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Simple Summary: This study mainly employed metabolomics technology to determine changes of
intracellular metabolite concentrations related to milk protein synthesis induced by heat stress (HS) in
bovine mammary epithelial cells. HS was associated with significant differences in intracellular amino
acid metabolism resulting in an increase in the intracellular amino acid concentrations. Moreover,
HS promoted amino acid transportation and the activity of the mammalian target of rapamycin
(mTOR) signaling pathway, which plays an important role as a central regulator of cell metabolism,
growth, proliferation and survival. Greater expression of the alpha-S2-casein gene (CSN1S2) was
also observed during HS. Overall, our study indicated that bovine mammary epithelial cells may
have the ability to resist HS damage and continue milk protein synthesis partly through enhanced
intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway
during HS.

Abstract: Heat stress (HS) is one of the most serious factors to negatively affect the lactation per-
formance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was
demonstrated that HS decreases the lactation performance of dairy cows, partly through altering
gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mecha-
nisms under HS remains largely unknown. The objective of this study was to determine whether HS
induced changes in intracellular metabolites and gene transcription related to amino acid metabolism,
amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary ep-
ithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 ◦C (Control
group) and 42 ◦C (HS group). Relative to the control group, HS led to a greater mRNA expression
of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the
control group, metabolomics using liquid chromatography tandem–mass spectrometry identified
417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0
in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism
of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline,
cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of
the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA
expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated
with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR,
AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative
to the control group. Compared with the control group, HS also led to greater mRNA expression of
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the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the
ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular
amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.

Keywords: heat stress; metabolomics; amino acid metabolism; milk protein synthesis; MAC-T cell

1. Introduction

HS negatively impacts animal health and production parameters [1]. For dairy cows,
HS results in a decrease in milk production and milk content synthesis through an increase
in the additional heat load on a cow’s body [2]. Although environmental cooling systems
could partly ameliorate HS conditions on dairy cow herds, the economic loss is still over
USD 1.2 billion annually [3]. Given the trend of rising global temperature, there will
be an estimated 1.5 ◦C increase between 2030 and 2052 [4]. Therefore, it is essential to
further study the intracellular effects induced by HS on dairy cows to improve and inform
appropriate management strategies.

Traditional studies found that HS impaired milk yield through a decrease in food
intake [5]. However, more recently, studies performed using pair-fed thermal neutral
cows have demonstrated that the decrease in dry matter intake (DMI) only accounted
for approximately 30–50% of the milk yield reduction over the milk production period,
indicating that other factors negatively affect milk yield [6]. Bovine mammary epithelial
cells (BMECs) have demonstrated HS-sensitive characteristics, resulting in the reduction of
milk synthesis and secretion. Prior research in vitro and in vivo indicated that the number
and activity of BMECs significantly decreased with HS stimulation [7,8]. Moreover, HS
upregulated the mRNA expression of apoptosis and heat shock genes but significantly
downregulated the mRNA expression of genes involved in cell integrity and biosynthesis,
especially the amino acid transporter and casein related to milk protein synthesis [9,10].
These studies suggest that HS could change the BMEC function potential through altered
gene expression. The change in BMEC intracellular metabolites during HS has not been
characterized to date.

Metabolomics is an emerging and powerful approach for elucidating the change
of metabolites or chemical compounds generated by low-molecular-weight cells and tis-
sues using gas chromatography–mass spectrometry (GC–MS), liquid chromatography
tandem–mass spectrometry (LC–MS) and nuclear magnetic resonance (NMR) [11,12]. Re-
cently, metabolomics has been used to investigate metabolic alterations in rumen fluid,
serum, milk, urine and the mammary gland in dairy cows, with the aim of identifying di-
agnostic biomarkers and special metabolic pathways related to nutrition treatment, hepatic
steatosis and mastitis, in order to improve productivity [13–16]. Our previous research
confirmed that amino acid ratios (ratio of lysine to methionine and ratio of branched amino
acids) could influence milk protein synthesis via the regulation of intracellular metabolite
regulation in BMECs [17,18]. To our knowledge, metabolomics technology has been previ-
ously utilized to study the effect of HS on metabolites in the serum, rumen fluid and milk
of dairy cows but not on the intracellular metabolites of BMECs.

Therefore, our hypothesis was that BMECs might have the ability to adapt to HS and
maintain milk yield and milk components partly through the regulation of intracellular
metabolism. To address this hypothesis, the immortalized BMEC line (MAC-T) was
cultured with different temperatures (37 and 42 ◦C) and LC-MS metabolomics technology
and gene transcription were used to analyze the biological response in HS.

2. Materials and Methods
2.1. Cell Culture and Treatments

The immortalized BMEC line (MAC-T) was chosen as the model. Cell culture was
similarly performed base on our previous protocol [17]. In brief, MAC-T cells were recov-
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ered in 75 cm2 flasks with the condition of 37 ◦C and 5% CO2 in an incubator. Then cell
culture was performed until the number of cells was sufficient for the experiment. The basal
medium was prepared using DMEM/F12 (Thermo Fisher Scientific, South Logan, UT, USA)
with 10% fetal bovine serum (FBS) and 100 U/mL penicillin/streptomycin (Thermo Fisher
Scientific, South Logan, UT, USA). The experiment medium was the same as the basal
medium except for FBS being replaced with bovine serum albumin (BSA). For HS research,
MAC-T cells were cultured at 37 ◦C (control group, CON) and 42 ◦C (heat stress group, HS)
for 12 h with five duplicates, respectively [19]. For the intracellular metabolomics analysis,
cells were incubated in a culture dish (1.8 × 106 cells, 100 mm) until they reached 80% to
90% confluence. Then cells were incubated at different temperatures (37 and 42 ◦C [20,21])
after serum-free starvation overnight. Finally, MAC-T cells were collected into 15 mL tubes
and stored at −80 ◦C until metabolomics analyses were performed. To determine the effect
of HS on gene expression in MAC-T cells, the treatments and cell culture procedure were
as the same as that for the metabolomics analyses except that six-well plates were used to
in place of culture dishes.

2.2. RNA Extraction and Real-Time PCR Analysis

The RNA extraction and real-time PCR (RT-PCR) with five replicates were performed
base on our previous reports [17]. Briefly, total RNA was extracted from MAC-T cells using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and RNA quality of each sample was quan-
tified through NanoDrop 1000 ND-2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA). The cDNA synthesis was performed using the PrimeScript RT reagent Kit
with gDNA Eraser (Takara Biotechnology, Dalian, China) according to the manufacturer’s
instructions. The RT-PCR was performed according to the manufacturer’s instructions of
SYBR Premix Ex Taq (Takara Biotechnology, Dalian, China). The cDNA was diluted to 50 ng
with RNase-free water, 2 µL of diluted cDNA was combined in the 20 µL reaction mixture.
The 20 µL system also contained 10 µL of 2 × SYBR Premix Ex Taq (Takara Biotechnology,
Dalian, China), 0.4 µL each of 10 µM forward and reverse primers, 0.4 µL of 50 × ROX
Reference Dye II and 4.8 µL of RNase-free water. All RT-PCR analyses were performed in
QuantStudio 6 Flex System (Applied Biosystems, Foster City, CA, USA) with the following
program: 95 ◦C for 30 s, 40 cycles at 95 ◦C for 5 s, and 60 ◦C for 34 s. Primer design and veri-
fication was performed based on the protocols reported in Loor laboratory [22]. The primer
information of target genes, that is, heat shock protein genes, casein genes, amino acid
transporter genes and mTOR signaling pathway genes, is shown in Supplemental Table
S1 [6,18]. Three housekeeping genes (GADPH, UXT and RPS9) were used as the internal
control against which target gene expression was normalized. The mRNA expression levels
of the target genes in arbitrary units were calculated from the value of the threshold cycle
(Ct) of RT-PCR compared to that of the internal control performing by the comparative cycle
threshold (2−∆∆Ct) method (∆Ct = Ctgene of target −Ctinternal control, ∆∆Ct = ∆Ctgene of HS group
− Ctgene of control group) [23]. The results were presented as means ± standard deviation.

2.3. LC-MS Analysis

The comparative metabolomics analysis was performed based on the LC–MS. For
metabolite extraction, the solvent was added to 50 mg of sample (acetonitrile–methanol-
water, 2:2:1, containing internal standard, 1 mL), followed by vortexing for 30 s, and
homogenized at 45 Hz for 4 min, then incubated at −20 ◦C for 1 h and centrifuged at
12,000 rpm for 15 min. Finally, the supernatant was extracted and stored at −80 ◦C.

LC-MS analysis was performed using a UHPLC system (1290, Agilent Technologies,
Santa Clara, CA, USA) with a UPLC HSS T3 column (2.1 mm× 100 mm, 1.8 µm) coupled to
Q Exactive (Orbitrap MS, Thermo). The column temperature was maintained at 45 ◦C, and
the injection volume was 2 µL. The MS was set up in positive (POS) and negative (NEG)
ionization mode. Mobile phase A was composed of 0.1% formic acid in water for POS and
5 mmol/L ammonium acetate in water for NEG, and the mobile phase B was acetonitrile.
The flow rate was 0.5 mL/min with a gradient elution as follows: 0 min, 1% acetonitrile;
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1 min, 1% acetonitrile; 8 min, 99% acetonitrile; 10 min, 99% acetonitrile; 10.1 min, 1%
acetonitrile; 12 min, 1% acetonitrile. MS/MS spectra were received by using the QE mass
spectrometer on an information-dependent basis (IDA). OSI-SMMS (version 1.0, Dalian
Chem Data Solution Information Technology Co. Ltd., Dalian, China) was used for peak
annotation after data processing.

2.4. Data Analysis

All the RT-PCR expression data for each gene were log2 transformed to obtain a
normal distribution before statistical analyses. All statistical analyses were performed by
the MIXED model in SAS (version 9.3; SAS Institute Inc., Cary, NC, USA) with temperature
as a fixed effect and individual cell culture well or dish as the random effect. Means of
treatment were generated by the LSMEANS option and separated using the PDIFF option
with significance p < 0.05. Data were presented as mean ± standard error of mean. For
metabolomics analysis, praetor scaling was applied to reduce noise and artifacts in the
models. Data were analyzed by principle component analysis (PCA) to monitor the repro-
ducibility of the instrument and (orthogonal) partial least-squares-discriminant analysis
(OPLS-DA) were applied to establish the differential analysis of metabolic characteristics.
Models with parameters R2Y and Q2 greater than 0.5 were regarded as having prominent
predictive ability. The VIP score of the OPLS-DA model was applied to rank the metabolites
that best distinguished between the two groups (VIP > 1). In addition, independent t-tests
(p < 0.05) were also used to determine the significantly different results that the candidate
biomarkers obtained from OPLS-DA of the control and HS group [24–26]. Metabolite
abundances were calculated through the PMR and Metabolites database.

3. Results
3.1. Heat Shock Response of MAC-T Cells

Heat shock response was triggered by high-temperature treatment at 42 ◦C in MAC-T
cells. The effects of HS on mRNA expression of heat shock response genes are shown in
Figure 1. Compared with control group incubated at 37 ◦C, HS significantly upregulated
the gene expression of heat shock factor 1 (HSF1), heat shock protein beta-8 (HSPB8), heat
shock protein 5 (HSPA5), heat shock protein 90 kDa alpha, class B member 1 (Hsp90AB1)
and heat shock 70 kDa protein 1A (HspA1A) in this study (p < 0.05).
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Figure 1. Effects of heat stress on mRNA expression of heat shock response genes in MAC-T bovine
mammary epithelial cells. Asterisks indicated significant differences between different groups: * p < 0.05.

3.2. Intracellular Metabolism of MAC-T Cells

Metabolomics analysis showed that a total of 12,176 and 9737 compounds were
detected by the POS mode and NEG mode, respectively. From these compounds, 7176 and
6020 metabolites were identified and quantified, respectively. More detailed information
is presented in Supplemental Table S2. For the identification and analysis of differential
metabolites between different groups, the metabolic molecules detected in the POS and
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NEG ionization modes were combined and the duplicates were removed by using MS2
spectra identification analysis results.

The multivariate analyses of the metabolic profiles revealed unique clusters between
the control group and HS group in both POS and NEG ionization modes (Figure 2A–D). In
the OPLS-DA model, the parameter R2Y was greater than 0.988, and the Q2 values were
greater than 0.56, suggesting good reliability and predictive ability of the model used in
this study. The 200 permutation test of the OPLS-DA model performed to avoid overfitting
of the parameters pR2Y (0.17) and pQ2 (0.09) yielded a result less than 1.0, indicating that the
model was appropriate for further analysis with good robustness and validity (Figure 2E,F).

 

Figure 2. Metabolomic analysis of PCA score map, OPLS-DA score plot and permutation test of
OPLS-DA. Control group (incubation at 37 ◦C, n = 5) and treatment group (incubation at 42 ◦C,
n = 5). Multivariate analysis of (A,C,E) was performed base on negative ion (NEG) mode, while
the multivariate analysis (fixed effect = temperature, random effect = culture plate) of (B,D,F) was
performed based on positive ion mode (POS). PCA = principal component analysis, the blue represent
control, and the red represent heat stress. OPLS-DA = orthogonal partial least squares discriminant
analysis, the blue represents control, and the red represents heat stress.
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A total of 417 differential metabolites with p < 0.05 and VIP > 1.0 were obtained based
on PLS-DA analysis, with 219 increased and 198 decreased in the HS group relative to the
control group. The 30 metabolites shown in Figure 3 represent at least 8 metabolic path-
ways: glutathione metabolism; phenylalanine, tyrosine and tryptophan metabolism; valine,
leucine and isoleucine metabolism; alanine, aspartate and glutamate metabolism; arginine
and proline metabolism; lipid metabolism; nucleotide metabolism; metabolism of cofac-
tors and vitamins. Additionally, 15 metabolites (glutathione, phenylalanine, L-norleucine,
isoleucine, tyrosine, pyroglutamic acid, 5′-methylthioadenosine, tryptophan, glutamate,
proline, L-threo-sphingosine C-18, 2-amino-2-methylbutanoate, N1-acetylspermidine, pan-
tothenic acid and sn-glycero-3-phosphocholine) related to amino acid metabolism were
observed [27–29], indicating that HS exerted a dramatic effect on intracellular amino acid
metabolism in MAC-T.

For more in-depth biological function information, KEGG pathway annotation analy-
sis was performed according to significant (p < 0.05, VIP > 1.0) differential metabolites with
the assistance of KEGG database. A total of 417 differential metabolites were classified
into metabolism, organismal systems, human diseases, genetic information processing and
environmental information processing (Figure 4A). As expected, amino acid metabolism
pathways had the highest number of significant differential metabolites in response to HS.
Furthermore, the metabolism-enrichment pathways with p < 0.05 are shown in Figure 4B,
grouping into glucose, lipid, nucleotide, amino acid, vitamin and other material and energy
metabolism pathways. Pathways of glutathione metabolism, cysteine and methionine,
beta-alanine metabolism, ABC transporters, aminoacyl-tRNA biosynthesis, protein diges-
tion and absorption, biosynthesis of amino acids and alanine, aspartate and glutamate
metabolism are directly related to amino acid metabolism (Figure 4B).
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3.3. Milk Protein Synthesis Regulation of MAC-T Cells

The effects of HS on the mRNA abundance of amino acid transporter and key regulator
genes at the mTOR signaling pathway are shown in Figure 5. Compared with the control
group, the HS group with a cell culture temperature of 42 ◦C had greater (p < 0.05) mRNA
abundance of the amino acid transporter genes large neutral amino acid transporter small
subunit 3 (SLC43A1), sodium-coupled neutral amino acid transporter 9 (SLC38A9), proton-
coupled amino acid transporter 1 (SLC36A1) and 4F2 cell-surface antigen heavy chain
(SLC3A2), but lower (p < 0.05) mRNA abundance of large neutral amino acids transporter
small subunit 1 (SLC7A5) and sodium-coupled neutral amino acid transporter 2 (SLC38A2)
was observed. Compared with the control group, the HS group had greater (p < 0.05)
mRNA abundance of mTOR, serine/threonine-protein kinase (AKT), GTP-binding protein
Rheb (RHEB), eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic elongation
factor 2 kinase (eEF2K) in the mTOR signaling pathway. However, lower (p < 0.05) mRNA
abundance of tuberous sclerosis complex 1 (TSC1), tuberous sclerosis complex 2 (TSC2) and
elongation factor 2 (eEF2) were observed. There was no significant difference in the mRNA
expression of eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) in
both the control group and the treatment group.
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transporter genes. (B) The mRNA relation expression of key regulator genes at mTOR signaling pathway. Asterisks indicate
significant differences between different groups: * p < 0.05.

3.4. Casein Synthesis of MAC-T Cells

The effects of HS on the mRNA expression of casein genes are reported in Figure 6. In
response to HS, the MAC-T cells displayed significantly increased expression of CSN1S2.



Animals 2021, 11, 3153 9 of 17

No significant difference in the mRNA expression of CSN1S1 and CSN2 genes was observed
with incubation at 42 ◦C relative to 37 ◦C.
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4. Discussion
4.1. Heat Stress Model Construction

Heat shock proteins (HSPs) that function to protect cells from HS by repairing protein
damage and maintaining normal growth [10] were confirmed in the 42 ◦C treatment group
but not in the 37 ◦C control group. HS induces greater mRNA expression of HSPB8, HSPA5,
Hsp90AB1 and HspA1A in BMECs [10]. HS also increased the mRNA expression of HSF1,
which was confirmed by the ability to block apoptosis during HS due to its regulatory
function of genes encoding molecular chaperones [19]. As expected, HS significantly
increased the mRNA expression of HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A in this
study, which is in accordance with previous studies that showed HS led to the induction of
HSP genes [30,31]. These results suggest that an appropriate HS MAC-T BMEC model was
achieved by culturing at 42 ◦C for 12 h.

4.2. Metabolomics

This study has demonstrated that HS causes the metabolite profiles involved in amino
acid metabolism to change in BMECs. The present study also demonstrated changes in
intracellular metabolites and gene transcription related to amino acid metabolism, amino
acid transportation and mTOR signaling in BMECs. Previously, it was demonstrated that
the metabolite concentration involved in amino acid metabolism, lipolysis metabolism and
glycolysis metabolism were with significantly changed in the plasma and milk of dairy
cows exposed to HS [31,32]. Moreover, the significant change in amino acid concentration
induced by HS was also observed in the serum of dairy cows [32–36].

4.2.1. Glutathione Metabolism

Glutathione (GSH) is a major compound in mammalian cells and has the ability to
protect cells from oxidative damage and maintain cell survival and proliferation under
stress conditions [37]. In this study, the greater intracellular concentration of GSH in BMECs
incubated at 42 ◦C was consistent with a previous study that demonstrated increased
GSH activity in dairy cows under heat stress [38]. Moreover, GSH was confirmed as a
tripeptide comprising glycine (Gly), cysteine (Cys) and glutamate (Glu), suggesting a
greater requirement for the three amino acids of BMECs under heat stress [39]. This is
consistent with the greater Glu concentration determined in the BMECs based on VIP
analysis. Therefore, we speculate that BMECs have the ability to resist HS by enhancing
the utilization of Glu and by GSH synthesis.
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4.2.2. Phenylalanine, Tyrosine and Tryptophan Metabolism

Phenylalanine (Phe) was confirmed as a potentially limiting amino acid for milk
protein synthesis in BMECs [40]. The extraction of Phe by the mammary gland was shown
to be equal to its amount secreted in milk [18]. With the catalysis of Phe hydroxylase, Phe
could be metabolized to tyrosine (Tyr). In this study, greater intracellular concentrations
of Phe and Tyr were determined in the HS group relative to that in the control group.
However, the lower mRNA expression of SLC7A5, which is an amino acid transporter with
high affinity for Phe and Tyr, was also observed in the HS group [41]. Therefore, it seems
plausible that HS might inhibit the utilization of Phe for milk protein synthesis but enhance
the metabolized action of Phe to Tyr in BMECs. Moreover, Tyr was demonstrated to be
able to mitigate the damage of HS as the precursor of the catecholamine neurotransmitters,
dopamine and norepinephrine [42]. We speculated that the action metabolizing Phe to Tyr
is a self-protective mechanism to resist HS in BMECs.

Tryptophan (Trp) is recognized to play an important role in the metabolism, devel-
opment and growth of animals [43]. In addition, it is also an essential amino acid for
milk protein synthesis. Trp is also a precursor to active molecules such as melatonin, a
metabolite that has antioxidative effects [41]. It was demonstrated that the supplementation
of rumen-protected Trp increased milk yield and milk protein production in dairy cows
during HS [44]. Given that there is no influence of Trp deletion on milk protein yield [45],
it is reasonable to speculate that the greater intracellular Trp concentration and activity of
the melanogenesis pathway is beneficial to BMECs during HS.

4.2.3. Valine, Leucine and Isoleucine Metabolism

Branched-chain amino acids (BCAAs) are among the essential amino acids with a
high concentration (>50%) in the milk protein of dairy cows, and the extraction of BCAAs
exceeding the amount of BCAAs secreted in milk [46]. BCAAs not only act as building
blocks for milk protein synthesis but also possess other metabolic functions, which were
catabolized extensively in lactating mammary tissue to provide amino groups for the
biosynthesis of other amino acids [47]. In this study, the intracellular concentrations of
valine (Val), leucine (Leu) and isoleucine (Ile) in the HS group were greater relative to the
control group, indicating that BMECs have higher BCAA demands under HS. Furthermore,
BCAAs have also been confirmed as precursors for signaling molecules [48]. Additionally,
it was demonstrated that BCAAs could promote protein synthesis rates in bovine mammary
cells by activating the mTOR pathway [49,50]. Given the greater mRNA expression of
genes of the mTOR signaling pathway and CSN1S2, we speculated that higher levels
of intracellular BCAAs were important to milk protein synthesis regulation in BMECs
under HS.

4.2.4. Arginine and Proline Metabolism

Arginine (Arg) is recognized as a semi-essential amino acid, with the character of
extensive catabolism to other metabolites in mammals [51]. However, Arg has been
confirmed as an essential amino acid (EAA) for dairy cows, with a higher expression of
arginase occurring in the mammary gland [52]. The higher concentration of citrulline but
lower concentration of fumarate, both upstream metabolites of Arg synthesis, indicated
the extensive catabolism of Arg in BMECs under HS. Furthermore, our study showed that
the downstream metabolites (Glu, Pro, Orn and creatine) of Arg catabolism had a greater
concentration in the HS group compared with that in the control group. This increase
suggests that HS promotes the activity of the Arg–ornithine–Pro metabolism pathway;
HS might increase the activity of ornithine aminotransferase to generate ∆1-l-pyrroline-
5-carboxylate (P5C) [53]. Conversely, the lower concentration of putrescine, spermidine
and spermine in HS suggested inhibited ornithine–putrescine–spermine metabolism via
the decreased the activity of spermidine synthase and spermine synthase [53]. Creatine,
another metabolite, was observed at a higher concentration in the HS group. Given that
proline, spermine and creatine were not converted to Arg as the end metabolism products
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of Arg, it is reasonable to speculate that Arg catabolism plays an important role in resisting
HS in BMECs. However, further study must understand the regulated mechanism of HS
relative to Arg metabolites in BMECs. Additionally, Arg addition has a positive effect on
milk protein synthesis regulation through activation of the mTOR signaling pathway in
bovine mammary glands under HS [19]. Thus, the greater intracellular Arg concentration
observed in the HS group of our study suggests that an increasing Arg requirement of
BMECs contributes to the cells’ anti-HS mechanisms.

4.2.5. Alanine, Aspartate and Glutamate Metabolism

Transamination plays an important role in initiating the degradation of alanine (Ala),
aspartate (Asp) and Glu to yield pyruvate, oxaloacetate and alpha ketoglutarate (α-KG),
respectively, which may provide a carbon source for the tricarboxylic acid cycle (TCA)
cycle and adenosine triphosphate (ATP) for the synthesis of purine and pyrimidine nu-
cleotides [54,55]. In this study, HS increased the concentration of glutamine, pyruvic acid,
citrate and aspartic acid and reduced the concentration of alanine, indicating that HS
promotes the transamination of Ala, Asp and Glu to provide a carbon source for the TCA
cycle. Meijer et al. concluded that alanine signaling could adjust glycolysis and gluconeo-
genesis to maintain glucose synthesis throughout a period of feed-restriction stress [56].
Additionally, Glu, located in the center of ammonia–nitrogen exchange, is a major vehicle
for most non-essential amino acids, such as ornithine, citrulline, Pro and Arg, and is an
essential precursor for the synthesis of molecules, including nucleotides, amino sugars, and
nicotinamide adenosine dinucleotide (phosphate) (NAD(P)). Upregulated glutaminolysis
can compensate for the loss of αKG, and its replenishment into the TCA cycle maintains
ATP and GSH levels under oxidative stress [57,58]. Therefore, the notably increased level
of Glu in our study might suggest an interference in the TCA cycle, influencing energy
metabolism, which to a certain extent reflected the HS effect in MAC-T BMECs.

4.2.6. Cysteine and Methionine Metabolism

Methionine (Met) is an important restrictive amino acid for dairy cows, and its defi-
ciency reduces the availability of other essential amino acids [18]. The extraction of Met
was shown to be equal to its amount secreted in milk [41]. Met and Cys could be used as
precursors of S-adenosylmethionine (SAM), taurine, hydrogen sulfide and glutathione [59].
In this study, HS increased the concentration of Met and SAM, indicating that HS might
promote Met catabolism and inhibit the utilization of Met for milk protein synthesis. In
addition, the concentrations of SAM and 5’-methylthioadenosine, the principal donors of
methyl groups, were increased, showing that HS promoted the one-carbon metabolism of
Met and its metabolization to homocysteine, followed by its rapid conversion to cystathio-
nine and then to taurine and glutathione via the transsulfuration pathway, to alleviate
oxidant stress induced by various oxidants and protect the tissue from damage [60,61].

In the present study, HS had the most significant effect on intracellular amino acid
metabolism in MAC-T and led to greater intracellular concentrations of some amino
acids (Leu, Ile, Val, Phe, Tyr, Pro, Arg, Met, Trp, Glu, Asp and GSH) and decreased the
concentrations of other amino acids (Thr, Lys, Ala, Gly and Cys) (Figure 7). The metabolites
in the MAC-T bovine mammary epithelial cell exposure to HS might be used as a protein
precursor, or as a methyl donor, or as an antioxidant, or act as a signal molecule, to provided
ample substrates and energy available for milk protein synthesis supplementing into the
amino acid metabolism, energy metabolism and one-carbon metabolism. Metabolites
related to amino acid metabolism are shown in Supplemental Table S3.
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4.3. Amino Acid Transporters

The metabolomics analysis based on LC–MS found changes in intracellular amino
acid concentrations and metabolism. Previously, it was demonstrated that amino acids
could not diffuse across the cell membrane because of the selective barrier function [17].
Therefore, measuring the change in amino acid transporters is important for the elucidation
of the mechanisms involved in the altered concentrations of metabolites that were observed
in this study. In our study, HS led to greater mRNA expression of SLC43A1, SLC38A9,
SLC36A1 and SLC3A2, suggesting that HS stimulated the activity of these amino acid
transporters, consistent with the results of our metabolomics analysis, which show that HS
increased the amino acid intracellular concentrations in MAC-T cells. Interestingly, a lower
mRNA expression of SLC7A5 and SLC38A2 was observed in our study compared with that
in the control group.

SLC38A2 was confirmed as one of the Na+-dependent amino acid transporters with
high sensitivity to short-chain neutral amino acids, including Ser, Gly, Ala and Glu [62].
To our knowledge, few studies have reported the effect of HS on SLC38A2 in BMECs. A
similar decrease in the gene expression of SLC38A2 induced by HS in the breast muscle of
broilers was observed [35]. Moreover, the lower expression of SLC38A2 was observed to
decrease glutamicacid (Gln) consumption and inhibit cell growth [63]. Combined with the
observation that HS led to higher Gln and Glu intracellular concentration in the HS group
in the present work, it is plausible that the decrease in the gene expression of SLC38A2
might be one of the regulated ways for reducing the Glu and Gln consumption to adapt
to HS in BMECs. Moreover, it was demonstrated that SLC38A2 functions to regulate the
activity of the mTOR and general control nonderepressible 2 (GCN2) pathways related
to milk protein synthesis [62]. Therefore, the lower mRNA expression of SLC38A2 with
the higher intracellular concentration of Ser, Ala and Glu in the present study may be
characteristic of HS adaptation in BMECs.

SLC7A5 is a heteromeric amino acid transporter (HAT), alongside SLC3A2 [64]. HATs
have been demonstrated to be responsible for the transportation of various amino acids,
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e.g., essential amino acids (Leu, Ile, Val, Phe, Met, His, Trp, Thr, Arg and Lys). The SLC7A5
was confirmed to possess an amino acid transportation function, e.g., as an HAT [65]. HS
led to a greater intracellular concentration of most essential amino acids (Leu, Ile, Val, Phe,
Met, Trp and Arg) based on the metabolomics analysis in this study. Our previous study
found that an increase in Thr, Ile and Val decreased the gene expression of SLC7A5 [17].
Therefore, the lower mRNA expression of SLC7A5 suggests that a potential negative
feedback mechanism related to SLC7A5 was activated for the regulation of intracellular
essential amino acid concentrations to adapt to HS in BMECs. Moreover, the lower gene
expression of SLC7A5 was observed to promote cell apoptosis and cell cycle arrest [66,67].
SLC7A5 is a potentially important target to study the HS adaptions of BMECs.

Overall, our data in the present study indicate that BMECs could satisfy the amino
acid requirement during HS partly by regulating the activity of amino acid transporters.
However, amino acid transporters not only play a role in the response to intracellular
amino acid concentration but also serve as the signaling molecules to regulate the mTOR
pathway activity and milk protein synthesis [68,69]. It is necessary to further determine
the transcription level of mTOR pathway activity and milk protein synthesis.

4.4. mTOR Signaling Pathway

The mTOR pathway is a key nutrient-sensing pathway that has been well studied [70].
The mammalian target of rapamycin is a protein kinase and serves as the central regulator
responsible for integrating various cellular signaling cascades, especially those derived
from amino acids [68]. A previous study similarly observed that HS could promote the
gene or protein expression of mTOR [71]. Additionally, it was demonstrated that essential
amino acids (Leu, Ile, Thr, Met, Arg, Trp and Lys) and non-essential amino acids (Glu
and Gln) have the ability to improve the expression of mTOR [72,73]. It is plausible that
BMECs could regulate the gene expression of mTOR, partly through intracellular amino
acid metabolism and concentration to adapt to HS.

AKT, TSC1, TSC2 and RHEB are the key upstream signaling molecules that regulate
the activity of the mTOR pathway, and EIF4EBP1, eIF4E, eEF2K and eEF2 are the important
downstream regulators of the mTOR pathway [74]. For the upstream activity of mTOR,
AKT and RHEB are the positive regulators of mTOR, and TSC1 and TSC2 are the negative
regulators of mTOR [75]. The downstream regulators of eIF4E and eEF2 were demonstrated
with the function of promoting mTOR pathway activity. EIF4EBP1 and eEF2K were con-
firmed as mTOR pathway inhibitors [76]. Therefore, our finding of the greater mRNA
expression of AKT, RHEB and eIF4E and the lower mRNA expression of TSC1 and TSC2
further suggests that BMECs could stimulate mTOR pathway activity for HS adaption.
Due to the fact that eEF2K/eEF2 mediates the ribosome translocation through activating
eEF2K to inhibit eEF2, the greater expression of eEF2K and lower expression of eEF2 in
the present work indicated that HS could the inhibit the translocation of ribosomes to
influence milk protein synthesis in BMECs. Overall, our data related to the gene expression
of the mTOR pathway in the present work suggested that BMECs could regulated mTOR
pathway activity, partly by sensing the change in intracellular amino acid concentration, to
adapt to HS.

4.5. Milk Protein Synthesis

The mRNA expression of casein is positively correlated with milk yield, and MAC-
T cells have been widely used to study milk protein synthesis regulation based on the
transcription level [17]. In the present work, the abundance of the casein gene was used
to evaluate the potential effects of HS on milk protein synthesis. The greater CSN1S2
expression is consistent with the increase in amino acid intracellular concentration and
metabolism, and the stimulation of mTOR pathway activity further suggesting that BMECs
possess the potential ability to protect from HS and partly maintain or recover the capacity
for αs2-casein protein synthesis. However, there was no significant change in the expression
of CSN1S1 and CSN2, which comprise more than 65% of milk proteins [77]. Previous studies
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have also shown that there was no significant change in the milk protein yield of dairy
cows during HS [9]. Thus, further study should be performed to elucidate the regulated
mechanisms related to different milk protein components in HS.

5. Conclusions

In the present study, our data provided more systematic evidence based on metabolomics
and gene expression that BMECs might possess the ability to resist HS damage and con-
tinue milk protein synthesis partly by enhancing intracellular amino acid absorption and
metabolism and activating the mTOR signaling pathway. Considering that the concentra-
tions of most of the intracellular essential amino acids were increased, future studies might
focus on the essential amino acid requirements of bovine mammary glands in HS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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