerous applications 
of big data across various fields, such as biomedical science 
and medical care.20–23 Big data in medicine utilizes four types 
of information: (1) coded data (diagnostic codes, drug codes, 
and disposition codes), (2) free text (descriptions by patients 
and pathological reports by physicians), (3) biophotonic data 
(including X-ray imaging, angiography, computed tomography, 
and magnetic resonance imaging), and (4) bioelectronic data (eg, 
heartbeat, blood pressure, breathing, and brain wave). For coded 
data, the International Statistical Classification of Diseases and 
Related Health Problems, 10th Revision recommends that 
bar code medication administration (BCMA) be replaced by a 
radiofrequency identification (RFID) or near-field communica-
tion (NFC). Free text can sometimes be collected through the 
recording of patient interactions with inquiry robots, such as 
Pepper, which was developed by Professor Ohe Kazuhiko of 
the University of Tokyo as part of a Japanese research group 
committed to the standardization of structured medical record 
exchange. These texts can be analyzed using natural language 
processing (eg, Cortana, Siri, Alexa, Google Home, and Apple 
HomePod). For biosignal (biophotonic and bioelectronic) data, 
wearable devices or the Internet of Medical Things (IoMT) can 
be used for data collection.

Medical AI can prevent ethical problems, which often arise 
in healthcare applications of big data and smart healthcare.24 
Medical AI is not susceptible to errors related to human nature 
(biased or incomplete dataset recordings or incorrectly obtained 
consent for certain clinical treatments) or to mishandling of pri-
vate data (insecure or intentionally leaked data).25 Medical AI 
uses machine learning (ML) or deep learning (DL) to conduct 
large-scale big data analysis of unstructured data and narra-
tive texts from various individuals; however, medical AI often 
produces incorrect or inappropriate predictions.26 This problem 

can be overcome through the integration of medicine, computer 
science, and other disciplines.27 A well-designed medical AI can 
provide fast and valuable suggestions on disease prevention and 
effective therapeutic treatments by using data analysis methods 
including pattern recognition, analysis of various cloud comput-
ing platforms (eg, Amazon, Google, Microsoft), and the afore-
mentioned biosignal data.28 For cloud calculations using certain 
algorithms, patient records not only can be stored and recorded 
but also can be applied to the analysis of clinical data to provide 
valuable suggestions for physician decision-making.29 Medical 
AI can play a promising role in healthcare provision and thus 
may threaten to displace human doctors.30 To date, cardiology, 
internal medicine, and radiology are three medical fields that 
make extensive use of medical AI.31,32

Despite the promising applications of medical AI to the 
management of various diseases,21–23 patient privacy is a seri-
ous concern.33 Electronic healthcare data (including medical 
big data, coded data, text data, and biosignals) used in picture 
archiving and communications systems should be collected and 
handled with care whether such data originates from hospitals 
and national institutes (eg, Taiwan’s National Health Insurance 
Research Database and Taiwanese biobanks) or from interna-
tional data sources (eg, PubMed). The digital footprint of indi-
vidual data contains personal information not only relating to 
health parameters but also to details, such as credit card infor-
mation or even party affiliation. With regard to portable or 
wearable medical AI devices (eg, heart rate monitors or sleep 
trackers), such data may be recorded, tracked, and even stored 
through commercially available software for social media such 
as Facebook and other apps. The potential leak of personal 
information presents a substantial challenge to the retrieval 
of medical data.33 A human-centered approach to medical AI 
should be adopted; for example, in federated learning (FL), all 
personal data should be stored in a system unique to each indi-
vidual.34 Taiwan AI Labs presents a model example of patient 
privacy management. The company, founded by Yi-Chin Tu in 
2017, is the first Asian human-centered open AI laboratory. It 
aims to protect the privacy of individuals while gathering essen-
tial information through the precise filtering of individual infor-
mation.35 The goal of this innovative lab is to develop models to 
help humans to live a good life. This is an ideal goal for precision 
medicine. Following cross-trial and validation, the cross-hospi-
tal network and central platform can share valuable data and 
benefit from sharing large-scale clinical research.

2.  PANDEMIC MONITORING OF COVID-19 AND 
MEDICAL AI
To identify the SARS-CoV-2 virus either at the genetic or pro-
tein level (detection of viral substances, Section 2.1; 2.2) and 
to confirm COVID-19 cases through the evaluation of illness 
status (evaluated with clinical images and related symptoms, 
Section 2.3; 2.4) are both key tasks to quantify confirmed cases 
for pandemic monitoring.36 Through this combined approach, 
the majority of SARS-CoV-2 cases can be identified (Fig. 2).

2.1.  Detection of SARS-CoV-2
The prevailing view is that detection of SARS-CoV-2 within the 
human body is the ultimate diagnostic definition of a confirmed 
case, regardless of patient symptomology. The most direct 
method of identifying SARS-CoV-2 infection is to detect virus-
derived substances (either nucleic acids or proteins) through the 
analysis of nasopharyngeal swabs, saliva, or other sources.37 
The gold standard of viral detection is real-time reverse-tran-
scription polymerase chain reaction (real-time RT-PCR). This is 
a nucleic acid amplification-based test (NAAT).38 The virus can 

Fig. 1  Areas of smart healthcare for the management of COVID-19.
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be detected through the design of specific primer sequences at 
the conserved viral genome regions of certain gene locations, 
namely (1) the RNA-dependent RNA polymerase (RdRp, within 
ORF1ab), (2) the envelope protein (E), and (3) the nucleocapsid 
protein (N) within SARS-CoV-2.39 In addition, the cycle thresh-
old (Ct) values generated through RT-qPCR testing can provide 
information on the viral infection status of patients and thus 
reveal chronological and geographic information (Table 1).

The RT-qPCR assay is time-consuming (from <8 hours to 1 
or 2 days), and the performance of RT-qPCR depends on the 
hospital examination capacity. Therefore, reliance on this gold 
standard alone does not produce rapid results. Alternatively, 
loop-mediated isothermal amplification (LAMP) and related 
methods, such as real-time LAMP (RT-LAMP) and LAMP 
sequencing, and advanced biotechniques such as clusters of 
regularly interspaced short palindromic repeats (CRISPR)-Cas 
(Cas3, Cas9, Cas12, and Cas13)-based biosensors can also 
perform NAAT-like SARS-CoV-2 detection (the primer design 
can be the same or different to RT-qPCR) within 40 minutes or 
less.40,41 Because NAATs require a special platform to read and 
process the data of clinical samples, the popularity of LAMP-
related and CRISPR-related techniques is limited despite their 
testing speeds being as low as 15 minutes.42

The use of antibodies against viral proteins such as spike 
constitute protein-based tests for the rapid detection of SARS-
CoV-2. This method requires even less time than NAATs.43 This 
method may exceed the popularity of RT-qPCR. Such tests can 
be adapted from existing US Food and Drug Administration 

(FDA)-approved lateral-flu test kits for rapid home testing (eg, 
the SARS-CoV-2 Antigen Self-Test Nasal manufactured by F. 
Hoffmann-La Roche, Abbott, or other companies).44 However, 
a drawback of these protein-based tests is insufficient accuracy 
when compared with RT-qPCR.45,46 Asymptomatic false-neg-
ative cases may lead to the undetected transmission of VOCs. 
Mutated spike proteins can evade vaccination, the human 
immune system, and also protein-based rapid-testing antibodies. 
Despite these disadvantages, home testing as a rapid diagnostic 
tool remains a useful method of pandemic monitoring.

2.2.  Smartphone-based viral detection
Medical AI used with smartphones and advanced biotechnology 
has great potential for viral infection monitoring. New optoelec-
tronic devices integrated with a test chamber or with home test-
ing papers can serve as fast and powerful viral detectors. These 
devices can be used in conjunction with cloud computing for 
both the retrieval and storage of detected signals. The informa-
tion provided through this method is valuable for monitoring 
SARS-CoV-2 transmission.

LAMP-related rapid home testing has been approved for emer-
gency use authorization by the FDA for COVID-19 (eg, Abbott 
ID NOW and Cue COVID-19 Diagnostic Test). RT-LAMP 
used in conjunction with the novel technique of particle diffu-
sometry (PD) displayed excellent SARS-CoV-2 detection capa-
bility; a limit of detection (LOD) of 30 virus particles per μL 
or less (35 × 104 viral particles per mL) within 35 minutes in 
saliva was reported. In addition, PD-LAMP is compatible with 

Fig. 2  Smart healthcare for mild and severe COVID-19 diseases. For viral detection, RT-qPCR is the gold standard (hospital-only). For home testing, the 
FDA-approved fast flow kit (through antibody detection) allows for rapid detection of SARS-CoV-2. Although the accuracy of fast flow home testing is low, 
RT-LAMP and CRISPR have acceptable accuracy and are alternatives. For the symptom-derived signs of COVID-19 illness, wearable devices that can 
measure some physiological signatures including heartbeat rate, respiratory status, and even oxygen saturation can be connected with smartphone apps to 
supply prompt warning. These are more readily available than standard medical imaging confirmed by CXR or CT scan (hospital-only). Transferring such data 
to medical AI with cloud calculation ability can further facilitate prognosis prediction and provide medical suggestions. AI = artificial intelligence; CRISPR = 
clusters of regularly interspaced short palindromic repeats; CT = computed tomography; CXR = chest X-ray; FDA = food and drug administration; RT-LAMP 
= real-time loop-mediated isothermal amplification; RT-qPCR = reverse-transcription polymerase chain reaction; SARS-CoV-2 = severe acute respiratory 
syndrome coronavirus 2.
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digital connectivity for point-of-care testing.47 For advanced 
NAAT, CRISPR-Cas12a integrated with smartphone-based 
fluorescence devices (with low-cost three-dimensional-printed 
housing and optics) under a DL/ML-driven environment has 
been applied for the detection of SARS-CoV-2.48 The LOD of 
this device is approximately 6.25 RNA copies/μL (based on 
laboratory samples). It exhibited a test accuracy of 95% and 
a sensitivity of 97% on 96 nasopharyngeal swab samples 
with transmissible viral loads (Table 1). Furthermore, without 
nucleic acid amplification and reverse transcription (not NAAT, 
but nucleic acids are still detected), a novel portable electro-
chemical smartphone biosensor was developed to achieve the 
ultrasensitive detection of SARS-CoV-2 RNA.49 This method is 
based on the super-sandwich recognition strategy that utilizes 
calixarene-functionalized graphene oxide as the key biosensor. 
The LOD of this method to a clinical specimen is 200 copies/

mL. This LOD is reported to be the lowest among the published 
RNA measurements to date.

For the detection of viral protein level, a smartphone-assisted 
immunoassay-based method integrated with magnetic beads 
and colorimetry was established for testing saliva and naso-
pharyngeal swab samples.50 The LOD of this 96-well wax-
printed paper plate assay is 0.1 μg/mL. A Spotxel free-charge 
app for use with this specific assay was also developed. The pri-
mary advantage of this cost-effective method is accurate detec-
tion within 30 minutes, even when used with samples with low 
viral load (Ct numbers as high as 30 have been reported from 
RT-PCR results). It is also crucial to evaluate the quantity and 
quality of SARS-CoV-2 neutralizing antibodies in blood samples 
of patients with COVID-19 and vaccinated individuals. A smart-
phone can serve as track-etched membrane microplate readers 
for high-throughput quantitative measurement of antibodies.51 

Table 1

Viral detections for severe acute respiratory syndrome coronavirus 2 and the combination with medical artificial intelligence

  Nucleic acid-amplification detection

Methods RT-qPCR
Place to exam Hospital

Sampling Naso swabs (some saliva)
LOD (sensitivity) 97% (reference 42) Ct < 40

Accuracy (specificity) gold standard
Time to get the data 3.5-4 hours (reference 42)

Commercial availability Roche, LabCorp, PerkinElmer (RUO), Mesa Biotech, Cepheid, Qiagen, Thermo Fisher, BioRAD (Research Use Only, RUO)
Commercial with medical AI Cobas® SARS-CoV-2 6,800 (96 results in 3h; 384 in 8h) and 8,800 systems (1056 in 8h) (Roche Molecular Diagnostics, Pleasanton, CA, USA)

Abbott Molecular (Des Plaines, IL, USA) the m2000 system 96 samples simultaneously, 470 test results in ~24 h; sensitivity (93%); 
specificity (100%)

 Nucleic acid-isothermal amplification detection
Methods RT-LAMP

CRISPR-Cas 12 or Cas13
Place to exam Home (hospital for mega usage)

Sampling Naso swabs (some saliva)
LOD (sensitivity) 10 (iLACO, reference 40), 30 (PD-LAMP, reference 47) copies/µL 97% (reference 48); 1 copies/µL (Cas13a), 10 copies/µL 

(Cas12a/b) (reference 41)
Accuracy (specificity) 89.9% (reference 40) iLACO 95% (reference 48)
Time to get the data 10 min (NEAR, FDA-EUA), 20 min (iLACO), 30 min (PD-LAMP) 30-90 min

Commercial availability Atila Biosystems, Abbott Mammoth Biosciences (DETECTR), SHERLOCK Biosciences (FDA-EUA)
Protein-based rapid home testing Indoor air quality monitoring Exhaled breath detection 

Methods Fast flow detection (antibody) Space Monitoring Device Wearable
Place to exam Home only on-site Home, work, hospital, on-site Home, work, hospital, on-site

Sampling Naso swabs (some saliva) Air Air (collected from mask)
Time to get the data 15 min 30 mins N.A.

Commercial availability Fast flow kit (FDA-approved) N.A. N.A. (reference 53)

AI = artificial intelligence; CRISPR = clusters of regularly interspaced short palindromic repeats; FDA = food and drug administration; LOD = limit of detection; PD = particle diffusometry; RT-LAMP = real-time
loop-mediated isothermal amplification; RT-qPCR = reverse-transcription polymerase chain reaction; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.
The cited references are: 40, 41, 42, 47, 48, 53

Table 2

Diagnostic and monitoring methods for COVID-19 and the commercial (personal) availability

Medical imaging Chest X-ray (CXR) CT scanning

Place to exam Hospital Hospital
Sampling In vivo on-site In vivo on-site

Time to get the data N.A. N.A.
Commercial (personal) availability N.A. N.A.

Wearable electronics device Respiratory rate Heart rate Skin temperature Oxygen saturation 
Place to exam Home, work, hospital Home, work, hospital Home, work, hospital Home, work, hospital

Sampling In vivo on-site In vivo on-site In vivo on-site In vivo on-site
Time to get the data real-time real-time real-time real-time

Commercial (personal) availability WHOOP Strap; Oura Ring Apple WatchE; 4 wristband; 
Fitbit;WHOOP Strap; Oura Ring

Fitbit; Oura Ring Apple Watch; Fitbit; Oura Ring

The cited references are: 74, 75, 76, 77, 78.
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With regard to the application of novel photoelectric technol-
ogy, Kawasaki et al52 described a label-free smartphone-based 
optical sensor for SARS-CoV-2 testing. The imprinted photonic 
crystal film inside this optical sensor is functionalized with an 
anti-SARS-CoV-2 spike protein antibody and thus can conduct 
the corresponding immunoassay. This novel device can detect 
SARS-CoV-2 at a low LOD of 429 fg/mL from saliva samples.

Knowledge of the viral genome or proteins from tested sam-
ples enables the physical identification of the virus within the 
human body. However, the results of viral detection (Sections 
2.1, 2.2) can be influenced by many factors, such as sampling 
error and infection status (see the following Sections 2.3, 
2.4). For example, the viral load of each infected person may 
vary depending on the day of infection and vary according to 
individual immune ability (regardless of vaccination status). 
In reality, many patients report negative home rapid-testing 
results (when no reason to undergo RT-qPCR at their own 
expense exists) while reporting novel COVID-19 symptoms 
such as ageusia, anosmia, and sharp sore throat without fever 
and cough (Fig. 2). Whether such cases (rapid test negative but 
symptom positive) should be viewed as confirmed cases is a 
matter of debate. False viral detection results statistically influ-
ence confirmed case data.

For sample collection, which generally uses nasopharyngeal 
swabs or saliva, a unique, disposable, and inexpensive wear-
able collection device was designed for the on-site airborne 
viral collection.53 It can adhere to the inside of various masks 
(textile, surgical, KN95, or N95) to collect the virus exhaled in 
the breath. The efficacy of this collection method was confirmed 
with the following detection methods: RT-qPCR, RT-LAMP, 
and antibody-based dot blot assays. Such a device will be highly 
useful when smartphone-based detection methods (eg, smart 
RT-LAMP and smart CRISPR) or rapid paper home testing have 
been developed for widespread application.

2.3.  Specific illness of COVID-19: medical imaging and 
medical AI
Although the majority of suspected cases that are asymptomatic 
or exhibit few symptoms seem to be mild cases (or may not be 
recognized as confirmed cases), such cases may not necessarily 
have good prognoses. The oversight of such possible infections 
might lead to the underground transmission of SARS-CoV-2. In 
the absence of notification, such cases can constitute unknown 
sources of transmission. Conversely, severe cases exhibiting seri-
ous symptoms cause major concern because the virus threatens 
the lives of patients with comorbid conditions, such as those 
with chronic diseases, metabolic syndrome (including diabetes), 
or cancers.54 Aggressive treatment is required for such patients, 
either in the hospital or at home, to achieve the goal of zero 
severe cases and to reduce the death rate among severe cases.

Confirmation of a COVID-19 diagnosis generally takes place 
in hospitals but not exclusively so. The clinical diagnosis of 
COVID-19 can be confirmed using various physical examina-
tions and medical imaging techniques—for example, chest X-ray 
(CXR) imaging and computed tomography (CT) scanning.55 
CXR imaging is a simple method for diagnosing pneumonia. 
CT scanning allows for rapid diagnosis.56 Similar to RT-qPCR, 
medical imaging requires medical resources and personnel. The 
continuation of the pandemic places a burden on such resources.

AI-based classification of pneumonia during the COVID-19 
pandemic can be performed using ML-based automated systems 
with CXR or CT scan images acquired from hospitals and ana-
lyzed using medical AI such as NHIA-TAIMedimg, DeepCheX, 
GoogleNet, Choquet Fuzzy with Xception, and others.57,58 The 
preliminary results are then returned to the Centers for Disease 
Control for the final decision.

2.4.  Specific illness of COVID-19: wearable devices and 
medical AI
The use of physical checks similar to CXR and CT imaging, 
for example—wearable devices that can detect COVID-19 out-
side the hospital, is another potential monitoring technique. 
Through the redefinition of the specific criteria of COVID-
19, medical AI can use DL and ML to recalculate acceptable 
physical parameters for further applications. Medical AI used 
in conjunction with big data analysis allows for the large-scale 
continuous retrieval of data for simulation and prediction.57 
Because CXR and CT can only be performed in clinical set-
tings and only specialist radiologists may perceive subtle 
anomalies, other tools such as wearable medical devices or sen-
sors have the potential for the rapid and accurate confirmation 
of SARS-CoV-2 infection at home.59,60 Through the recording 
of subtle physiological changes such as heart rate, respira-
tory rate, and skin temperature and through comparison with 
confirmed cases, early digital biomarkers of infection can be 
determined (as discernible symptoms of suspected COVID-19 
cases). However, a review article analyzed numerous published 
papers (MEDLINE, Web of Science, etc.), protocols, and data 
(Embase, Cochrane Central Register of Controlled Trials, 
International Clinical Trials Registry Platform, ClinicalTrials.
gov, etc.) investigating the use of wearable devices for this 
purpose. They unexpectedly reported that the majority of this 
research exhibited a moderate risk of bias, and the accuracy 
of their results is doubtful.60 It is still not possible to conclude 
that the aforementioned three physiological parameters can 
be used as new gold standard parameters for the diagnosis of 
COVID-19. Medical AI prediction can test the efficacy of such 
parameters.

Conversely, fingertip pulse oximeters are rapid point-of-care 
and home care medical devices for the measurement of oxygen 
saturation values (proportions of oxygenated and deoxygenated 
hemoglobin) to evaluate the condition of the respiratory system. 
Oxygen saturation measurement is particularly crucial during 
the SARS-CoV-2 pandemic because many infected individu-
als are suspected to be in a silent hypoxic state without overt 
dyspnea. In the UK, pulse oximeters are provided as home care 
devices to high-risk patients with COVID. Fingertip pulse oxi-
meters can be an integral component of IoMT against COVID. 
One such cloud-based monitoring system has been implemented 
by National Yang Ming Chiao Tung University in Taiwan. The 
fingertip pulse oximeters are connected wirelessly to smart-
phones using Bluetooth technology. The app then communicates 
with the cloud-based monitoring system to send out warning 
messages to patients when abnormal patterns of measurements 
are detected.

Further, several smartphone apps have been developed, such 
as the Zoe COVID study app, the CoroNotes app (University 
of Tübingen), and the COVID Control App (John Hopkins 
University). These are either designed for the detection of age-
based and sex-based early symptom discrepancies, to enhance 
user well-being, or to record the daily body temperature of 
patients. Lovey et al61 recently demonstrated the possibility of 
remotely monitoring SARS-CoV-2 confirmed cases by conduct-
ing a prospective cohort study using a smartphone app called 
Illness Tracking in Tested Persons. Through this tracking sys-
tem, significant high odds ratios of difficulty breathing (3.35), 
a reduced sense of taste (ageusia, 5.45), and a reduced sense 
of smell (anosmia, 18.24) can be detected. These top three 
symptoms display COVID-19-specific signs (compared with the 
SARS-CoV-2 negative set). Fatigue was the only single symp-
tom to considerably influence the daily activities of confirmed 
cases. This type of tracking system or another platform such 
as the Blue Dot AI system23 may be applied in various settings 
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including schools, hospitals, companies, sport clubs, or music 
groups to detect signs of developing infection (once the alterna-
tive three can be confirmed as new gold standards of COVID-19 
diagnosis). Such systems may be used to control transmission 
and predict epidemiological trends.

3.  PATIENT CATEGORIZATION AND PROGNOSIS 
PREDICTION
To date, SARS-CoV-2 has infected more than 550 million people 
globally. The vast spread of the disease over 2–3 years has dras-
tically increased the burden on medical service providers who 
lack the capacity to cope with a pandemic of this scale. In some 
areas, medical systems have been overburdened to the point of 
breakdown. COVID-19 presents diverse symptoms with vary-
ing severity among different people, ranging from no symptoms 
to mild flu-like symptoms such as coughing and sneezing and 
to severe diseases such as pneumonia, thrombosis, and sys-
temic inflammatory syndrome (Fig. 2). For children, symptoms 
include respiratory symptoms, gastrointestinal conditions such 
as abdominal pain, Kawasaki-like conditions, encephalitis, car-
diovascular conditions such as tachycardia and hemodynamic 
shock, and pediatric inflammatory multisystem syndrome tem-
porally associated with SARS-CoV-2 (PIMS-TS; i.e., a multi-
system inflammatory syndrome in children).17 Facilities such as 
negative pressure rooms and intensive care units are in limited 
supply, and hence, medical resources must be used wisely, and 
patients should be triaged according to the severity of their 
symptoms.

The reliable prediction of a patient’s clinical courses can 
enable personally optimized patient care and the efficient use of 
medical resources (Fig. 3). Information from the time of infection 

may be useful for predictions. First, the viral strain (Alpha, Beta, 
Delta, or Omicron) and viral load (determined by RT-PCR) can 
affect the clinical course. Second, the exacerbation of preexist-
ing comorbidities also affects the clinical course. Third, age, sex, 
genetics, ethnicity, serum biochemistry profiles, immunological 
profiles, and environmental factors may also affect the clinical 
course. The utilization of data related to viral, host, and envi-
ronmental factors may effectively predict whether an infected 
person will exhibit mild symptoms or severe symptoms requir-
ing hospitalization or even intensive care (Fig. 2). The two types 
of outcomes are not proportional. Mild cases account for >90% 
of infections, and severe cases account for <10%.62 Hence, the 
sensitivity and specificity of prediction are both crucial. Big data 
gathered from the information hub can be integrated and calcu-
lated through DL to provide valuable suggestions for the treat-
ment of COVID-19 cases.

A laboratory study conducted in South Korea with 561 adult 
patients with COVID-19 demonstrated that age, sex, and serum 
concentrations of C reactive protein, lactate dehydrogenase, 
and hemoglobin are major independent factors associated with 
the progression to severe pneumonia, which is defined as rest-
ing oxygen saturation <93%, PaO2/FiO2 ≤300 mmHg, or the 
need for mechanical ventilation.63 The patients were treated at 
Keimyung University Daegu Dongsan Hospital (KDDH), and 
the constructed KDDH score using five independent factors 
achieved an area under the receiver operating characteristic 
curve of 88.4% in the training dataset and 82.8% in the valida-
tion dataset. Apart from age and sex, the independent factors are 
derived from common laboratory examinations of peripheral 
blood. The COVID-19 care apps in intelligent devices, such as 
Zoe, CoroNotes, and COVID Control (as described in Section 
2.4), or other similar apps should incorporate a severe disease 

Fig. 3  Successive predictors for clinical courses of patients with COVID-19. A roadmap of the COVID-19 clinical course with three predictors incorporated to 
facilitate optimized patient care and medical resource allocation. The predictors can be implemented as apps in mobile devices or integrated into the computer 
systems of hospitals.
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risk predictor that allows users to input the values of the five 
factors and receive a prediction (Fig. 3).

3.1.  Mild cases with prognosis prediction
Mild symptoms usually resolve within a few days. After the acute 
symptoms resolve, some symptoms may appear or reappear sev-
eral weeks after the infection, including palpitations, tachycar-
dia, shortness of breath or breathing difficulties, tightness of the 
chest, muscle aches, loss of appetite, diarrhea, fatigue, postexer-
tional malaise, brain fog, and memory issues. These symptoms 
are collectively known as long COVID.64 Approximately one 
in five patients with COVID develop long COVID.65 In Britain, 
the Zoe (as described in Section 2.4) smartphone-based COVID 
Symptom Study app was developed to collect self-reported long 
COVID conditions.66 Status at the time of infection may be used 
to predict the long-term prognosis with or without long COVID 
conditions.

A multiomics study was conducted to reveal factors associ-
ated with long COVID. It was found that type 2 diabetes, SARS-
CoV-2 viral load, and the detection of Epstein–Barr virus and 
specific autoantibodies are correlated with long COVID.67 An 
app for mobile devices should be developed for users to input 
this information and calculate their risk using an established 
algorithm (Fig. 3).

3.2.  Severe cases with prognosis prediction
The clinical course of severe COVID-19 can be categorized into 
three phases: early infection phase, pulmonary stage, and hyper-
inflammatory phase.68 Different treatments are required in dif-
ferent phases. For those with severe disease, whether the patient 
requires intensive care is a major concern.

A predictive model for 30-day mortality was recently con-
structed based on cohorts of 4035 and 2126 hospitalized and 
laboratory-confirmed patients, and these were used for the 
model construction and validation stages, respectively.69 The 
patients were recruited from 127 Spanish hospitals. Factors 
employed in the model include age, age-adjusted oxygen satu-
ration, neutrophil-to-lymphocyte ratio, estimated glomerular 
filtration rate according to the chronic kidney disease epi-
demiology collaboration equation, dyspnea, and sex. The 
constructed model achieved 82.2% and 84.5% area under 
the receiver operating characteristic curves in the model con-
struction and validation cohorts, respectively. The predictive 
model could be implemented in a hospital software system 
or as an app for smartphone devices. Currently, oxygen 
saturation measurements are mostly measured by electronic 
point-of-care devices (also mentioned in Section 2.4). These 
devices can be readily designed to send measurements wire-
lessly to hospital systems or mobile devices where the apps 
are installed (Fig. 3).

4.  EFFECTIVE MEDICATIONS AND FUTURE 
PERSPECTIVES
When transmission remains high and quarantine measures no 
longer slow viral transmission, it may be necessary to diagnose 
cases through either of the aforementioned techniques (Section 
2; Fig.  2). The combined monitoring of the medical informa-
tion and health activities of individuals meet the FL requirement 
of respecting patient privacy. AI-ML with advanced software as 
medical device (SaMD) can be developed to provide accurate 
predictions of COVID-19 status on a large-scale (also discussed 
in Section 3).70 The Taiwan Social Distancing App is a practical 
example of SaMD for COVID-19.71 Each datapoint collected 
through Bluetooth from individuals is decentralized before being 

reported as a confirmed case with geographic distance between 
the patients with COVID-19 and the users of concern. However, 
it seems that insufficient data are provided for the users of this 
app. This is primarily because of obedience to primary protec-
tion; for example, it accounts for the lack of data concerning 
when and where the user has been in short-distance “contact” 
with unknown numbers of confirmed cases. Further improve-
ments of such apps would provide valuable information on the 
transmission of COVID-19 for the users while still maintaining 
individual privacy.

In the period following the COVID-19 pandemic, it is likely 
that SARS-CoV-2 will be a permanent presence in our lives, 
similar to the pandemic of influenza A. Thus, we should focus 
on prognosis prediction (Section 3, Fig. 3) and effective medi-
cations. Generally, the medication process contains four steps 
after the confirmation of illness: (1) prescription (smart health-
care systems can help to confirm the correct prescription), (2) 
dispensation of medication (a robot can assist in the provision 
of correct medication), (3) administration (confirm correct drug 
given, BCMA, RFID, NFC), (4) compliance (a smartphone app 
can remind patients to medicate, and the learning health system 
can prevent adverse drug reactions). Medical AI can assist in all 
of these steps to lower the risk of medical and follow-up errors. 
The future AI hospital service will integrate disease prevention 
(including precision health assistance and prehospital consulta-
tion plus prediction), AI clinics (assisted diagnosis and treat-
ments), AI nursing (assisted care), and a smart workflow for 
the entire medical care and telemedicine system (when the bur-
den of a hospital is considerable enough that some mild cases 
should not present at the hospital but rather receive remote 
healthcare).

Telemedicine combines mature medical AI with versatile 
IoMT (eg, AI-assisted medical documentation, voice recognition 
and decentralization, and wearable monitoring system)71,72 and 
the analysis of big data through AI-DL/ML cloud computing to 
develop strategies and algorithms. This may combat the short-
age in human resources of hospitals and clinics and has great 
potential to help patients with COVID-19 at home.73 The IoMT 
being linked to the available data from hospitals or personal 
smartphones will increase the speed of case confirmation and of 
the following steps, such as quarantine or discharge, prognosis 
prediction, and suggestions for individualized treatments. With 
the help of telemedicine systems, physicians can first confirm 
the results of FDA-approved lateral flow home testing and the 
reported symptoms of suspected cases through smartphone apps 
online with clinics. Doctors will be responsible for each con-
firmed case. Adherence to medication can be assisted by medical 
AI and IoMT.

Big data containing the identification information of individ-
uals will be stored and represented through an Internet interface 
and can be used for personal medications, treatments, and pos-
sible prognosis prediction and tracing (Figs. 2 and 3). Doctors 
responsible for case confirmations can make decisions regarding 
the prescription of essential medications and, with the help of 
IoMT, delivery of anti-SARS-CoV-2 drugs to individual patients. 
Such measures will allow for long-term control of COVID-19. In 
the future, medical AI can also contribute to new vaccine design 
to combat new variants beyond Delta and Omicron BA.2–BA.5 
and also to the development of antiviral drugs.
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