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Abstract

Recent trials have demonstrated the efficacy and safety of percutaneous renal

sympathetic denervation (RDN) for blood pressure (BP)-lowering in patients with

uncontrolled hypertension.Nevertheless,major challenges exist, such as thewide vari-

ation of BP-lowering responses following RDN (from strong response to no response)

and lack of feasible and reproducible peri-procedural predictors for patient response.

Both animal and human studies have demonstrated different patterns of BP responses

following renal nerve stimulation (RNS), possibly related to varied regional proportions

of sympathetic and parasympathetic nerve tissues along the renal arteries. Animal

studies of RNShave shown that rapid electrical stimulation of the renal arteries caused
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renal artery vasoconstriction and increased norepinephrine secretion with a concomi-

tant increase in BP, and the responseswere attenuated after RDN.Moreover, selective

RDNat siteswith strongRNS-inducedBP increases led to amore efficient BP-lowering

effect. In human, when RNS was performed before and after RDN, blunted changes in

RNS-induced BP responses were noted after RDN. The systolic BP response induced

byRNSbeforeRDNandblunted systolicBP response toRNSafterRDN, at the sitewith

maximal RNS-induced systolic BP response before RDN, both correlatedwith the 24-h

ambulatory BP reductions 3–12 months following RDN. In summary, RNS-induced BP

changes, before and after RDN, could be used to assess the immediate effect of RDN

and predict BP reductions months following RDN. More comprehensive, large-scale

and long term trials are needed to verify these findings.
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1 INTRODUCTION

Increased sympathetic nerve activity leads to the occurrence and

progression of hypertension.1 Renal efferent nerve hyperactivity

increases sodium reabsorption and activates the renin-angiotensin-

aldosterone system.2 Percutaneous renal sympathetic denervation

(RDN) can be used to disrupt renal afferent and efferent sympa-

thetic nerves and is a rational technique to modulate central sym-

pathetic outflow and renal physiology and achieve sustained BP

reductions.3,4

As early as 2009, the first case of catheter-based radiofrequency

RDN was reported, which showed a substantial and sustained reduc-

tion in BP.5 Thereafter, the SYMPLICITY HTN-1 and 2 trials were

conducted and demonstrated the persistent BP reduction and good

safety of RDN.6,7 However, this result was not replicated in the follow-

ing blinded sham-controlled Simplicity HTN-3 trial where 535 patients

with uncontrolled treatment-resistant hypertension were randomized

to RDN or a sham procedure. The study failed to show a significant

ambulatory BP reduction difference between the two arms.8 This dis-

crepancy in the results incited fervent discussion, and many possible

explanations were put forward, such as procedural variations, change

of medication use, physician inexperience, or patient non-adherence.9

After carefully considering the weaknesses and limitations of the

SYMPLICITY HTN-3 trial, several well-designed, second-generation

randomized sham-controlled RDN trials (DENERHTN trial, SPYRAL

HTN-OFF MED, SPYRAL HTN-ONMED, RADIANCE-HTN SOLO, and

RADIANCE-HTN TRIO) were conducted and consistently demon-

strated clinically meaningful BP reductions, without serious adverse

events.10–12 As a result, the consensus statement of the Asia Renal

Denervation Consortium suggested RDN could serve as an initial ther-

apy for hypertension control, either alone or in combination with

antihypertensive medications.13

The wide spectrum of BP-lowering responses following RDN, from

strong response to no response, and lack of a feasible and reproducible

peri-procedural predictor to indicate a good BP-lowering response are

major challenges to the application of RDN. In light of this, renal nerve

stimulation (RNS) is proposed as a promisingmethod to test the imme-

diate effect of RDN. This review summarizes the published data on the

use of RNSwith RDN.

2 PATHOPHYSIOLOGICAL MECHANISMS

2.1 Pathophysiological mechanisms of RNS

Renal nerves consist of afferent sensory, efferent sympathetic,

and parasympathetic fibers and are distributed unequally along

renal arteries.14–16 Activation of afferent renal nerves may cause

BP elevation by increasing central sympathetic nerve activity and

elevating plasma norepinephrine spillover.17 Renal efferent sympa-

thetic nerve overactivity modulates tubular sodium reabsorption,

renal blood flow, and renin release, which all cause BP elevations.18

RNS can lead to increase, decrease, or no changes in BP.19,20 The

physiological responses of these nerve fibers to RNS depend on the

overall responses of the stimulated fibers. Nevertheless, the complete

pathophysiological mechanisms of RNS are not fully understood yet.

Stimulation of renal efferent nerves potentially increases arterial

pressures secondary to the increased renin secretion, tubular sodium

reabsorption, and renal vascular resistance. RNS-induced increased

renin release occurred 10 min after RNS in anesthetized dogs.21

Hoogerwaard and colleagues suggested that RNS-induced BP changes

could be caused by an increased central sympathetic tone via the

sympatho-excitatory renal afferent reflex.5 This is because the RNS-

induced BP change was observed soon (within 3 min) after RNS. In our

experience, RNS consistently elicited increases in BP, which generally

peaked within 2 minutes after discontinuation of 1-min RNS. In the

first half of 1-min RNS period, transient decrease in BP may occur,

which then universally turns into increase in BP (unpublished data).
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2.2 Pathophysiological mechanisms of renal
denervation

The exact mechanisms by which RDN causes long-term BP lowering

have not yet been fully elucidated but are likely to include reduced

renal afferent and efferent sympathetic activity and effects on the

renin-angiotensin system. Disruption of renal afferent nerves may

modulate central sympathetic outflow to achieve the goal of BP

reduction. Destruction of efferent sympathetic nerves can result in a

decreased plasma renin activity, a significant reduction of water and

sodium reabsorption and also inhibition of renal renin-angiotensin

system overactivation. However, previous studies showed incon-

sistent results regarding changes in plasma renin activity following

RDN.22–24 A possible confounder is the prescribed antihypertensive

medications in these studies that may affect renin and aldosterone

levels. The SPYRAL HTN-OFF MED Pivotal trial demonstrated that

RDN therapy significantly reduced plasma renin activity 3 months

following RDN in drug-naïve hypertensive patients.25 Further, RDN

in patients with higher levels of plasma renin activity at baseline was

associated with a significantly greater reduction in office and 24-hour

systolic BP.25 This study provided evidence that RDN may stabilize

the renin-angiotensin-aldosterone system by disrupting renal efferent

nerve hyperactivity. Plasma renin activity is positively associated

with higher resting heart rate, and high-renin hypertension is often

associated with higher heart rates.26 RDN usually causes heart rate

reduction in post-RDN follow-up.

Of note, animal studies have demonstrated the occurrence of renal

re-innervation. Originally, renal nerve re-innervation and the recov-

ery responses to electrical stimulation were reported 11 months

after RDN in normotensive sheep.27,28 The subsequent study demon-

strated a sustained reduction in BP and reduced anatomical and

functional renal nerve re-innervation 30 months after RDN in hyper-

tensive sheep.29 The mechanism of sustained BP-lowering response

from RDN in human studies is ambiguous. The function and extent

of re-innervation following RDN in human need further studies

to clarify.

3 RENAL NERVE STIMULATION STUDIES

3.1 Renal nerve stimulation in animal studies

The first RNS animal study reported by Chinushi and colleagues

showed that rapid electrical stimulation at the proximal portion of the

renal arterial wall in anesthetized dogs increased BP and heart rate

(HR) before RDNand that the rise in BP andHRwere attenuatedwhen

the ablated renal artery was stimulated.30 Before RDN, BP was signif-

icantly elevated from 145 ± 15/86 ± 13 mmHg to 189 ± 21/111 ± 19

mmHg, andHR increased from116±9perminute to130±6perminute.

After RDN, no significant changes in BP (from 150 ± 20/90 ± 16

mmHg to 152 ± 20/92 ± 17 mmHg) or HR (from 124 ± 14 per minute

to 124 ± 14 per minute) were noted. The serum epinephrine and

norepinephrine concentrations were significantly elevated after RNS

beforeRDNandbecameblunted after RDN. Furthermore, in a study by

Sun and colleagues in which the renal artery nerves of 16 anesthetized

dogs were electrically stimulated, there was a significant rise in BP

afterRNS,whereas the change inHRwasnonsignificant.31 The authors

proposed baroreceptor-independent sympathetic activation as the

possible pathophysiological mechanism to explain the observed differ-

ential BP and HR responses.32 Lu and colleagues performed selective

RDN on RNS-responsive proximal renal arteries (systolic BP increased

≥10 mmHg after RNS) and achieved sustained BP reduction and sym-

pathetic inhibition in a canine model. Conversely, the control group

showed unchanged BP and plasma norepinephrine concentrations.33

In addition, no significant HR response was noted during RNS to the

proximal BP-responsive renal arteries.

In order to delineate the spectrum of BP andHR changes from RNS,

Zhou and colleagues conducted RNS in 483 stimulation sites in 24

anesthetized Kunming dogs. Five different BP change patterns and no

significantHR responsewerenoted. The authors hypothesized that the

variation in BP change was attributed to variability in the proportion

of excited sympathetic-excitatory fibers and sympathetic-inhibitory

fibers.19

In an RNS study conducted by Liu and colleagues, they randomly

assigned 21 dogs into three groups: a strong-response sites abla-

tion group, a weak-response sites ablation group, and an RNS-control

group. They found that selective RDNat siteswith strongRNS-induced

systolic BP response led to amore efficient BP-lowering effect 4weeks

following RDN than ablation at the weak-response sites and that in

the control group.34 Blunted systolic BP response to RNS after RDN

was also associated with a more efficient BP-lowering effect. They

concluded that RNS was effective in identifying the nerve-rich area

and optimizing the RDN procedure. Another study by Qian and col-

leagues demonstrated that trans-vascular high-frequency aorticorenal

ganglia (ARG) pacing was a feasible method for localizing the ARG and

inducing renal artery vasoconstriction and concomitant BP elevation.

They suggested that abolition of ARG pacing-induced renal arterial

vasoconstrictionmay serve as a physiological endpoint for RDN.35

In summary, RNS in animal models demonstrated an immediate BP

response soon after stimulating renal nerves, which may reflect the

cumulative effects of excited sympathetic fibers and parasympathetic

fibers. The RNS-induced responses would be blunted after sufficient

ablation at the renal artery sites.34 Ablation at sites with enhanced

systolic BP responses to RNS and blunted BP response to RNS after

RDNwere both associatedwith a greater BP-lowering effect following

RDN (Table 1).

3.2 Renal nerve stimulation results from human
studies

In 2015, the first reported RNS study in anesthetized humans con-

ducted by Gal and colleagues demonstrated that RNS caused a tem-

porary increase in BP. Eight people with resistant hypertension were

included for RDN. RNS was performed 1 min before and after RDN. In

the study, the pre-RDN systolic BP change induced by RNSwas 43±15
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mmHg, and the post-RDN systolic BP change significantly declined to

9±10mmHg (p= .0002).36

In order to delineate the response of RNS, de Jong and colleagues

enrolled 35 patients with drug-resistant hypertension for RDN. Intra-

venous anesthesia was implemented throughout the course. Of the

289 sites of renal artery stimulation, 62% had a sympathetic response

with an systolic BP increase of >10 mmHg; 30% had an indifferent

response to RNS, while the remaining had a vagal response with a

drop in BP and bradycardia.20 The study provided evidence of the

potential benefit of RNS in identifying relative distribution of sympa-

thetic and parasympathetic nerve fibers along the renal arteries and

guiding selective ablation in RDN. The same research group also evalu-

ated the correlation between the changes in RNS-induced BP increase

before and after RDN at the site with maximal RNS-induced systolic

BP increase before RDN, and the ambulatory BP changes before ver-

sus 3 to 6 months after RDN.37 Fourteen patients with a mean age of

66 years were enrolled in the study. The baseline 24-hr ambulatory

BP monitoring (ABPM) was 153±11/88±8 mmHg. Before RDN, the

RNS-induced systolic BP increase was 50±27 mmHg; after RDN, the

RNS-induced systolic BP change was attenuated to 13±16 mmHg (p

< .001). At 3 to 6 months post-RDN, the ambulatory BP significantly

declined to 137±10/80±9 mmHg (p = .003). RNS-induced maximum

systolic BP increase before RDN and RNS-induced BP changes before

versus after RDN were both correlated with changes in 24-h ABPM 3

to 6 months after RDN. The study suggested the benefit of RNS as a

tool for assessment of the efficacy of RDN and prediction of the BP

response to RDN. The same research group also demonstrated that

RNS inbothmain andaccessory renal arteries elicited a substantial sys-

tolic BP increase (26±3mmHg, p< .001 in amain renal artery and24.3

± 7.4 mmHg, p = .047 in an accessory renal artery). After renal den-

ervation in main renal arteries, RNS-induced systolic BP increase was

blunted in the main renal arteries (systolic BP change, 9 ± 4 mmHg, p

= .02), but not in the non-denervated accessory renal arteries (systolic

BP change, 27 ± 8 mmHg, p = .917).38 The authors demonstrated that

an increase in BP can be elicited in an accessory renal artery, and the

non-responsiveness to RDN might be due to anatomical variations in

the renal arteries and incomplete ablations. In 2021, a study done by

Hoogerwaard and colleagueswhich enrolled 44 patientswith resistant

hypertension in a single-center RNS trial, was reported. Before RDN,

the RNS-induced systolic BP risewas 43± 21mmHg, and decreased to

9 ± 12 mmHg after RDN. The RNS-induced systolic BP response after

RDN varied from –9 to 45 mmHg. The mean 24-h systolic/diastolic BP

decreased from 147 ± 12/82 ± 11 mmHg at baseline to 135 ± 11/76

± 10 mmHg at 6–12 months follow-up (both p < .001). Among the 36

patients with available records of acute RNS-induced BP changes, 6

(17%) patientswith<0mmHg residual RNS-inducedBP response after

RDN, at the site with the greatest systolic BP response before RDN,

had a significantly lowermean24-h systolic BP at follow-up (Table 2).39

These studies supported the use of RNS as a peri-procedural tool

to guide RDN and assess its immediate effect. A small RNS-induced

systolic BP increase after RDN may be a good predictor of the BP-

lowering effect of RDN. Conversely, persistent BP increase induced by

RNS immediately after RDN may indicate insufficient or incomplete

ablation. Large comprehensive RNS studies are needed to verify these

results.

4 CONCLUSIONS

The BP reduction response by RDN arises from the interruption of

both renal afferent and efferent sympathetic nerves-mediated neuro-

hormonal pathways. Further research is needed to resolve the issues

of variation in RDN responses and lack of a feasible and reproducible

peri-procedural indicator for RDN. Preliminary studies in animals and

humans have shown that RNS-induced BP changes, before and after

RDN, could serve as a useful tool in assessing the immediate effect of

RDN and predicting BP reductions months following RDN.
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