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Recent trials have demonstrated the efficacy and safety of percutaneous renal

uncontrolled hypertension. Nevertheless, major challenges exist, such as the wide vari-

and lack of feasible and reproducible peri-procedural predictors for patient response.
Both animal and human studies have demonstrated different patterns of BP responses
following renal nerve stimulation (RNS), possibly related to varied regional proportions
of sympathetic and parasympathetic nerve tissues along the renal arteries. Animal

studies of RNS have shown that rapid electrical stimulation of the renal arteries caused
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1 | INTRODUCTION

Increased sympathetic nerve activity leads to the occurrence and
progression of hypertension.! Renal efferent nerve hyperactivity
increases sodium reabsorption and activates the renin-angiotensin-
aldosterone system.2 Percutaneous renal sympathetic denervation
(RDN) can be used to disrupt renal afferent and efferent sympa-
thetic nerves and is a rational technique to modulate central sym-
pathetic outflow and renal physiology and achieve sustained BP
reductions.®*

As early as 2009, the first case of catheter-based radiofrequency
RDN was reported, which showed a substantial and sustained reduc-
tion in BP> Thereafter, the SYMPLICITY HTN-1 and 2 trials were
conducted and demonstrated the persistent BP reduction and good
safety of RDN.%7 However, this result was not replicated in the follow-
ing blinded sham-controlled Simplicity HTN-3 trial where 535 patients
with uncontrolled treatment-resistant hypertension were randomized
to RDN or a sham procedure. The study failed to show a significant
ambulatory BP reduction difference between the two arms.? This dis-
crepancy in the results incited fervent discussion, and many possible
explanations were put forward, such as procedural variations, change
of medication use, physician inexperience, or patient non-adherence.’

After carefully considering the weaknesses and limitations of the
SYMPLICITY HTN-3 trial, several well-designed, second-generation
randomized sham-controlled RDN trials (DENERHTN trial, SPYRAL
HTN-OFF MED, SPYRAL HTN-ON MED, RADIANCE-HTN SOLO, and
RADIANCE-HTN TRIO) were conducted and consistently demon-
strated clinically meaningful BP reductions, without serious adverse
events.’0-12 As a result, the consensus statement of the Asia Renal
Denervation Consortium suggested RDN could serve as an initial ther-
apy for hypertension control, either alone or in combination with
antihypertensive medications.3
The wide spectrum of BP-lowering responses following RDN, from

strong response to no response, and lack of a feasible and reproducible

renal artery vasoconstriction and increased norepinephrine secretion with a concomi-
tant increase in BP, and the responses were attenuated after RDN. Moreover, selective
RDN at sites with strong RNS-induced BP increases led to a more efficient BP-lowering
effect. In human, when RNS was performed before and after RDN, blunted changes in
RNS-induced BP responses were noted after RDN. The systolic BP response induced
by RNS before RDN and blunted systolic BP response to RNS after RDN, at the site with
maximal RNS-induced systolic BP response before RDN, both correlated with the 24-h
ambulatory BP reductions 3-12 months following RDN. In summary, RNS-induced BP
changes, before and after RDN, could be used to assess the immediate effect of RDN
and predict BP reductions months following RDN. More comprehensive, large-scale

and long term trials are needed to verify these findings.

hypertension, percutaneous renal sympathetic denervation, renal nerve stimulation

peri-procedural predictor to indicate a good BP-lowering response are
major challenges to the application of RDN. In light of this, renal nerve
stimulation (RNS) is proposed as a promising method to test the imme-
diate effect of RDN. This review summarizes the published data on the
use of RNS with RDN.

2 | PATHOPHYSIOLOGICAL MECHANISMS

2.1 | Pathophysiological mechanisms of RNS

Renal nerves consist of afferent sensory, efferent sympathetic,
and parasympathetic fibers and are distributed unequally along
renal arteries.1#"16 Activation of afferent renal nerves may cause
BP elevation by increasing central sympathetic nerve activity and
elevating plasma norepinephrine spillover.l” Renal efferent sympa-
thetic nerve overactivity modulates tubular sodium reabsorption,
renal blood flow, and renin release, which all cause BP elevations.1®
RNS can lead to increase, decrease, or no changes in BP.1%20 The
physiological responses of these nerve fibers to RNS depend on the
overall responses of the stimulated fibers. Nevertheless, the complete
pathophysiological mechanisms of RNS are not fully understood yet.
Stimulation of renal efferent nerves potentially increases arterial
pressures secondary to the increased renin secretion, tubular sodium
reabsorption, and renal vascular resistance. RNS-induced increased
renin release occurred 10 min after RNS in anesthetized dogs.?!
Hoogerwaard and colleagues suggested that RNS-induced BP changes
could be caused by an increased central sympathetic tone via the
sympatho-excitatory renal afferent reflex.” This is because the RNS-
induced BP change was observed soon (within 3 min) after RNS. In our
experience, RNS consistently elicited increases in BP, which generally
peaked within 2 minutes after discontinuation of 1-min RNS. In the
first half of 1-min RNS period, transient decrease in BP may occur,
which then universally turns into increase in BP (unpublished data).
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2.2 | Pathophysiological mechanisms of renal
denervation

The exact mechanisms by which RDN causes long-term BP lowering
have not yet been fully elucidated but are likely to include reduced
renal afferent and efferent sympathetic activity and effects on the
renin-angiotensin system. Disruption of renal afferent nerves may
modulate central sympathetic outflow to achieve the goal of BP
reduction. Destruction of efferent sympathetic nerves can result in a
decreased plasma renin activity, a significant reduction of water and
sodium reabsorption and also inhibition of renal renin-angiotensin
system overactivation. However, previous studies showed incon-
sistent results regarding changes in plasma renin activity following
RDN.22-24 A possible confounder is the prescribed antihypertensive
medications in these studies that may affect renin and aldosterone
levels. The SPYRAL HTN-OFF MED Pivotal trial demonstrated that
RDN therapy significantly reduced plasma renin activity 3 months
following RDN in drug-naive hypertensive patients.2> Further, RDN
in patients with higher levels of plasma renin activity at baseline was
associated with a significantly greater reduction in office and 24-hour
systolic BP2> This study provided evidence that RDN may stabilize
the renin-angiotensin-aldosterone system by disrupting renal efferent
nerve hyperactivity. Plasma renin activity is positively associated
with higher resting heart rate, and high-renin hypertension is often
associated with higher heart rates.2¢ RDN usually causes heart rate
reduction in post-RDN follow-up.

Of note, animal studies have demonstrated the occurrence of renal
re-innervation. Originally, renal nerve re-innervation and the recov-
ery responses to electrical stimulation were reported 11 months
after RDN in normotensive sheep.2’-28 The subsequent study demon-
strated a sustained reduction in BP and reduced anatomical and
functional renal nerve re-innervation 30 months after RDN in hyper-
tensive sheep.2? The mechanism of sustained BP-lowering response
from RDN in human studies is ambiguous. The function and extent
of re-innervation following RDN in human need further studies
to clarify.

3 | RENAL NERVE STIMULATION STUDIES

3.1 | Renal nerve stimulation in animal studies

The first RNS animal study reported by Chinushi and colleagues
showed that rapid electrical stimulation at the proximal portion of the
renal arterial wall in anesthetized dogs increased BP and heart rate
(HR) before RDN and that the rise in BP and HR were attenuated when
the ablated renal artery was stimulated.®° Before RDN, BP was signif-
icantly elevated from 145 + 15/86 + 13 mmHg to 189 + 21/111 + 19
mmHg, and HR increased from 116+9 per minute to 130+6 per minute.
After RDN, no significant changes in BP (from 150 + 20/90 + 16
mmHg to 152 + 20/92 + 17 mmHg) or HR (from 124 + 14 per minute
to 124 + 14 per minute) were noted. The serum epinephrine and
norepinephrine concentrations were significantly elevated after RNS

before RDN and became blunted after RDN. Furthermore, in a study by
Sun and colleagues in which the renal artery nerves of 16 anesthetized
dogs were electrically stimulated, there was a significant rise in BP
after RNS, whereas the change in HR was nonsignificant.3! The authors
proposed baroreceptor-independent sympathetic activation as the
possible pathophysiological mechanism to explain the observed differ-
ential BP and HR responses.2 Lu and colleagues performed selective
RDN on RNS-responsive proximal renal arteries (systolic BP increased
>10 mmHg after RNS) and achieved sustained BP reduction and sym-
pathetic inhibition in a canine model. Conversely, the control group
showed unchanged BP and plasma norepinephrine concentrations.33
In addition, no significant HR response was noted during RNS to the
proximal BP-responsive renal arteries.

In order to delineate the spectrum of BP and HR changes from RNS,
Zhou and colleagues conducted RNS in 483 stimulation sites in 24
anesthetized Kunming dogs. Five different BP change patterns and no
significant HR response were noted. The authors hypothesized that the
variation in BP change was attributed to variability in the proportion
of excited sympathetic-excitatory fibers and sympathetic-inhibitory
fibers.1?

In an RNS study conducted by Liu and colleagues, they randomly
assigned 21 dogs into three groups: a strong-response sites abla-
tion group, a weak-response sites ablation group, and an RNS-control
group. They found that selective RDN at sites with strong RNS-induced
systolic BP response led to a more efficient BP-lowering effect 4 weeks
following RDN than ablation at the weak-response sites and that in
the control group.* Blunted systolic BP response to RNS after RDN
was also associated with a more efficient BP-lowering effect. They
concluded that RNS was effective in identifying the nerve-rich area
and optimizing the RDN procedure. Another study by Qian and col-
leagues demonstrated that trans-vascular high-frequency aorticorenal
ganglia (ARG) pacing was a feasible method for localizing the ARG and
inducing renal artery vasoconstriction and concomitant BP elevation.
They suggested that abolition of ARG pacing-induced renal arterial
vasoconstriction may serve as a physiological endpoint for RDN.3°

In summary, RNS in animal models demonstrated an immediate BP
response soon after stimulating renal nerves, which may reflect the
cumulative effects of excited sympathetic fibers and parasympathetic
fibers. The RNS-induced responses would be blunted after sufficient
ablation at the renal artery sites.®* Ablation at sites with enhanced
systolic BP responses to RNS and blunted BP response to RNS after
RDN were both associated with a greater BP-lowering effect following
RDN (Table 1).

3.2 |
studies

Renal nerve stimulation results from human

In 2015, the first reported RNS study in anesthetized humans con-
ducted by Gal and colleagues demonstrated that RNS caused a tem-
porary increase in BP. Eight people with resistant hypertension were
included for RDN. RNS was performed 1 min before and after RDN. In
the study, the pre-RDN systolic BP change induced by RNS was 43+15
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mmHg, and the post-RDN systolic BP change significantly declined to
9+10 mmHg (p = .0002).3¢

In order to delineate the response of RNS, de Jong and colleagues
enrolled 35 patients with drug-resistant hypertension for RDN. Intra-
venous anesthesia was implemented throughout the course. Of the
289 sites of renal artery stimulation, 62% had a sympathetic response
with an systolic BP increase of >10 mmHg; 30% had an indifferent
response to RNS, while the remaining had a vagal response with a
drop in BP and bradycardia.?® The study provided evidence of the
potential benefit of RNS in identifying relative distribution of sympa-
thetic and parasympathetic nerve fibers along the renal arteries and
guiding selective ablation in RDN. The same research group also evalu-
ated the correlation between the changes in RNS-induced BP increase
before and after RDN at the site with maximal RNS-induced systolic
BP increase before RDN, and the ambulatory BP changes before ver-
sus 3 to 6 months after RDN.37 Fourteen patients with a mean age of
66 years were enrolled in the study. The baseline 24-hr ambulatory
BP monitoring (ABPM) was 153+11/88+8 mmHg. Before RDN, the
RNS-induced systolic BP increase was 50+27 mmHg; after RDN, the
RNS-induced systolic BP change was attenuated to 13+16 mmHg (p
< .001). At 3 to 6 months post-RDN, the ambulatory BP significantly
declined to 137+10/80+9 mmHg (p = .003). RNS-induced maximum
systolic BP increase before RDN and RNS-induced BP changes before
versus after RDN were both correlated with changes in 24-h ABPM 3
to 6 months after RDN. The study suggested the benefit of RNS as a
tool for assessment of the efficacy of RDN and prediction of the BP
response to RDN. The same research group also demonstrated that
RNSin both main and accessory renal arteries elicited a substantial sys-
tolic BPincrease (26 + 3mmHg, p <.001in a main renal artery and 24.3
+ 7.4 mmHg, p = .047 in an accessory renal artery). After renal den-
ervation in main renal arteries, RNS-induced systolic BP increase was
blunted in the main renal arteries (systolic BP change, 9 + 4 mmHg, p
=.02), but not in the non-denervated accessory renal arteries (systolic
BP change, 27 + 8 mmHg, p = .917).%8 The authors demonstrated that
an increase in BP can be elicited in an accessory renal artery, and the
non-responsiveness to RDN might be due to anatomical variations in
the renal arteries and incomplete ablations. In 2021, a study done by
Hoogerwaard and colleagues which enrolled 44 patients with resistant
hypertension in a single-center RNS trial, was reported. Before RDN,
the RNS-induced systolic BP rise was 43 + 21 mmHg, and decreased to
9 + 12 mmHg after RDN. The RNS-induced systolic BP response after
RDN varied from -9 to 45 mmHg. The mean 24-h systolic/diastolic BP
decreased from 147 + 12/82 + 11 mmHg at baseline to 135 + 11/76
+ 10 mmHg at 6-12 months follow-up (both p < .001). Among the 36
patients with available records of acute RNS-induced BP changes, 6
(17%) patients with <O mmHg residual RNS-induced BP response after
RDN, at the site with the greatest systolic BP response before RDN,
had a significantly lower mean 24-h systolic BP at follow-up (Table 2).3?

These studies supported the use of RNS as a peri-procedural tool
to guide RDN and assess its immediate effect. A small RNS-induced
systolic BP increase after RDN may be a good predictor of the BP-
lowering effect of RDN. Conversely, persistent BP increase induced by

RNS immediately after RDN may indicate insufficient or incomplete

ablation. Large comprehensive RNS studies are needed to verify these
results.

4 | CONCLUSIONS

The BP reduction response by RDN arises from the interruption of
both renal afferent and efferent sympathetic nerves-mediated neuro-
hormonal pathways. Further research is needed to resolve the issues
of variation in RDN responses and lack of a feasible and reproducible
peri-procedural indicator for RDN. Preliminary studies in animals and
humans have shown that RNS-induced BP changes, before and after
RDN, could serve as a useful tool in assessing the immediate effect of

RDN and predicting BP reductions months following RDN.
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