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ABSTRACT
The lack of efficient biomarkers is the main reason for the inaccurate early diagnosis and poor 
treatment outcomes of patients with metabolic syndrome (MetS). The current study aimed to 
identify several novel microRNA (miRNA) biomarkers for metabolic syndrome via high-throughput 
sequencing and comprehensive bioinformatics analysis. Through high-throughput sequencing 
and differentially expressed miRNA (DEM) analysis, we first identified two upregulated and 36 
downregulated DEMs in the plasma samples of patients with MetS compared to the healthy 
volunteers. Additionally, we also predicted 379 potential target genes and subsequently carried 
out enrichment analysis and protein–protein interaction network analysis to investigate the 
signaling pathways and functions of the identified DEMs as well as the interactions between 
their target genes. Furthermore, we selected two upregulated and top 10 downregulated DEMs 
with the highest |log2FC| values as the key microRNAs, which may serve as potential biomarkers 
for MetS. RT-qPCR was performed to validated these result. Finally, hsa-miR-526b-5p, hsa-miR 
-6516-5p was identified as the novel biomarkers for MetS.
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1. Introduction

Metabolic syndrome (MetS) is a common type of 
metabolic disorder which has several components 
including obesity, diabetes, insulin resistance, hyper-
tension, and hyperlipidemia [1,2]. The development 
of metabolic syndrome and its associated compo-
nents can cause negative cardiovascular outcomes 
[3]. However, the complex diagnostic approach lim-
its the diagnosis of the disease, while the unclear 
mechanism of its pathogenesis affect the efficient 
treatment of MetS and MetS-related diseases in the 
early phase [4,5]. Ryo et al [6]. reported that plasma 
adiponectin could serve as a biomarker to be useful 
for metabolic syndrome management. Esteghamati 
et al [7]. demonstrated that leptin plays an indepen-
dent role in development of MetS as a Serum bio-
marker. However, there is an urgent need for the 
identification of more accurate and more efficient 
biomarkers for MetS, which may aid in the develop-
ment of novel strategies for the screening and diag-
nosis of MetS and provide novel insights into the 
underlying molecular mechanisms of MetS.

MicroRNAs (miRNAs) are a cluster of small non- 
coding RNAs containing 19–22 nucleotides [4]. 
They can bind to the 3�-untranslated regions (3�- 
UTRs) of their target genes and consequently repress 
the expression of these genes at the post- 
transcriptional level [8]. miRNAs are believed to 
play significant roles in several physiological pro-
cesses of various diseases, such as cancers, cardiovas-
cular diseases, and diabetes [9–11]. Previous studies 
have identified some miRNAs that are associated 
with MetS. Willeit et al. [12] reported that miRNA- 
122 is correlated with the onset of MetS and diabetes. 
Guo et al. [13] found that the expression levels of 
miR-122-5p, miR-21-5p, and miR-146a-5p were sig-
nificantly upregulated in the subjects with MetS. 
High-throughput experimental techniques, such as 
microarray and high-throughput sequencing, are 
important approaches used for obtaining the 
microRNA expression data. Raitoharju et al. [14] 
analyzed and compared the whole blood miRNA 
expression profiles of patients with MetS with those 
of the healthy volunteers using microarray and 
selected nine MetS-associated miRNAs. However, 
little is known about the circulating miRNA biomar-
kers for MetS in plasma, which may act as potential 
diagnostic biomarkers for MetS.

To the best of our knowledge, this study is the 
first to analyze and compare the miRNA expres-
sion levels in the plasma samples of patients with 
MetS with those in the healthy volunteers via high- 
throughput sequencing based on the integrative 
bioinformatics approaches. We identified several 
novel miRNA biomarkers for MetS and performed 
RT-qPCR validattion. Finally, hsa-miR-526b-5p, 
hsa-miR-6516-5p were selected as plasma biomar-
kers for MetS that may play significant roles in the 
early diagnosis and treatment of MetS.

2. Materials and methods

2.1. Collection of clinical plasma samples

The Ethics Committee of the First Affiliated 
Hospital of Xi’an Jiaotong University approved 
this study (approval number: XJTU1AF2019LSL- 
014). The plasma samples were obtained from nine 
healthy volunteers and thirteen patients with MetS 
from the First Affiliated Hospital of Xi’an Jiaotong 
University (Table S2).

2.2. RNA extraction and next-generation 
sequencing

TRIzol LS Reagent (Invitrogen) was used to extract 
the total RNA of plasma samples according to the 
manufacturer’s instructions. Then, based on 
NEBNext Multiplex Small RNA Library Prep Set 
for Illumina, we generated the sequencing libraries 
following the standardized protocols. Sequencing 
libraries was qualified by Agilent Bioanalyzer 2100 
system (Agilent). At last, the high-throughput 
sequencing for five healthy volunteers and five 
patients with MetS was conducted through the 
Illumina NextSeq 500 sequencing platform 
(Illumina).

2.3. Identification of differentially expressed 
miRNAs (DEMs)

Cutadapt software [15] and Solexa CHASTITY 
program were used to control and filter the raw 
sequencing data and identify the trimmed reads. 
Adapter sequences and sequences of length < 15 
were removed. Subsequently, we obtained the 
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miRNA reference data (version 22) and human 
reference genome indexing (hg38) using the 
miRBase database (http://www.mirbase.org/) and 
bowtie software (http://bowtie-bio.sourceforge. 
net/index.shtml). Sequencing alignment was per-
formed using miRdeep2 [16] and microRNA was 
detected. DEMs were identified using the 
R package ‘edgeR’ [17]. The thresholds values for 
DEMs were set as |log2FC| ≥ 1 and P < 0.05.

2.4. Establishment of the microRNA-target gene 
interaction network

In this study, the TargetScan (http://www.targets 
can.org/) and miRDB (http://www.mirdb.org/) 
databases were used to predict the target genes of 
the key DEMs. Only the target genes predicted by 
these two databases were selected as the target 
genes of key DEMs. Construction and visualiza-
tion of the miRNA-target gene interaction net-
work were carried out using the Cytoscape 
software v.3.7.2.

2.5. Function and pathway enrichment analysis

Gene Ontology (GO) function enrichment analysis 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were per-
formed by ‘clusterProfiler’ package in R software 
with the threshold as P value <0.05 [18].

2.6. Construction of the protein–protein 
interaction (PPI) network and network module 
analysis

The PPI score was calculated using the Search Tool 
for the Retrieval of Interacting Genes/Proteins 
(STRING) database v.11.0. The PPI scores > 0.4 
were considered to be statistically significant. 
Cytoscape v.3.7.2 was used to establish and visualize 
the PPI network. Furthermore, we performed net-
work module analysis using the Molecular Complex 
Detection (MCODE) program. The major para-
meters were set as: k-score = 2, max depth = 100, 
degree cutoff = 2, and node score cutoff = 0.2. 
Moreover, the PPI network modules with score ≥ 
5 were selected as the significant modules and sub-
jected to further Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway and Gene Ontology 

(GO) function enrichment analyses using the 
‘clusterProfiler’ package.

2.7. Real-time quantitative polymerase chain 
reaction (RT-qPCR) validation

Plasma total RNA of eight patients with MetS and four 
healthy volunteers was extracted using miRNeasy 
Serum/Plasma Kit (Qiagen). Then, reverse transcrip-
tion was conducted using miScript II RT Kit (Qiagen) 
according to the manufacturer’s protocol. Finally, RT- 
qPCR was performed using miScript SYBR Green 
PCR Kit (Qiagen, containing the universal primer). 
Relative expression of miRNAs were determined via 
the delta-delta Ct method (2-(ΔΔCt) method) and 
RNU6 was used as a endogenous control for normal-
ization. The sequences of specific primers are as fol-
lows: hsa-miR-526b-5p (Forward, 5'-TCT 
CTTGAGGGAAGCACTTTCTGT-3'), hsa-miR 
-6516-5p (Forward, 5'-CTTTGCAGTAACA 
GGTGTGAGCA-3'), hsa-miR-137-3p (Forward, 5'- 
CGCGTTATTGCTTAAGAATACGCGTAG-3'), 
hsa-miR-499a-5p (Forward, 5'- CGCGTTAAGACT 
TGCAGTGATGTTT-3'), RNU6 (Forward, 5'- 
AGAGAAGATTAGCATGGCCCCT −3').

3. Results

This study perform high-throughput sequencing and 
integrative bioinformatics approaches to obtain the 
circulating miRNA expression data of patients with 
MetS and compare them to those from the healthy 
volunteers. The target genes of DEMs were predicted 
and further enrichment analysis and PPI network 
analysis were performed. Finally, we conducted the 
RT-qPCR to validate the expression of DEMs and 
identified hsa-miR-526b-5p and hsa-miR-6516-5p 
were significantly downregulated in the plasma of 
MetS patients compared with control group subjects 
(P <0.05) which could serve as plasma biomarker for 
MetS.

3.1. Identification of DEMs

In this study, 900 miRNAs were identified in the 
plasma samples from five patients with MetS and 
five healthy volunteers. miRNAs with |log2FC| 
values ≥ 1 and P < 0.05 were determined to be 
DEMs. The volcano plot and heatmap are shown 
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in Figure 1(a,b). In this study, we selected two 
upregulated and the top 10 downregulated DEMs 
with the highest |log2FC| values as the key 
miRNAs. All DEMs expression data are shown in 
Table S1.

3.2. Establishment of the miRNA-target gene 
interaction network

We predicted the target genes of the top two 
upregulated (hsa-miR-137-3p, hsa-miR-499a-5p) 
and top 10 downregulated miRNAs (hsa-miR 
-526b-5p, hsa-miR-6516-5p, hsa-miR-551b-3p, 
hsa-miR-4677-3p, hsa-miR-487a-3p, hsa-miR 
-412-5p, hsa-miR-3161, hsa-miR-518e-5p, hsa- 
miR-519a-5p, and hsa-miR-519b-5p). Finally, we 
constructed a miRNA-target gene network, includ-
ing eight miRNAs and 379 target genes as well as 
522 miRNA-target gene interactions. Based on the 
cutoff criteria mentioned above, we eliminated 
hsa-miR-551b-3p, hsa-miR-4677-3p, hsa-miR 
-412-5p, and hsa-miR-137-3p from the analysis 
as they did not meet the outlined requirements. 

Only the target genes regulated by more than one 
miRNA are shown in Figure 1(c).

3.3. Pathway and function enrichment analyses

We performed the KEGG pathway and GO func-
tion enrichment analyses for the selected 379 tar-
get genes. GO function enrichment analysis 
revealed that the 379 target genes of the selected 
eight miRNAs were enriched in various biological 
processes, including the regulation of the activity 
of the mitogen-activated protein kinase (MAPK) 
as well as the response to steroid hormones. In 
addition, these target genes were significantly cor-
related with various molecular functions, such as 
the activity of the GTPase enzyme, GTP-binding 
activity, and cellular components, including the 
endosomal part, endosome membrane, and early 
endosome. Moreover, the KEGG pathway enrich-
ment analysis indicated that these 379 target genes 
may be involved in other pathways, such as the 
O-glucan biosynthesis and fatty acid elongation 
pathways (Figure 2).

Figure 1. (a) Volcanoplot of the differentially expressed microRNAs (|log2FC| ≥ 1 and P value <0.05): red for up-regulated microRNAs 
and blue for down-regulated microRNAs. (b) Heatmap of the differentially expressed microRNAs (c) MicroRNA-target gene interac-
tion network. Arrow nodes represent microRNAs and circle nodes represent target genes. Red for up-regulated microRNAs, blue for 
down-regulated microRNAs and yellow for target genes. The gradual spot size of target gene represents the number of microRNAs 
that can interact with it.
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3.4. Construction of the PPI network

We conducted PPI analysis for these 379 target 
genes based on the STRING database. Based on 
the results of the analysis, we constructed a PPI 
network consisting of 110 target genes and only 
the genes with connectivity degree >1 were 

visualized (Figure 3(a)). Using this PPI network, 
we identified the target genes exhibiting high 
degrees of connectivity, such as the ras homolog 
family member A (RHOA), connectivity 
degree = 9), G protein subunit alpha i2 (GNAI2, 
connectivity degree = 9), G protein subunit 
gamma 10 (GNG10, connectivity degree = 8), and 

Figure 2. Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis. (a) Biological processes (BP). (b) Molecular function (MF). (c) Cellular component (CC). (d) KEGG signaling 
pathway.

Figure 3. (a) Protein-protein interaction (PPI) network. (b) Key module of PPI network. (c,d) Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analysis and Gene Ontology function enrichment analysis.
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the C-X3-C motif chemokine receptor 1 (CX3CR1, 
connectivity degree = 8). These results indicate 
that the identified target genes exhibiting high 
degrees of connectivity may play important roles 
in the development of MetS.

3.5. PPI network module analysis

PPI network module analysis was performed to 
identify the significant subnets in the PPI network. 
Finally, we selected one module with an MCODE 
score ≥ 5, which included five target genes 
(Figure 3(b)): GNAI2, GNG10, CX3CR1, 
C-X-C motif chemokine ligand 11 (CXCL11), 
and the lysophosphatidic acid receptor 1 
(LPAR1). Considering that this PPI module may 
be highly associated with MetS, further enrich-
ment analysis was performed. The results of the 
GO function and KEGG pathway enrichment ana-
lyses showed that this PPI module may be corre-
lated with the cell chemotaxis and chemokine 
signaling pathways (Figure 3(c,d)).

3.6. RT-qPCR validation

In order to validate these results and further iden-
tified MetS-associated plasma biomarkers, we car-
ried out RT-qPCR to detect the expression level of 
four miRNA: hsa-miR-526b-5p, hsa-miR-6516-5p, 
hsa-miR-137-3p and hsa-miR-499a-5p. Our results 
showed hsa-miR-526b-5p (P =0.042) and hsa-miR 
-6516-5p (P =0.048) were significantly downregu-
lated in the plasma of MetS patients compared 
with control group subjects (Figure 4). However, 
the differences expression of hsa-miR-137-3p 

(P =0.296) and hsa-miR-499a-5p (P =0.367) 
between MetS patients and healthy control sub-
jects have no statistical significance (P <0.05). 
Hence, hsa-miR-526b-5p and hsa-miR-6516-5p 
could serve as plasma miRNA biomarkers for 
MetS.

4. Discussion

MetS is a complicated metabolic abnormality con-
sisting of several components, such as obesity, 
diabetes, insulin resistance, hyperlipidemia, and 
hypertension [19,20]. Therefore, it is important 
to identify efficient biomarkers for MetS that can 
assist in the accurate early diagnosis and treatment 
of patients with MetS. To the best of our knowl-
edge, our study is the first to perform high- 
throughput sequencing to obtain the circulating 
miRNA expression data from the plasma of the 
patients with MetS, which led to the identification 
of several potential plasma microRNA biomarkers 
for MetS.

First, we performed DEM analysis using the 
data obtained via high-throughput sequencing 
and identified two upregulated and 36 downregu-
lated DEMs in the plasma samples of patients with 
MetS compared to the healthy volunteers. These 
miRNAs may be involved in the development of 
MetS. Previous studies have suggested that miR- 
137-3p may be associated with the production of 
insulin as well as the metabolism of lipids [21,22]. 
Ventriglia et al. demonstrated that the expression 
of miR-409-3p was downregulated in the plasma 
samples of diabetic mice [23]. Moreover, with the 
development of diabetes, there is a gradual 

Figure 4. Relative expression levels of hsa-miR-526b-5p (P = 0.042) and hsa-miR-6516-5p (P = 0.048) in plasma of MetS patients 
compared with control group subjects detected by RT-qPCR.
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decrease in the miR-409-3p levels in the plasma. 
The results of the present study support those 
from the previous studies and led to the identifica-
tion of several novel circulating biomarkers for 
MetS, which may be crucial in determining the 
underlying molecular mechanism of MetS 
[24,25]. In addition, RT-qPCR was performed to 
validate the plasma expression of hsa-miR-526b- 
5p, hsa-miR-6516-5p, hsa-miR-137-3p and hsa- 
miR-499a-5p. Finally, we identified that hsa-miR 
-526b-5p and hsa-miR-6516-5p were significantly 
downregulated in the plasma of MetS patients 
compared with healthy volunteers (P <0.05); 
While the differences expression of hsa-miR-137- 
3p (P =0.296) and hsa-miR-499a-5p (P =0.367) 
between MetS patients and healthy volunteers 
have no statistical significance. These results sug-
gested that these two novel microRNAs hsa-miR 
-526b-5p and hsa-miR-6516-5p can serve as 
plasma biomarkers for MetS.

Then, after predicting the target genes, we con-
ducted GO function and KEGG signaling pathway 
enrichment analysis, which showed that these 
miRNAs were significantly enriched in various 
biological processes, such as the response to ster-
oid hormones, regulation of MAPK activity, etc. 
Several studies have suggested the correlation 
between the increased activity of MAPK and 
MetS. Moreover, the MAPK pathway was found 
to play an important role in the multifactorial 
adverse cardiac remodeling associated with MetS 
[26]. Some studies have also reported that the 
activation of MAPK can enhance the occurrence 
of MetS components, such as insulin resistance 
and obesity [27,28]. Moreover, steroid hormone 
stimulus was found in both clinical and experi-
mental studies and it has crucial effects on the 
progression of MetS [29,30]. Furthermore, the 
results of the cellular component enrichment ana-
lysis in our study indicated that these DEMs may 
be associated with cellular components, such as 
endosomal parts, endosome membranes, and 
early endosomes. The functions of exosomes in 
the glucose and lipid metabolism pathways have 
been broadly discussed in previous studies [31]. 
Recent evidence has shown that endosomal 
miRNAs can play a significant role in insulin 
resistance, obesity, and other MetS components 
[32,33].

Furthermore, we performed PPI network analy-
sis and found several target genes exhibiting high 
degrees of connectivity, which may contribute to 
the development of MetS. RHOA belongs to the 
small GTPase family and the activation of the 
RhoA/Rho-kinase (ROCK) axis is reported to 
play important roles in various biological pro-
cesses, such as proliferation and apoptosis [34]. 
Previous studies have detected high RhoA/ROCK 
activity in patients with MetS [35]. GNAI2 is 
known to serve as a crucial regulator of diet- 
induced obesity, which improves insulin sensitivity 
[36]. Meanwhile, CX3CR1 can bind to fractalkine 
(FKN; also known as CX3CL1) and modulate the 
secretion of insulin and atherosclerosis associated 
with insulin resistance [37,38]. Yin et al. con-
ducted a clinical study and showed the correlation 
between the expression of circulating CX3CL1 and 
the development of MetS [39]. In our study, 
through PPI network module analysis, we selected 
a specific subnet associated with MetS from the 
whole PPI network, which consisted of five target 
genes: GNAI2, GNG10, CX3CR1, CXCL11, and 
LPAR1. The identification of this subnet further 
supported our initial assumption that the key tar-
get genes exhibiting high degrees of connectivity 
in the PPI network may play significant roles in 
the development of MetS.

5. Conclusion

In conclusion, the present study is the first to 
analyze the plasma miRNA expression profiles of 
patients with MetS and compare them to those 
from the healthy volunteers using next- 
generation sequencing and integrative bioinfor-
matics approaches. Subsequently, we identifed 
several novel miRNA biomarkers that were 
highly associated with MetS. RT-qPCR was con-
ducted to validate these results and finally we 
found that hsa-miR-526b-5p and hsa-miR-6516- 
5p were significantly downregulated in the 
plasma of MetS patients compared with healthy 
volunteers (P <0.05). These two novel plasma 
miRNA biomarkers may play significant roles in 
the early diagnosis and treatment of patients with 
MetS. Further functional experiments and 
mechanism experiments should be carried out 
focusing on these two miRNA.
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Research highlights

1. Performing plasma miRNA RNA-seq in MetS research for 
the first time.

2. identification of several novel plasma miRNAs highly 
associated with MetS.

3. hsa-miR-526b-5p and hsa-miR-6516-5p may serve as 
diagnosis biomarkers for MetS.
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