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Abstract
Increasing prevalence of VanB Enterococcus faecium in Polish hospitals reported to National Reference Centre for Susceptibility
Testing (NRCST) prompted us to investigate the basis of this phenomenon. Two-hundred seventy-eight E. faecium isolates of
VanB phenotype from the period 1999 to 2010 obtained by NRCSTwere investigated by multilocus sequence typing (MLST)
and multilocus VNTR analysis (MLVA). Localization, transferability, and partial structure of the vanB-carrying Tn1549 trans-
poson were studied by hybridization, PCR mapping, sequencing, and conjugation. VanB isolates almost exclusively represented
hospital-associated E. faecium, with a significant shift from representatives of 17/18 lineage to 78 lineage after 2005. The vanB
determinant, initially located mostly on transferable plasmids of the pRUM-, pLG1-, and pRE25-replicon types, later on was
found almost exclusively on the host chromosome. Fifteen different plasmid and chromosomal insertion sites were identified,
typically associated with single transposon coupling sequences, mostly not observed before. Our study demonstrates the signif-
icant change in the epidemiology of VanB-E. faecium in Poland, associated with the introduction and spread of the lineage 78 of
the hospital-adapted E. faecium. These data point to the importance of the lineage 78 for the spread of vancomycin-resistance,
determined by the vanB gene cluster, resulting in an increasing VRE prevalence in hospitals. This study also supports the
scenario, in which representatives of the hospital-associated E. faecium independently acquire the vanB determinant de novo
and spread within and among hospitals, concomitantly undergoing differentiation.
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Introduction

The importance of enterococci as etiologic agents of hospital-
acquired infections (HAIs) is currently increasing [1], and
common glycopeptide resistance among these bacteria is es-
pecially alarming [2]. Among two most ubiquitous van gene
clusters, responsible for this phenotype, vanA confers resis-
tance to both vancomycin and teicoplanin, and vanB typically
determines resistance only to vancomycin [3]. The vanB

cluster is predominantly associated with the Tn1549-type
transposons [4], which may reside either on plasmids or on
the bacterial chromosome [4–9]. During the initial steps of
conjugative transfer of transposon, the staggered cleavage by
the Int recombinase results in the formation of a circular in-
termediate, joined by a 5- to 6-bp sequence originating from
the donor genome, termed a coupling sequence, which, after
transposition, is found adjacent to the transposon termini in
the recipient [7].

Among the two clinically most important enterococcal spe-
cies, i.e., Enterococcus faecalis andEnterococcus faecium, the
latter is particularly prone to the acquisition of antimicrobial
resistance determinants, including vanA and vanB clusters
(vancomycin-resistant E. faecium, VREfm), resulting in in-
creasing proportion of VREfm among hospital E. faecium
[10]. Concomitantly, an increase in the incidence of HAIs
caused by E. faecium is observed [10, 11], likely due to the
selection and worldwide dissemination of successful hospital-
adapted clonal complex 17 (CC17) [12] that combines resis-
tance to several antimicrobials with the enrichment in patho-
genicity factors and increased epidemic potential. The
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Bayesian Analysis of Population Structure (BAPS) of the data
obtained by multilocus sequence typing (MLST) demonstrat-
ed that CC17 may be divided into two subgroups correspond-
ing to major lineages 17/18 and 78 [13].

The vanB gene was identified in E. faecalis at the
beginning of the 1990s [14]. In Poland, the first VREfm
with vanB2 was isolated in 1999 [15] followed by a
growing VanB prevalence in 1999–2005 [16]. A further
increase in VanB-VREfm after 2005, noticed by the
National Reference Centre for Antimicrobial Resistance
and Surveillance (NRCARS), prompted us to investigate
these important pathogens to better understand the fac-
tors underlying the spread of VanB-E. faecium in
Poland.

Materials and methods

Bacterial isolates and antimicrobial susceptibility
testing

Altogether, 278 non-repetitive isolates with the VanB pheno-
type received by the NRCARS during 1999–2010 from 36
centers in 22 cities were investigated. Fifty-eight VanB iso-
lates from 1999 to 2005 were partly characterized previously
[16]; of these, 56 were available and 222 isolates were re-
ceived in 2006–2010. Twenty-seven and 48 isolates were ob-
tained from invasive and non-invasive infections, respective-
ly, and 201 from carriage; for two remaining isolates, the
source was not reported. Antimicrobial susceptibility was test-
ed using the broth microdilution method [17] and the Etest
method for vancomycin, teicoplanin, and daptomycin
(bioMerieux, Marcy l’Etoile, France). Results were
interpreted following the European Committee on
Antimicrobial Susceptibility Testing (EUCAST)-approved
breakpoints [18] and the Epidemiological Cut-Offs
(ECOFFs) (http://mic.eucast.org/Eucast2/, 6th November
2017, date last accessed).

Detection of vanB, IS16 and esp, andmolecular typing

DNA was purified using the Genomic DNA Prep Plus kit
(A&A Biotechnology, Gdynia, Poland) and vanB; IS16 and
esp were detected by PCR [19–21]. Multilocus VNTR
(variable-number tandem repeat) analysis (MLVA) and
MLST were performed as described [22, 23]; sequence types
(STs) were assigned using the MLST database http://pubmlst.
org/efaecium/ (6th November 2017, date last accessed). On
the basis of eBURST analysis [24] of the whole MLST
database (as of the 21st of April 2015), STs were included
into CCs and lineages [13, 25].

Analysis of Tn1549, insertion sites, and coupling
sequences

The presence of intTn1549 and ORF1Tn1549 was confirmed by
PCR, and the vanY-vanX sequence in Tn1549was established
using overlapping PCR and sequencing. The Tn1549 inser-
tion sites were identified by inverse-PCR (iPCR) [26] with
Bsp143I (Fermentas, Lithuania). Primers targeting sequences
adjacent to Tn1549 were designed based on iPCR results.
Sequences were analyzed with the Lasergene package
(DNASTAR, MD, USA). Primer sequences are available up-
on request.

Plasmid gene detection, S1 profiles, hybridization,
and conjugation

Plasmid rep (rep1pIP501, rep2pRE25, rep8pAM373, rep9pAD1,
rep17pRUM, reppMG1, reppLG1) and toxin-antitoxin systems
(TAS) axe-txe andω-ε-ζ were detected by PCR [26–29] with
controls from our collection [28, 30]. For profiling of plas-
mids, DNA in agarose plugs was treated with S1 nuclease
(Takara Bio, Japan), separated by pulsed-gel electrophoresis
(PFGE) [31] and blotted onto Hybond-N+ (GE Healthcare,
Buckinghamshire, UK). Hybridization was carried out using
the Amersham ECL System (GE Healthcare). Transferability
of vancomycin resistance was examined as described [32]
with the recipient E. faecium strain 64/3.

Statistics

The differences in distributions were evaluated by the chi-
squared test, with a p value ≤ 0.05 considered significant.

GenBank accession numbers

New sequences of the vanY-vanX region: A1-A6 (KC489780-
KC489785), A9-A20 (KT003969-KT003980), B1
(KC489787), B2 (KT003981), D (KC489790), and E
(KT003982); rep17pRUM (KM014782), reppLG1-1
(KM014783), and reppLG1-2 (KM014784) were submitted to
GenBank.

Results

Antimicrobial susceptibility phenotypes and clonal
relationships of VanB-VREfm in Poland

All isolates were analyzed by MLVA, yielding 23 different
MTs; 13 non-typable isolates repeatedly yielded incomplete
MLVA profiles (Table 1). The most prevalent MT159 (186
isolates, 83.0%) was observed solely since 2006. Eighty iso-
lates from 2006 to 2010, representing all hospitals providing
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isolates and all MTs, were resistant to ciprofloxacin and am-
picillin; 88.8 and 88.8% isolates showed high-level resistance
to gentamicin (HLGR) and streptomycin (HLSR), respective-
ly; 20.0% of isolates were resistant to tetracycline, which rep-
resented a significant decrease (p = 0.0002) after 2005 (61.5%
[16]). All isolates were susceptible to linezolid, tigecycline,
and daptomycin. STs of 26 VanB isolates from the period
1999–2005 were reported previously [16], and additionally
21 isolates from this group were analyzed by MLST, together
with 80 representative isolates from the period 2006–2010,
mentioned above, yielding altogether 23 STs, characteristic
for 127 isolates. Except for ST74, all isolates belonged to
lineages 17/18 and 78, and representatives of 78 lineage were
frequently associated with MT159 (Table 1). All isolates car-
ried vanB and IS16; esp was present in 98% isolates from
2006 to 2010, similarly to the earlier period [16]. Based on
the combined MLVA and MLST results, no representatives of
lineage 78 were observed before 2006; the first VanB isolate
from lineage 78 occurred in 2006 and since 2007 isolates from
this lineage becamemuchmore common, representing 89% of
isolates from the period 2006–2010 (p < 0.001).

Diversity of the vanY-vanX region in Tn1549

All isolates were positive for ORF1Tn1549 and intTn1549.
Sequencing of the vanY-vanX region (encompassing genes
vanY, vanW, vanH, vanB, vanX; Fig. 1a) revealed 26 variants
among 57 isolates, representing all centers and STs within a
center. The most numerous group included A1-A20 variants,
differing only by single-nucleotide polymorphisms (SNPs) at
21 nucleotide positions and highly similar to the correspond-
ing region inClostridium spp. and Eggerthella lenta (Fig. 1b).
The A-type variants were characteristic for 48 of investigated
isolates from 31 centers, and associated with 14 STs and 16
MTs. The B variants differed from the A-type by several SNPs
and 6-bp insertion between vanS-vanY. They were 99% iden-
tical to the variant reported for the V583 [33]. An insertion of
the ISEfa11 between vanS-vanY in B-type yielded C variants
(Fig. 1a). The D-, E-, and F-types represented probable deriv-
atives of an A-type, with a deletion encompassing the nt 12-
799 of vanW, an 11-bp deletion upstream vanY, and insertion
of ISL3 between vanS and vanY, respectively. All vanB genes
represented the vanB2 variant [34].

Analysis of Tn1549 insertion sites and coupling
sequences

To determine Tn1549 insertion sites, selected isolates were
analyzed by iPCR and thus obtained sequences were used to
search GenBank and to design primers specific for a genetic
neighborhood of Tn1549. These primers were used to screen
the whole collection, revealing 15 insertion sites and 14 cou-
pling sequences in total (Table 2). For two isolates, the

coupling sequence could not be established due to the fact that
sequences resulting from iPCR had no homologs in GenBank.
Typically coupling sequences were identical in a given inser-
tion site, with an exception of CS_P1a/CS_P1b in aacA-aphD
and CS_P6a/CS_P6b in citH. The most prevalent coupling
sequence, CS_C3 (198 isolates from 24 centers in 16 cities)
was associated with 16 MTs and 14 STs. The first CS_C3
isolate was observed in 2006 (Table 1B).

Analysis of Tn1549 localization, plasmidome
composition, and vanB transferability

Seventy-eight isolates were analyzed by S1/PFGE-
hybridizat ion with the vanB probe (Table 1 and
Supplementary Fig. 1). These isolates represented all ob-
served variants of coupling sequence and hospital centers;
additional isolates from the same center were included in the
case of isolates showing plasmid localization of vanB. In the
case of 39 isolates with coupling sequence C1-C8, vanB hy-
bridized with a band of high-molecular weight, consistent
with transposon insertion within chromosomal sequences
and 39 isolates showed hybridization with plasmids from ~
30 to ~ 310 kb in size; in five isolates, vanB was located on
two plasmids. These hybridization studies and iPCR/PCR-
based analyses of coupling sequences were consistent with
the chromosomal localization of Tn1549 for 227 isolates
(81.6%) and plasmid localization for 50 isolates (18.0%); in
a single case, a presumable integration of plasmid into chro-
mosome was observed (variant CS_6a1 from WAW2).
Isolates with the plasmid localization of vanB were much
more prevalent among early VREfm, i.e., from 1999 to 2005
(61% of these isolates) compared to the isolates collected from
2006 to 2010 (0.7% of these isolates, p < 0.001). Among iso-
lates with the plasmid localization of vanB, rep17pRUM was
found among 49 isolates, followed by reppLG1, rep2pRE25,
rep1pIP501, reppMG1, and rep9pAD1 (42, 35, 32, 27, and 5 iso-
lates, respectively). Thirty-one and 12 of these isolates carried
axe-txe and ω-ε-ζ), respectively. S1-PFGE/hybridization
analyses revealed that 29, 23, and 22 plasmids hybridizedwith
the reppLG1, rep17pRUM, and rep2pRE25 probes, respectively
(Table 1A). In several cases, a single plasmid was associated
with two or three rep genes. Sixteen vanB-plasmids hybrid-
ized with the axe-txe probe; among them, 13 co-hybridized
with reppLG1 and 12 with rep17pRUM, respectively. Nine plas-
mids did not hybridize with any of the four probes used.
Sequencing revealed a low variability of rep genes within this
group that included two, one, three, one, and three variants of
rep1pIP501, rep2pRE25, rep17pRUM, reppMG1, and reppLG1, re-
spectively. Among 50 isolates with the plasmid localization of
vanB, 43 isolates (86.0%) were able to transfer vancomycin
resistance while conjugation experiments involving 32 repre-
sentative isolates with various chromosomal localizations of
vanB were negative in 29 cases.
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Discussion

The first VanB-VREfm was detected in Poland in 1999
[15], and our study investigated the VanB epidemiology
during the following 12 years. Considering a relatively
moderate incidence of VREfm in Poland during this period
(e.g., in 2010 amounting to 7.8% of invasive infections
[http://ecdc.europa.eu/en/publications/Publications/1111_
SUR_AMR_data.pdf.pdf; 6th November 2017, date last
accessed]), it may be assumed that our collection
reasonably well reflected the epidemiological situation in
Polish hospitals. Although initially VanA represented the
major VREfm phenotype in Poland [16, 35], after 2006, the

NRCARS recorded an increasing number of VanB-VREfm,
a f fec t ing severa l hosp i ta l s . The cur ren t g loba l
epidemiology of VREfm shows considerable differences,
with VanA predominant in Europe and the USA [36], and
VanB constituting over 80% of invasive VREfm in
Australia [37]. A recent rise of VanB-E. faecium has been
reported in Germany [8]. Nearly all isolates in our study
belonged to the hospital E. faecium, since 2006 with the
predominant role (89%) of lineage 78. VanB-VREfm
belonging to this lineage were responsible for recent
outbreaks in Germany, Sweden, and Australia [38], and
representatives of lineage 78 played a role in vanA
dissemination in Polish hospitals [34].

vanR vanS vanY vanW vanH vanB vanX

vanW

12 bp

* ****   * *           *  ***  ***  * *    *
***

A1-A20

B1-B2

C
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Fig. 1 Diversity of vanY-vanX
region among VanB-VREfm in
Poland, 1998–2010. a Structure
of the region, distribution of
single-nucleotide polymorphisms
(marked by asterisks) among A-
type variants, and localization of
deletions and ISs. b Similarity
tree of nucleotide sequences of A-
and B-type variants and
sequences from the V583 strain of
E. faecalis and isolates of E. lenta
and Clostridium spp
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While the structure of Tn1546, harboring vanA shows a high
variability [34, 39], the vanY-vanX region in the vanB gene
cluster appeared to be less divergent. In the studied collection,
the A-type showed the highest prevalence, with variants very
similar or identical to these found in E. faecium in Australia,
France, and Taiwan [40–42], and in the pMG2200 plasmid of
E. faecalis [5]. Importantly, the Avariants are also present in gut
anaerobes such as Clostridium spp. and E. lenta [26, 40], a
presumable reservoir of Tn1549-type transposons. Genomic
analyses of VanB-E. faecium and concomitantly isolated
vanB-positive gut anaerobes indicated the epidemiological sig-
nificance of de novo acquisition of Tn1549 by hospital-adapted
E. faecium [7, 41]. The B-type characteristic for the first
vancomycin-resistant E. faecalis V583 strain [33], to our
knowledge, has not been reported in E. faecium so far. The
presence of ISs targeting the vanS-vanY intergenic region
(resulting in C- and F-types), was observed also elsewhere
[43]. Such variability of vanB clusters may be useful in analyses
of suspected VRE outbreaks. For example, plasmid-located D-
type was found in isolates representing various MTs and STs
from the WAW1 hospital (Table 1A). Thus, a spread of a stable
~ 150 kb conjugative plasmid of undetermined replicon type,
harboring this specific variant of the vanB cluster was most
likely responsible for the outbreak. Similarly, although isolates
from SZC2 differed both in the clonal composition and
vanB-associated plasmidome, C-type was detected in all these
isolates (Table 1A), indicating extensive plasmid recombination
during an outbreak. Until now, more detailed knowledge of
plasmids carrying vanB in E. faecium remains limited [38]. In
our study, vanB-plasmids represented mostly the reppLG1,
rep17pRUM, and rep2pRE25 replicons, similarly to the situation
observed for vanA-plasmids in Poland [34]. The original pLG1
contained the complete vanA gene cluster [44] and plasmids
with this rep were responsible for an increase of HLGR among
E. faecium in Norway [45] but, to our knowledge,
vanB-plasmid of the reppLG1 type has not yet been reported.
The second observed rep type, rep17pRUM was involved in a
multicenter VanB outbreak in Sweden [46] and in the HLGR
spread in Norway [45]. The reppLG1 and rep17pRUM genes fre-
quently occurred together and in combination with the axe-txe,
characteristic for plasmids with these replicons [34, 45, 46].
Plasmids harboring vanB were typically transferable by conju-
gation and during outbreaks (e.g., in KRA2,WAW1 and SZC2)
were associated with diverse clonal backgrounds. Such plasmid
dissemination was additionally accompanied by presumable
recombination/co-integration events, resulting in the observed
variability of vanB-plasmids. A similar dynamics was observed
also for rep17pRUM-type vanA-plasmids [30]. Recombination/
co-integration likely contributed to the association of vanBwith
more than a single rep, observed in the current study and char-
acteristic for E. faecium plasmids in general [30, 34, 38, 45].
Two plasmid-located genes, aacA-aphD and citH, showed the
integration of Tn1549 with different coupling sequences and

might represent transposon integration hotspots. Such hotspots
were indeed observed for E. faecium [7].

Isolates with plasmid-borne vanB prevailed until 2006, and
later this determinant showed usually a chromosomal locali-
zation. This change occurred in parallel with the emergence
and spread of lineage 78. The predominantly chromosomal
localization of the vanB cluster in lineage 78 was observed
recently also in Germany and Australia [7, 8, 40]. Two vari-
ants of coupling sequences, CS_C1 and CS_C3, were associ-
ated with two most numerous groups of isolates (Table 1).
Twenty-one isolates with the CS_C1 variant, present in 17/
18 lineage and A1 type of the vanY-vanX region, showed
multicenter distribution over 2003–2008. These isolates
showed some divergence of their STs/MTs, which may be
explained by a transfer of transposon-containing region to a
new clonal background [8] and/or exchange of other genomic
regions, leading to formation of new STs/MTs [9]. An even
more complex epidemiological situation was associated with
isolates harboring the CS_C3 variant. This particular group
appears to be the main contributor to the increasing proportion
of VanB among VREfm and general increase of prevalence of
VRE in Poland and was responsible for extensive outbreaks,
e.g., in KSZ and POZ2 hospitals. With the exception of a
single isolate with CS_C5, which shared a coupling sequence
and insertion site with several ST192 isolates from Germany
[8], none of the remaining coupling sequences showed iden-
tity to coupling sequences described elsewhere [7–9]. This
finding is consistent with proposed independent de novo ac-
quisition of Tn1549 [7].

This study provides an analysis of VanB-E. faecium, per-
formed on a country level and over an extensive period of
time. We demonstrate a significant change both in the clonal
background as well as localization of Tn1549-type transpo-
sons, carrying vanB genes. Our study supports the role of
lineage 78 of the hospital-adapted E. faecium, presumably
acquiring de novo the vanB determinant, followed by spread
and differentiation of certain strains as a major factor beyond
the current increasing prevalence of VanB-VREfm in Polish
hospitals.
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